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Lecture 1

Topology

Definition (Topology): A topological space is a set X together with a subset τ so that

• ∅, X ∈ τ

• A finite intersection of elements in τ is in τ

• A arbitrary union of sets in τ is in τ.

The subsets τ are called a topology on X sets in τ are called open sets.

Definition (Basis): Let X be a topological space. A collection of subsets B is called a basis for x
if

• Every element in B is open

• Every open set of X is a union of elements in B.

Examples:

• Let (X, d) be a metric space, then d induces a topology on X. Then the sets of elements Br(x) is a
basis.

• The trivial topology. Let X be any set. Then τ = {∅, X} is a topology on X. This is un-interesting
but good for counterexamples.

• The discrete topology. Let X be any set. Then τ = P (x) is a topology on X. This is also good for
counterexamples.

Subspace topology

Following are geometrically meaningful topological spaces

Definition (Subspace topology): Let X be a topological space and let S be a subset of X. The
subspace topology on S is the topology given by

τS = {U ⊆ S | U = S ∩ V such that V is some open set in X}
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Examples:

• Let S1 = {(x, y) ∈ R2 | x2 + y2 = 1}. We topologize S1 by giving it the subspace topology coming
from R2.

• Let S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}. We topologize S2 by giving it the subspace topology
coming from R3.

• Consider [0,∞) in R. Open sets are the type (a, b) ∩ [0,∞). Open sets are of the form [0, b), b > 0 or
(c, d), c, d > 0. Note that [0, 1) is not open in R but is open in [0,∞) using the subspace topology.

Definition (Closed sets): A set of C in a topological space X is called closed if XC is open. Note
that sets can be both open or closed, and they are called clopen. Ususally clopen sets are ∅, X but
others are also possible.

Continuity and homeomorphisms

Proposition:
Finite union of closed sets are closed, arbitrary intersections of closed sets are closed. Proof is using
de morgan’s law.

Definition (Continuous functions): Let X and Y be topological spaces. Then a function f :
X → Y is said to be continuous if whenever O is an open set of Y , then f−1(O) is an open set of X.

Examples:

• Let X = {1, 2, 3} with discrete discrete topology. Since every subset is open, every map f : X → Y is
continuous.

• Let X = {1, 2, 3} with the trivial topology. Then, a map f : X → Y is continuous if and only if it is
constant. This is because only X is open, so all of its elements are mapped to the same value.

Proposition:
Show that a function f : X → Y is continuous ⇐⇒ f−1(C) is closed whenever C is a closed subset
of Y .
=⇒ : We know that Cc is open, so is f−1(Cc). So (f−1(Cc))c is closed, which is equal to f−1(C).
⇐= : Let U be open. Then U c is closed, so is f−1(U c) = (f−1(U))c. So f−1(U) is open.

Definition (Homeomorphism): A function f : X → Y is called a homeomorphism if:

• f continuous

• f is a bijection

• f−1 is continuous

Two spaces related by a homemorphism are considered the same space, topologically. That is, f let us push
the continuous properties of X to Y and f−1 allows use to push the continuous properties of Y to X.
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Examples:

• Let tan(x) : (−π/2, π/2)→ R. tan is continuous, bijection, and arctan is inverse to tan, which is also
continuous. This says (−π/2, π/2) is homemorphic to R. This shows that the size is not a topological
property.

• Stereographic projection is a homeomorphism between S2 \ {pt} and R2.

Non-examples:

• Let f : [0, 2π] → S1 given by f(θ) = (cos(θ), sin(θ)). Note that f is continuous, f is a bijection, but
f−1 is not continuous. To see why, consider the open set [0, π/2) in [0, 2π], note that (f−1)−1[0, π/2)
is the arc closed at (0, 0) open at (0, 1). This arc is certainly not open in the subspace topology of S2.
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Lecture 2- Quotient spaces and CW complexes

Quotient topology

Note: quotient space captures the intuition of gluing two spaces together. The open sets in the quotient
space are the sets that are open in all of the pieces before gluing.

Definition (Quotient topology): Let X be a topologial space and let ∼ be an equivalence relation
on X. Let X\ ∼= Y be the set of equivalence classes of X under ∼. We can topologize Y by specifying

τY = {U ⊆ Y | {x ∈ X : [x] ∈ U} ∈ τX}

In other words

τY =

{
U ⊆ Y |

(⋃
u∈U
{x ∈ X | x ∼ u}

)
∈ τX

}

Proposition:
Let X = [0, 2π]. Let ∼ be the relation 0 ∼ 2π. We claim that Y = X\{0 ∼ 2π} ≡ S1. In here, ≡
means homeomorphism.

Proof: Let f : [0, 2π] → S1 be f(θ) = (cos(θ), sin(θ)). f is bijective (mapping the endpoint to 0 = 2π) and
continuous. Let g : S1 → [0, 2π] be given by (cos(θ), sin(θ))→ θ, then g is the continuous inverse of f.

�

Definition (Quotient map (intrinsic definition)): The map π : X → X\ ∼ given by x 7→ [x] is
continuous, and it is called the quotient map. That is, if U ⊆ X\ ∼ is open ⇐⇒ π−1(U) is open.

Definition (Quotient map (extrinsic definition)): Let π : X → Y be a surjective map such
that U ⊆ Y is open ⇐⇒ π−1(U) is open. Then π is called a quotient map. (I believe the equivalences
classes are defined by having the same image under π.)

Example Let π : Rn+k → Rn be given by π(x1, . . . xn+k)→ π(x1, . . . , xn), then it is a quotient map.
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Theorem (Characteristic prop of quotient topologies):
Let π : X → Y be a quotient map. Then for any topological space B, f : Y → B is continuous if and
only if f ◦ π is continuous.

Proof: =⇒ : If f is continuous, then along with the fact that π is continuous, and with the fact that
composition of continuous maps are continuous, we know that f ◦ π is continuous.
⇐= : assume f ◦ π is continuous. Let U ⊆ B be open. Then, (f ◦ π)−1(U) = π−1 ◦ f−1(U) is open. By the
definition of quotient map, we know that f−1(U) is also open. Therefore f is continuous. �

Corollary (Passing to the quotient): Let π : X → Y be a quotient map and let B be a
topological space. Let f : X → B be a continuous function so that if π(p) = π(q), then f(p) = f(q).
(f maps equivalent elements under the equivalence relations to the same element in B.) Then there
exists a unique continuous map f̃ : Y → B such that f = f̃ ◦ π.

X\A should have been X\ ∼?

Example: Let f : [0, 2π]→ R be given by f(x) = sin(x). sin(0) = sin(2π). This factors to a map f̃ : S1 → R
making
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where the factored map is the height of the point on the circle.
The factored map is simply taking any representative and mapping it using f because f is
invariant to any representatives you pick in the same equivalence class.

CW complexes

Recall
Dn = {(x1, . . . , xn) ⊆ Rn | x2

1 + . . .+ x2
n ≤ 1}

Sn−1 = {(x1, . . . , xn−1) ⊆ Rn | x2
1 + . . .+ x2

n = 1}

By convention, D0 is a point.
Example:

Building a CW complex
This process is kind of algorithmic. We build a CW complex via the following procedure

1. Start with a discrete point, X0, and a bunch of dots.

2. Form the n skeleton Xn from Xn−1 inductively by attaching Dn to Xn−1 by a map φ : Sn−1 → Xn−1.
(i.e. Form Xn from Xn−1

∐
Dn by the quotient under the equivalence relation X ∼ φ(x).) (

∐
means

disjoint union)
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3. Either stop at a finite amount of time, setting X = Xn for some n or continue forever giving X the
weak topology. A is open if and only if A ∩Xn is open for every n.what is the weak topology? why is
this term also in functional analysis?

In here, we use the quotient to glue together the boundary of D2 and X1. See more DW complexes? Try to
construct some of them on your own?

Definition 0.1 (CW complexes):

• If X = Xn for some finite n and X 6= Xn−1 then we say X is n dimensional.

• Xn is called the n- skeleton. (Or everything that is ≤ n dimensional.)

• A closed subset of X that is also a CW complex is called a subcomplex. If A is a subcomplex,
we call (X,A) a CW pair.

Here is a list of examples of CW complexes:

Advanced examples

Consider RPn. RPn is the space of lines in Rn+1 that pass through the origin. Note that all points that lie
on a single line that pass through origin are in the same equivalence class. Each line in Rn+1 hits Sn in two
points which are antipodal.
Therefore, we have RPn ≡ Sn \ {x ∼ −x}., since each point in the upper hemisphere is uniquely associated
with a point in the lower hemisphere. So we can restrict ourselves to the upper hemisphere. Note that the
upper hemisphere is actually homeomorphic to the space Dn. In the equator, the antopodal points are also
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identified. Note that the equator is homeomorphic to RPn−1. Hence, we deduce the relationship

RPn = RPn−1
∐

Dn/{x ∼ π(x), π : Sn−1 → RPn−1 is the quotient map}

That is, we stick the boundaries of the disk to the equator circle, but the equator circle is not just a circle,
because x ∼ −x is a quotient structure on it, so it’s actually RPn−1.

So recursively
RPn = D0 ∪D1 ∪ . . . ∪Dn

where Di is attached to Xn−1 = RPn−1 by the quotient map.
Note that RP∞ is obtained by continuing this process forever.
Can you do this with RP 1? What is D1?D0?
Yes, RP 0 is the R line, and D1 is a line segment [0, 1]. We attach the line segment to R, and obtain the
upper semicircle which should represent RP 1? Ask prof how to construct this.

CP n

Consider the space CPn. It is the space of complex lines in Cn+1. It can be viewed as

S2n+1/{v ∼ λv for λ ∈ C, |λ| = 1}

A similar analysis from before shows that CPn can be built by D0 ∪D2 ∪D4 ∪ . . . ∪Dn−2 ∪Dn where Dn

is attached to Xn−1 by the quotient map Sn−1 → CPn−2.

Problem 1: This is a good exercise to try.

Product topology

Intuitively, the product of X × Y is a space which has a copy of Y at each point in X. For example
R× R ≡ R2.

Definition (Product topology): Let X and Y be the topological spaces. The product X × Y is
given as a set by the cartesian product of X and Y . A basis for the topology is B = {U × V | U ∈
τX .V ∈ τY }.

For example, S1 × S1 ≡ torus.
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Problem 2: Show that the product of CW complexes is a CW complex, at least think about what
the dimension should be.

Homotopy of maps

Definition: Let g : X → Y and H : X → Y . We say that g and h are homotopic if there exist a
family of maps ft : X → Y , with t ∈ [0, 1] such that

• f0 = g

• f1 = f

• The map F : X × I → Y given by F (x, t) = ft(x) is continuous. (note that the topology in the
domain depends on the topology of X and I as product topology.)

To think about this pictorally, there are two ways. The first way is to think about the image of X through
time, continuously deforming in the space Y . Another way is to think about the image of X × I.
Notation wise, f is homotopic to g, we write f w g.

Example 1 Let h : S1 → R2 given by h(θ) = (cos θ, sin θ). Let g : S1 → R2 given by g(θ) = (0, 0). Let
ft(θ) = ((1− t) sin θ, (1− t) cos θ). Then f0 = h, f1 = g, and ft is continuous family. So h w g. 2

Definition 0.2: If a map f is homotopic to a constant map, then f is null-homotopic. One way to
think about it is that constant map is a point, so we think of it as it can be shrunk down into a point
in Y .

9



Lecture 3- Homotopy equivalence and the Homotopy Extension
Property

Example: (Homotoping id map). Let I = [0, 1] and let ft : I → I be given by ft(x) = (1 − t)x. At t = 0,
this is the identity map and at t = 1, this is the constant map x 7→ 0. We say X morphs into a point.

Homotopy equivalence

Definition 0.3 (Homotopy equivalence): A map f : X → Y is called a homotopy equivalence if
there exists a map g : Y → X such that g ◦ f ' IdX and f ◦ g ' IdY .

Example: the following maps are inverse homotopy equivalences:

• f : {pt} → [0, 1] given by f(pt) = 0

• g : [0, 1]→ {pt} given by g(x) = pt

We have f ◦ g ' id because it is homotopic to identity map and g ◦ f ' id because it’s just the point.

Definition 0.4 (Contractible): A space is called contractible if it is homotopy equivalent to a point.
Note that a space having homotopy type of a point is called contractible, which amounts to requiring
the identity map of the space to be nullhomotopic.

Definition 0.5 (Deformation retraction): Idea: want a homotopy a space onto a subspace and
keep track of the spaces along the way.
A deformation retraction to a space X onto a susbpace A is a homotopy ft : X → X so that

1. f0 = id

2. f1(X) = A

3. ft |A= id for all t.

Example: Let S1 × [−1, 1] have coordinates (θ, r). The map ft(θ, r) = (θ, (1 − t)r) is a deformation
retraction. onto S1 × {0}.

1. f0(θ, r) = (θ, r)

2. f1(θ, r) = (θ, 0)

3. ft |S1×{0}= (θ, 0)
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Lemma 0.1 (Lemma 1):
Let A and B be subspaces of X both of which are deformation retraction of X, then A,B are
homotopic equivalent.

Definition 0.6 (Retraction): A map r : X → X is called a retraction of X onto A if r(X) = A
and r |A= id. Note that a retraction is weaker than a deformation retraction because the latter is
continuous and the retraction just straight gives you the end contracted end result instantly. (at time
t = 1 of a deformation retract.)

Remark
Deformation retraction is a continuous family of continuous function, i.e. an homotopy, while a retraction
being just a continuous function.
For example, for any x0 ∈ X, {x0} ⊂ X has a retract, pick r : X → {x0} to be the unique one point map,
it is a retract. Yet, {x0} ⊂ X only has a deformation retraction if X is contractible. Hence, showing a
deformation retraction from X onto a subspace A always exhibits X and A are homotopy eqivalent, yet A
being a retract of X is weaker!.

Problem 3 (Central problem: homotopy extension problem): Informally: when does a ho-
motopy on A ⊂ X extend to all of X?

The formal definition is:

Definition (Homotopy Extension Property (H.E.P.)): A pair (X,A) has the homotopopy
extension property, if given a pair of maps f : X × {0} → Y , and G : A× I → Y , there exists a map
F : X × I → Y such that F |X×{0}= f and F |A×I= G.

Another way to understand this property is that suppose one is given a map f0 : X → Y , and also
a homotopy on the subspace A ⊂ X given by ft : A → Y such that it satisfies with f0 |A, then we
would like to extend to a homotopy ft : X → Y given f0. If given a pair (X,A), such extension
problem can always be solved, we say that it has the homotopy equivalence proeprty.

That is, if every pair of maps X × {0} → Y and A× I → Y that agrees on A× {0} can be extended
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to a map X × I → Y.

Lemma 0.2 (Lemma 2. Pg 14 of Hatcher):
A pair (X,A) has the H.E.P ⇐⇒ X × {0} ∪A× I is a retract of X × {I}.

Proof:
=⇒
Suppose that (X,A) has the H.E.P. Consider the identity map I : X × {0} ∪ A× I → X × {0} ∪ A× I. It
extends to a map g : X× I → X×{0}∪A× I such that g |X×{0}∪A×I= Id. (its image is the smaller set and
it agrees with the identity function on the base set.) Indeed, g is a retraction of X × I onto X ×{0}∪A× I.

⇐=
Suppose that A is closed. (This assumption is made in order to make claims easier. See textbook to see
how to prove it without this assumption.)

Suppose there exists maps h : A × I → Y , g : X × {0} → Y such that they agree on A × {0}. We define
continuous function f : A× I ∪X × {0} → Y that agrees with h and g.
Since A× I ∪X ×{0} is a retraction of X × I, we can find a function k : X × I → A× I ∪X ×{0} such that
it fixes A × I ∪X × {0}. Consider f ◦ k : X × I → Y . This gives a homotopy extension property because
f ◦ k restricted to A× I ∪X × {0} gives the same as f . (since k fixes A× I ∪X × {0}.)

�

Theorem 0.3:
If (X,A) is a CW pair, (A is a closed sub-complex of X), then (X,A) has the H.E.P.
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Example: Dn × I retracts onto Dn × {0} ∪ Sn−1 × I.

The lemma showed D1 × I → D1 ∪ S0 × I. We can also consider D2 × I → D2 ∪ S1 × I by retracting from
a solid cylinder to the empty toilet paper roll with bottom sealed by a circle.

Lemma 0.4 (Claim 1):
Claim 1
The map r : Dn × I → Dn × I given by

r(x, t) =

{
( 2x

2−t , 0) if t ≤ 2(1− ‖x‖)
( x
‖x‖ , 2−

2−t
‖x‖ ) if t ≥ 2(1− ‖x‖)

is a retraction onto Dn × {0} ∪ (Sn−1)× I. note that x deontes the vector.

Proof:

1. Continuous: matches up when t = 2(1− ‖x‖), and otherwise, its made of continuous functions.

2. Check r(x, 0) = (x, 0) (always in first case).

Check if ‖x‖ = 1, then r(x, t) = (x, t) (always end up in second case).

This indeed proves it’s a retraction. �

Lemma 0.5 (Claim 2):
Claim 2
The map r(X, t, s) = sr(X, t) + (1− s)r(X, t) is a deformation retraction.
The idea is, you get a retraction first, and the deformation retraction is literally just points moving
to the correct position over time t ∈ [0, 1].
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Lemma 0.6 (Claim 3):
Lemma 3
Dn × I deformation retracts onto Dn × {0} ∪ (Sn−1 × I).

Proof (Proof of the big theorem):
If (X,A) is a CW pair, then X × {0} ∪A× I is a deformation retract of X × I, so (X,A) has the H.E.P.

Basic idea is to collapse each n skeleton iteratively (except for A), We make every Xn × I into Xn−1 × I by
using the deformation retract of Dn × I into Dn × 0 ∪ ∂Dn × I. So we still keep the set Xn × {0} (the big
set times 0 is always kept), but the big set times I would be collapsed.

Then. when we get 0, we know what to do.

So, Xn×I is obtained from Xn×{0}∪(Xn−1∪A)×I by attaching copies of Dn×I along Dn×{0}∪∂Dn−1×I,
but by lemma 3, Dn × I deformation retracts onto Dn × {0} ∪ ∂Dn × I.
So Xn × I ∪X × I retracts onto (Xn−1)× I ∪ (A× I) ∪ (Xn × 0) (That is, A we leave unchanged, and we
collapse Xn× I to Xn−1× I ∪Xn×{0}). We try to collapse every that is not in A into the lower dimension
skeleton.
Inductively we may repeat this process with each cell in each skeleton to get a deformation retraction
Xn × I ∪ A × I to X × {0} ∪X0 × I ∪ A × I. Now we can squish down the 0 cells (the bars into bottom
points) to X × {0}, to get a retraction onto X × {0} ∪ A × I. So, since it is a reformation retraction, we
have X,A satisfies the H.E.P. �

The following illustration is a quite accurate one. You can also draw it as if D1 is a loop.
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Proposition 0.7:
If (X,A) satisfies the H.E.P. and A is contractible, then X/A ' (h.e.)X. In fact, the quotient map q
is a h.e.

Proof: Since A is contractible, there exists a homotopy Ct : A→ A contracting A. That is, C0 = id, C1(A) 7→
pt. Since X,A has the H.E.P. we can make a map ft such that F (X, {0}) is identity and F (x, t) = Ct(x) for
x ∈ A, t ∈ [0, 1]. We extend Ct to maps ft : X → X such that it is equal restricting to Ct, ft |A= Ct.
Since ft(A) ⊆ A, (because ft extends Ct, and that Ct(A) ⊆ A at all times) the characteristics property of
quotient maps says that there exists a map ft : X/A→ X/A making the following commute. (We are using
“passing to the quotient here”. q ◦ ft : X → X/A is a continuous function and q : X → X/A is a quotient.
The passing to the quotient implies there exists a function f t : X/A→ X/A such that f t ◦ q is equal to the
original function, which is q ◦ ft.) So q ◦ ft = f t ◦ q.

The following is important: (Now this refers to the image on the right.)
But since f1(A) = pt (lands in a point), we get a map g : X/A→ X. The equivalence relation X/A is that
x ∼ y ⇐⇒ x, y ∈ A. So, if q(x) = q(y), (that is, they are both in A, so in the same equivalence class) then
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f1(x) = f1(y) because they are the same point that A is mapped to. So g can be defined this way, by the
“passing to the quotient”.

Moreover, g commutes with everything in the diagram. That is, q ◦ g = f1 and g ◦ q = f1.
Now, f1 ' idX by ft and f1 ' idX/A by ft. That is, the homotopy is given by t ranging from 0 to 1, as

f0, f0 are both identity on their respective domains.
So q, g are inverse homotopic equivalent. Particularly, X and X/A are homotopic equivalent.
Reference: Hatcher page 16

�

Generalizing this, every finite graph is homotopy equivalent to a wedge of n circles. (flower shape.)

The idea is that if an edge joins two distinct vertices, then the edge is contractible. Quotienting out by all
of those edges leave only edges whose start and end points are the same.

Attaching maps only depend on homotopy class

There is another way to show homotopic equivalence without finding the explicit homotopy equivalence
functions.

Definition 0.7 (Attaching spaces): Suppose we have space X0, X1, and we wish to attach X1 to
X0 by identifying the points in a subspace A ⊂ X1 with points in X0. So we have a map f : A→ X0,
and we form a quotient space X0 t X1 by identifying each point a ∈ A ⊂ X1 with its image in
f(a) ∈ X0. So we denote this quotient space by X0 tf X1, the space X0 with X1 attached along
A via f. When (X1, A) = (Dn, Sn−1), we have the case of attaching an n cell to X0 via a map
f : Sn−1 → X0.

Theorem 0.8:
Let X be a CW complex. Let Dn be the n disk. Let f0, f1 : Sn−1 → X be two homotopic maps.
Then X tf0 Dn ' X tf1 Dn.
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Proof: Let F : Sn−1 × I → X be the homotopy between f0 and f1. Let B = X
⋃
F D

n × I.
By previous lemma, Dn × I deformation retracts onto Dn × {0} ∪ Sn−1 × I.

Doing the d.r. internally shows that B ' X tf0 Dn (d.r.)
Flipping the d.r. upside down(deformation retracting D×I towards 1 instead of the 0 direction),gives Dn×I
d.r. into Dn × {0} ∪ Sn−1 × I. This gives that B ' X tf1 Dn (d.r.). The two spaces X tf0 Dn, X tf1 Dn

are both deformation retracts of the big space B, so they are homotopy equivalent. �

17



Lecture 4. Paths and Fundamental Groups

Definition 0.8 (Path): A path in a space X is a map f : I → X.

Definition 0.9 (Path connected): A path in a space X is path connected if any two points are
joined by a path.
e.g. Rn is joined by a line. (0, 1) ∪ (2, 3) ⊂ R is not path connected from the intermediate value
theorem.

Definition 0.10 (Homotopy of paths in X): A homotopy of paths in X is a family of paths
ft : I → X such that

1. ∀t ∈ [0, 1], ft(0) = x0, ft(1) = x1 for some fixed x0 and x1 in X. That is, the homotopy of
paths always start and end at the same endpoints.

2. F : I × I → X defined by F (s, t) = ft(s) is continuous.

For example, if D ⊂ Rn is convex domain, then any two paths f0, f1 with same endpoints are homotopic.
that is

ft(s) = tf1(s) + (1− t)f0(s)

An non-example is two paths in an annulus.

Given paths f, g with f(1) = g(0), there is a path product
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You basically travel twice as fast. Path products respect homotopy of paths, that is, you can define products
on the homotopy of paths.

Lemma 0.9 (Product on homotopy of paths):
If f0 ' f1 and g0 ' g1, then f0 · g0 ' f1 · g1.

Proof: Let

Ht(s) =

{
ft(2s) = 0 ≤ s ≤ 1

2

gt(2s− 1) = 1
2 ≤ s ≤ 1

So if [f ] is the equivalence class of all paths homotopic to f and [g] is the equivalence class of all paths
homotopic to g then [f ] · [g] is well defined as [f · g]. �

Definition (Loop): A loop is a path f : I → X so that f(0) = f(1)..

Example 2 For example, since I/{0 ∼ 1} ∼= S1, a loop is the same thing as a map S1 → X. 2

Definition (Fundamental group): The set (actually a group) of all homotopy classes [f ] of loops
f : I → X at the basepoint x0(f(0) = f(1) = x0) is called the fundamental group of X and is denoted
π1(X,x0.)

Definition (Reparametrization): Let f : I → X be a path and let ϕ : I → I be a map with
ϕ(0) = 0 and ϕ(1) = 1. Then the path f ◦ ϕ is called a reparametrization of f.

Proposition 0.10:
If f : I → X is a path and f ◦ ϕ is a reparametrization, then f ◦ ϕ ' f.

Proof: Since I is convex, there exist a homotopy ϕt from ϕ to id given by

ϕt(s) = (1− t)φ(s) + ts

so f ◦ ϕt is a homotopy between f ◦ ϕ and f. �

So all those ϕ : I × I → I maps are homotopic to the identity and all reparametrizations are homotopic to
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the original map f.

Theorem 0.11 (Theorem (Fundamental group)):
π1(X,x0) is a group under ·.

Proof: We need identity, inverses, and associativity.
Identity:
Claim: constant path e : I → X given by e(s) = x0 is an identity under ·.
If f : I → X is a loop:

f · e =

{
f(2t) = 0 for 0 ≤ s ≤ 1

2

x0 for 1
2 ≤ s ≤ 1

This is a reparametrization of f under ϕ :

ϕ =

{
2t for 0 ≤ s ≤ 1

2

1 for 1
2 ≤ s ≤ 1

Since all reparametrizations are homotopic, f · e ' f ◦ ϕ ' f.
Similarly, e · f ' f.
Inverses
Let f : I → X be a loop and let f : I → X be a loop defined by f = f(1− s). (Runs f in reverse)
Claim: f ◦ f ' f ◦ f ' e.
Let ft be given by

ft =

{
f on [0, 1− t]
f(1− t) on [1− t, 1]

and let gt = ft.
Now construct homotopy.
Let ht = ft · gt. Then h1 = e. h0 = f0 · g0 = f · f .
This is a homotopy from f · f → e.

Similarly, f · f ' id so f = f−1.
Associativity
Need to show that (f · g) · h ' f · (g · h).

(f · g) · h =


Do f 4 times as fast

Do g 4 times as fast

Do h 2 times as fast
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f · (g · h) =


Do f 2 times as fast

Do g 4 times as fast

Do h 4 times as fast

These are reparametrizations of the same path so they are homotopic. So, π1(X,x0) is indeed a group.

�

Example 3 π1(Rn, 0) is trivial. Let Ct : R→ R be the contraction x 7→ (1− t)x. Let f : I → Rn be a loop
based at 0. Then Ct ◦ f is a homotopy of g onto the trivial path. More generally, if C is any contractible
space which deformation retracts onto X0 then π1(C, x0) = {id}. 2

A natural question is how much does the fundamental group depend on its basepoint?
Let f be a loop based at x1 and let h be a path from x0 to x1.

We get a loop based at x0 given by h · f · h. We define the change of basepoint map Bh to be

Bh : π1(X,x0)→ π1(X,x1), f 7→ h · f · h

Proposition 0.12 (Change of basepoint map is an isomorphism):
The map Bh (if the basepoints are path connected) is an isomorphism.

Proof: Bh is a homomorphism since Bh(f ·g) = [h·f ·g ·h] = [h·f ·h·h·g ·h] = [h·f ·h]·[h·g ·h] = Bh(f)·Bh(g)
Morevoer, Bh has a inverse since Bh ·Bh(f) = [h · h · f · h · h] = [f ]. So Bh is an isomorphism.

�

Note that if X is path connected, π1(X,x0) is independent of x0 so we can just write π1(X). But if not, we
cannot write it this way.

Induced homomorphisms

Definition 0.11 (Pointed space and pointed maps): If X is a space and x0 is a pt in X, we call
(X,x0) a pointed space. If (X,x0) and (Y, y0) are two pointed spaces, we call ϕ : (X,x0)→ (Y, y0) a
pointed map if ϕ(x0) = y0. (The notation implies this is a pointed map.)
If f : I → X is a loop based at x0, and ϕ : (X,x0) → (Y, y0) is a pointed map, then we get loop
based at y0 by φ · f . This respects homotopies of paths, so we get a well defined map

ϕ∗ : π1(X,x0)→ π1(Y, y0), [f ] 7→ [ϕ ◦ f ]
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Also, ϕ(f · g) ' ϕ(f) · ϕ(g), so ϕ∗ is a homomorphism.

Basically, ψ,ϕ are maps from one space to another while ψ∗, ϕ∗ maps the elements from the
fundamental group to the fundamental group of another space.

More properties:

• If ϕ : (X,x0)→ (X,x0) is the identity map, then ϕ∗ is idπ1(X,x0).

• If ϕ : (X,x0)→ (Y, y0) and ψ : (Y, y0)→ (Z, z0), then

(ψ ◦ ϕ)∗ : π1(X,x0)→ π1(Z, z0) = ψ∗ ◦ ϕ∗

so that π1(X) is a functor.

Definition 0.12 (Pointed homotopy equivalent): Let (X,x0) and (Y, y0) be pointed spaces. We
say (X,x0), (Y, y0) are pointed homotopy equivalent, if there exists

ϕ : (X,x0)→ (Y, y0) and ψ : (Y, y0)→ (X,x0)

such that ϕ ◦ ψ and ψ ◦ ϕ are homotopic to the identity map by a homotopy fixing x0 (or y0) at all
times. That is, it’s almost the same as homotopy equivalent, except that throughout the time, the
basepoints are fixed.

Proposition 0.13:
If (X,x0) and (Y, y0) are pointed homotopy equivalent, then

π1(X,x0) ' (isom)π1(Y, y0)

Proof: Let f : I → X be a loop and let ϕ : X → Y, ψ : Y → X be inverse pointed homotopy equivalences.
ψ ◦ ϕ ◦ f : I → X is a loop in X based at x0. Let (ψ ◦ ϕ)t be the basepoint fixing homotopy to id. So
(ψ◦ϕ)0 = ψ◦ϕ, (ψ◦ϕ)1 = idX . Then (ψ◦ϕ)t◦f is a homotopy from ψ◦ϕ◦f and f . since (ψ◦ϕ)∗ = ψ∗◦ϕ∗,
ϕ∗ and ψ∗ are isomorphisms. �

Remark: We can drop the conditions on basepoints with more work. For now, we can state that homotopy
equivalences induce isomorphism.
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Lecture 5. Covering spaces and the Fundamental group of the
circle.

Idea is that in a covering space, the bottom spaces are harder to deal with, but the pancakes above would
be easier to deal with. What we do is that we lift the loops in the bottom space to paths in the top space,
which will be much easier to deal with.
Goal: show that π2(S1) ∼= Z with the isomorphism given by

n 7→ (cos(2πns), sin(2πns)) 0 ≤ s ≤ 1.

To do this, we are going to “lift” loops to paths in R. Consider R ↪→ R3 given by s 7→ (cos(2πs), sin(2πs), s).
Also in R3, is S1 given by (cos(2πs), sin(2πs), 0) for 0 ≤ s ≤ 1. We get a map p : R→ S1 by projecting onto
the first two factors.
To show this map is open, we note that p−1(θ1, θ2) is a disjoint union of open sets. We imagine the covering
space as stack of pancakes.

Covering spaces

Definition 0.13 (Covering space): Given a space X, a covering space of X, denote by X̃, is a
space X̃ together with a map p : X̃ → X, such that for every x ∈ X, there is an open set U , x ∈ U ,
so that p−1(U) is a disjoint union of open sets Ũi, eahc of which projects onto U homeomorphically
via P . That is, P |Ũi

: Ũi → U is a homeomorphism. Each set U here is called “evenly covered” by
P .
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Definition 0.14 (Lift): Let f : A → X be a map. A map f̃ : A → X̃ for some covering space
P : X̃ → X is called a lift of f if p ◦ f̃ = f .

We will now show that covering spaces satisfy the homotopy lifting property:

Proposition (Homotopy lifting property):
Let X be a topological space and let P : X̃ → X be a covering space. Let F : Y × I → X be a map
and let F̃ : Y ×{0} → X̃ be a lift of F |Y×{0}. Then there exists a unique map F̃ : Y × I → X̃ lifting
F and restricting to the given lift on Y × {0}.

The proof idea is we first have y0 on Y × {0}. Take small neighbourhood around y0, transfer it to X such
that it is homeomorphic to some space that is in X̃. We can choose the one upstairs such that it contains
ỹ0, as it is already defined. Then we “tile” the Y × I space this way.

Proof: Let y0 ∈ Y . We first construct a lift on N × I for some open neighbourhood N , y0 ∈ N . Since
F : Y × I → X is continuous and Y × I has the product topology, each point in y0× I has a neighbourhood
Nt × (at, bt), so that F (nt × (at, bt)) is evenly covered. Since I is compact (Heine Borel), a finite number
of such sets covers y0 × I. Moreover, intersecting all of the Nt remaining gives a single neighbourhood of
Y called N . (equivalent to taking the narrowest square. cuz finite intersection of open sets is open.) N is
the intersection of the nts, which still cover the point y0. Now, we have neighbourhoods N × [t0, t1] ∪N ×
[t1, t2] ∪ . . . ∪N × [tm−1, tm] with t0 = 0, tm = 1, covering y0 × I and evenly covered.
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We next construct the lift on N × [0, t1]. F (N × [0, t1]) is evenly covered so we can declare F̃ (N × [0, t1])
to be p−1F (N × [0, t1]). (i.e. one of the stacking pancakes upstairs). Since F̃ (N × {0}) is given, we have a
preferred Ũi. Define F̃ (N × [0, ti]) to be P−1 |Ũi

F (N × [0, t1]), where Ũi is the component continuing the
given lift of N × {0}.
We may proceed inductively to construct the lift on all of N × I.

Detour. We will prove that a lift is unique in the case that Y is a point. So what we are doing, is to lift
an interval. Let F : I → X be a map. Suppose F̃ , F̃ ′ are two lifts which agree on 0. As before, partition I
into evenly covered neighbourhoods, [0, t1], [t1, t2], . . . [tm−1, tm]. Since [0, t1] is connected, so is F̃ [0, t1] and
F̃ ′[0, t1]. Since [0, t1] is evenly covered, it lands in a set U ⊂ X covered by Ũi ⊂ X̃.
Since F̃ (0) = F̃ ′(0), the image of [0, t1] must land in the same Ũi.

Since p is a homeomorphism on Ũi, the lifts must completely agree. Proceed from here inductively.

Since we have constructed F̃ on a neighbourhood of each point y ∈ Y , and we have shown the restriction to
each line is unique. We can fetch together the constructed lifts uniquely to get the desired lift F̃ : Y ×I → X̃.

�

Corollary 1: For each path f : I → X starting at x0 ∈ X and each x̃0 ∈ p−1(x0), there is a unique
lift f̃ : I → X̃ starting at x̃0.

Corollary 2: Let p : X̃ → X be a covering space and let ft : I → X be a homotopy of paths starting
at x0. Let x̃0 ∈ p−1(x0). Then there is a unique lifted homotopy f̃t : I → X̃ of paths starting at x̃0.
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Proof: Let F : I × I → X be given by F (s, t) = ft(s). By Cor 1, we get a unique lift of F (I × {0}). By
proposition previously, we get a unique lift F̃ : I × I → X̃. Since ft(0) = F (0, t) = x0 and ft(1) = F (1, t) =
x1, so F̃ ({0} × I) and F̃ ({1} × I) are constant. So f̃t(s) = F̃ (s, t) is a homotopy of paths. �

0.1 Fundamental group of S1

Recall that P : R → S1 given by s 7→ (cos(2πs), sin(2πs)) is a covering map. Notation: Let ωn be the loop
given by (cos(2πs), sin(2πs)), 0 ≤ s ≤ 1.

Theorem:
π1(S1) is isomorphic to Z.

Proof: Let f : I → S1 be a loop based at (1, 0). By Cor 1, there is a unique lift of f starting at 0. Since
P−1(1, 0) = Z, f̃(1) is an integer n.
Another path which starts at 0 and ends at n is ω̃n. There is a homotopy in R between f̃ and ω̃n given by

(1− t)f̃ + tω̃n

Composing f̃t with p gives a homotopy from f to ωn.
Suppose that f ' ωn and f ' ωm. Let ft be the homotopy between them. By corollary 2, there exists a
lifted homotopy f̃t from ω̃n to ω̃m. But f̃t is a homotopy of paths, so the endpoints are fixed.
In particular,

n = f̃0(1) = f̃1(1) = m

so n = m. So π1(S1) ' Z. Revisit this proof if you want? This is interesting and important. I know this
works and I understand it. But i cannot recite the key components to making this proof work. So I should
revisit the proof. �
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Lecture 6. Applications of fundamental group of the circle

Theorem:
Every continuous map f : D2 → D2 has a fixed point. That is, f(x0) = x0 for some x0 ∈ D2.

Proof: Suppose for all x ∈ D2, f(x) 6= x. We can define r : D2 → S1 as follows: draw a ray from f(x) to x
and declare r(x) to be the point on S1 where this ray hits S1.
Note that r is continuous since all small change in x produces a small change in f(x), which produces a
small change in r(x).
Also note that r |S1= id. So r is a retraction. Recall fact that D2 is simply connected since it is contractible.
So any loop on D2 is homotopic to a constant loop. Let f be any loop in S1 ⊂ D2. Let ft (in D2) bea
homotopy of f to a trivial loop.

Then consider r ◦ ft. This is now a homotopy in S1. But f1 is constant, so r ◦ ft is in fact a homotopy of f
to a trivial loop. But not all loops in S1 are trivial in π1(S1). This is a contradiction.

�

Fundamental group of n-dimensional tori

Proposition:
If X and Y are path connected spaces then π1(X × Y ) = π1(X)× π1(Y ).

Proof: map f : Z → X × Y is continuous if and only if f(z) = (g(z), h(z)), where g : Z → X and h : Z → Y
are continuous. Let f : I → X × Y be a loop based at (x0, y0). We get a loop g ∈ X based at x0 by looking
at the first vector. We also get a loop h in Y based in y0. Moreover, a homotopy ft of f gives two homotopies
gt and ht in X and Y respectively.
We get a map P : π1(X×Y )→ π1(X)×π1(Y ) by [f ] 7→ ([g], [h]). This map is bijective and a homomorphism
so there groups are isomorphic. �

Definition 0.15 (n diml torus): The n dimensional torus is the space Tn = S1 × S1 × . . . S1︸ ︷︷ ︸
n times

. For

example, T 2 = S1 × S1 = Z × Z. Note that if a and b generate π1(X) and π1(Y ) respectively, then
(a, y0) and (x0, b) generate π1(X × Y ).

Recall that T 1 is S1 × S1 and S1 is [0, 1]/{0 ∼ 1}. So T 2 can be obtained by the following:
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Similarly, T 3 ' I/{0 ∼ 1} × I/{0 ∼ 1} × I/{0 ∼ 1}. So π1(T 3) = Z3. So π1(T 3) is generated by a, b, c,
where those are loops in the x, y, z directions respectively, that come in at one vector, go out of the cube,
and rejoin the cube at the center of opposite size, and complete the loop. An image illustration is:

In general, π1(Tn) = Zn.

Fundamental theorem of algebra

Theorem (Fundamental theorem of algebra):
Every non-constant polynomial in C has a root in C.

Proof: By dividing by the leading term we get a monic polynomial:

p(z) = zn + an−1z
n−1 + . . .+ a0

If p(z) has no roots in C, then we can define for each r ∈ R, a continuous function fr : I → S1 by

fr(s) =
p(re2πis)/p(r)

|p(re2πis)/p(r)|

Note that fr(0) = fr(1). So this is a loop in S1. At r = 0, this is the constant loop, so fr(s) defines a null
homotopy.
Now, choose a very large r. Larger than 1, also larger than |a0|+ |a1|+ . . .+ |an−1|. Now, for |z| = r, we get
that

|zn| = r · rn−1 > (|a0|+ |a1|+ . . .+ |an−1|) · |z|n−1

since r > 1, |z| > 1, so |z|n > |a0 + a1z + . . .+ an−1z
n−1|. Let pt = zn + t(an−1z

n−1 + . . .+ a0) be a family
of polynomials.
Recall that

fr(s) =
p(re2πis)/p(r)

|p(re2πis)/p(r)|

Plugging in pt into the above formula gives a homotopy between fr(s) (at t = 1) to ωn(s) = e2πins, (when
t = 0.)
So, letting r go from 0 to 1 gives a homotopy form trivial loop to f1(s) but letting t go to 0 takes this loop
to ωn(s). This means ωn(s) is homotopic to a constant loop. This is a contradiction unless n = 0, which is
the constant polynomial. This means all non constant polynomial has a root.

�

Revisit the above proof, though proof makes sense by the /p(x) in the denominator and numerator seems
unnecessary??
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Lecture 7

0.2 Free Products

Suppose we are give groups G and H, and we want to form a group containing both spaces. One way is to
form G×H, but here if we have g1 ∈ G, h1 ∈ H, then g1h1 = h1g1 ∈ G×H, then this commutes. But it is
not always the case. Consider the fundamental group of figure eight generated by a, b, representing the left
and right loop, [ab] 6= ba in π1(figure 8).

Definition 0.16 (Free products): Let {Gα}α∈I be a list of groups. A word in Gα is a finite
sequence of length m ≥ 0 of elements in Gα. If m = 0, we call the word the empty word.
We further define multiplication by concatenation.

(g1, g2) · (g3, g3, g4) = (g1, g2, g3, g3, g4)

Note that the empty word is the identity element.

To make this a group, note that if gi, gi+1 are in the same group and 1α is the identity in Gα then we define
elementary reduction tobe:

(g1, . . . , gi, gi+1, . . . gm) ⇐⇒ (g1, . . . , gi−1, gi · gi+1, gi+2 . . . gm)

(g1, . . . , gi−1, 1, gi+1, . . . gm) ⇐⇒ (g1, . . . , gi−1, gi+1, gi+2 . . . gm)

Two words are equivalent if they are related by the elementary reductions.
Now (g1, g2, . . . , gm)−1 = (g−1

m , g−1
m−1, . . . g

−1
1 ))

Definition 0.17: Let {Gα}α∈I be a collection of groups. Then the free product, ∗α∈IGα is the set of
equivalence classes of words in Gα under the operation of concatenation. Note that we usually drop
the parentheses and write G ∗H for the product of two groups.

Example 4 Take two copies of Z2 generated by a and b respectively. Then Z2 ∗Z2 consists of elements that
look like :

ababa . . . , or bababa

because any two consecutive letters just cancel out. 2

Definition 0.18 (Free group of rank n): An important class of free products are free groups of
rank n, called Fn. They are formed by taking

Z ∗ Z ∗ Z . . . ∗ Z︸ ︷︷ ︸
n times

Let S be a set. If α ∈ S, we can form an infinite cyclic group 〈α〉. Let 〈S〉 = ∗α∈S〈α〉. We call this
the group generated by S.
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Theorem 0.14 (Characteristic property of free groups):
Let S be a set. For any group H and any map

φ : S → H

there exist a unique homomorphism φ̃ : 〈S〉 → H extending φ.

Proof: Let G be a finitely generated group and let {g1, . . . gn} be a generating set. Then the set map
{g1, . . . , gn} ↪→ G given by inclusion extends to a map φ̃ : 〈{g1, . . . , gn}〉 → G. This map is surjective since
g1, . . . gn is a generating set. By the first isomorphism theorem, Fn/R ' G where R = ker φ̃. �

Definition 0.19: Let S be a set and let R be a set of words in S. Then the group given by
presentation 〈S | R〉 is the group 〈S〉/N where N is the normal closure of R in S (Smallest normal
subgroup containing R). Sometimes we write x = y for xy−1 ∈ R and sometimes we write x = 1 for
x ∈ R.

Example 5 • Z/2Z = 〈a | a2 = 1〉

• Z× Z = 〈a, b | ab = ba〉

• Z ∗ Z = 〈a, b |〉

• Dn = 〈r, s | rn = 1, s2, sr = rn−1s〉 2

Proposition 0.15:
If G = 〈g1, . . . , gn | RG〉 and H = 〈h1, . . . , hm | RH〉 then G ∗H = 〈g1, . . . , gn, h1, . . . , hm | RG, RH〉.

Example 6 D4 ∗ Z/2Z = 〈r, d, a | r4 = 1, s2 = 1, sr = r3s, a2 = 1〉. 2

Want: if X = A ∪B then there is a map π1(A) ∗ π1(B)→ π1(X) which is surjective.

Proposition 0.16:
If φα : Gα → H is a collection of homomorphisms, then there exists a unique extension φ : ∗αGα → H.

Proof: The idea is φ(g1, . . . , gm) with gi ∈ Gi, we have

φ(g1, . . . , gm) = φ(g1)φ(g2) . . . φ(gm) = φ1(g1)φ2(g2) . . . φm(gm)
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�

Given X =
⋃
α∈J Aα with x0 ∈ Aα for every α. The inclusion maps iα : A→ X induce maps iα∗ : π1(A)→

π1(X). So we get a map I : ∗απ1(Aα)→ π1(X).

Lemma 0.17:
Let X =

⋃
α∈J Aα where Aα is path connected, open and contains the basepoint x0 for all α. Then

every loop in X based at x0 is homotopic to a loop which is a product of loops each of which is
contained in a single Aα.

Proof: Let f : I → X be a loop based at x0. Since it f is continuous and Aα is open for every α,
⋃
α f
−1(Aα)

is a union of open intervals covering I.
Now I is compact, so every open cover of I has a finite subcover. This means we can split [0, 1] into intervals
[0, s1] ∪ [s1, s2] ∪ . . . ∪ [sm−1, sm]. So that f([si−1, si]) := fi ⊆ Ai.
So, f ' f1 · . . . · fm. Next step is to make these into loops.

For example, in the image above, f1 · f2 can be written as (f1 · g1) · (g1 · f2), where (f1 · g1) is a loop in A1

and that (g1 · f2) is a loop in A2.
Since Ai is path connected for all i, there is a path from f(si) to the basepoint x0. Call this path gi.
Recall gigi is homotopic to identity, so

f ' f1 · f2 · . . . · fm ' (f1 · g1)︸ ︷︷ ︸
loop in A1

(g1 · f2 · g2)︸ ︷︷ ︸
loop in A2

(g2 · f3 · g3) . . . (gm−1fm)

So every loop f can be expressed as a1 · a2 . . . am with ai ∈ Ai. We have each i(ai) ∈ π1(X), where i is the
map induced by inclusion. �

check the following corollary and the theorem in textbook! important
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Corollary 3: The map I : ∗απ1(Aα)→ π1(X) is surjective under the conditions above.
By first isomorphism theorem, π1(X) = ∗απ1(Aα)/ ker(I). Now, we want to understand, what is in
the kernel of I? Suppose w ∈ Aα ∩Aβ . The maps

iαβ∗ : π1(Aα ∩Aβ)→ π1(Aα)

and
iβα∗ : π1(Aα ∩Aβ)→ π1(Aβ)

carry w into different groups and so different places in ∗π1(Aα). By slight abuse of notation, call
iαβ(w) the element which is the image of iβα∗(iαβ(w)) ∈ π1(X). iαβ(w) = iβα(w) in π1(X). So we
need the relation iαβ(w) · iβα(w)−1 = 1.

The basic idea is that if you have something in Aα ∩ Aβ , then if you include it in Aα first, then X or Aβ
first, then X, it will yield the same results. This is what is in the kernel.

Theorem 0.18 (Van Kampen’s theorem):
Suppose X is a union of path connected open spaces Aα so that X =

⋃
α∈J Aα. Suppose that for all

α, β, γ ∈ J , Aα ∩Aβ and Aα ∩Aβ ∩Aγ are path connected. Then the map

I : ∗απ1(Aα)→ π1(X)

is surjective and the kernel of I is normally generated by elements of the form iαβ(w)iβα(w) for
w ∈ π1(Aα ∩ Aβ). So π1(X) = ∗απ1(Aα)/N where N is the normal closure of elements of the form
iαβ(w)iβα(w).

Corollary 4: Let X = A ∪B with A and B path connected. A ∩B are path connected, and A and
B are open.
Let π1(A) = 〈a1, . . . , an | R〉 and π1(B) = 〈b1, . . . , bm | S〉 and π1(A ∩B) = 〈c1, . . . , c` | T 〉.
Then,

π1(X) = 〈a1, . . . , an, b1, . . . , bm | R,S, iAB(c1)iBA(c−1
1 ), . . . iAB(c`)iBA(c`)

−1〉

Theorem 0.19:
π1(Sn) = 0 for n ≥ 2.

Proof: Let Sn = {(x1, . . . , xn+1 ⊂ Rn+1) | x2
1 + . . .+ x2

n+1 = 1}.
Let A = {(x1, . . . , xn+1) ⊂ Sn | xn+1 > 0.4}, and B = {(x1, . . . , xn+1) ⊂ Sn | xn+1 < 0.6}.
Then, A ∼= Dn and B ∼= Dn with A and B are path connected and A ∩ B is path connected, and A and B
are open.
Note that A ∩B ∼= Sn−1 × I. By Van Kampen’s theorem, since π(A) = 〈e〉 = π1(B), then

π1(Sn) = ∗2i=1{e}/N = {e}.

Review textbook for this chapter
Review textbook for this chapter
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Review textbook for this chapter
Review textbook for this chapter �

Lecture 8. Applications of Van Kampen’s Theorem.

Wedge sums

Definition 0.20 (Wedge sum): Let (X1, x1), . . . (Xn, xn) be a collection of pointed spaces. Then
the wedge sum, denoted

∨n
i=1 xi is the space

n∐
i=1

Xi/x1 ∼ x2 ∼ . . . ∼ xn

In many practical cases, points have a neighbourhood which deformation retracts onto them. (For examples,
manifolds, finite CW complexes). This makes it easy to apply VKT.

Proposition:
Let (X1, x1), . . . (Xn, xn) be a collection of pointed spaces. Suppose each xi has a neighbourhood
which deformation retracts onto xi, then

π1(

n∨
i=1

Xi) = ∗ni=1π1(Xi)
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Proof: Let xi ∈ Ui ⊂ Xi be the neighbourhood of x0 which retracts onto xi. Let Ai = Xi

∨
(
∨
j 6=i Uj). Note

that Ai is open in
∨n
i=1Xi.

Ai ∩Aj = Ui ∩ Uj ' {pt} is path connected and has no π1.
By VKT,

π1(

n∨
i=1

Xi) = π1(A1) ∗ π1(A2) ∗ . . . ∗ π1(An)/N

note that the N is trivial.
Since Ai ' Xi, we get π1(

∨
+i = 1nXi) = π1(X1) ∗ π1(X2) ∗ . . . ∗ π1(xn).

�

Fundamental group of CW complexes

Step 1 We will show that attaching an n cell for n ≥ 3 does nothing to the fundamental group.

Proposition:
Let X be a path connected space and let Sn−1 ⊂ Dn for n ≥ 3. Let f : Sn−1 → X be a map and let
X ′ = X

∐
Dn/f(x) ∼ x. Then π1(X ′) = π1(X).

Proof:

A ' X,B ' Dn, and A ∩B ' Sn−1.
So π1(X1) = π1(A) ∗ π1(B)/N. Since Sn−1 is simply connected for n ≥ 3, we have π1(X ′) = π1(X). Revisit
this, i am not entirely sure.

�

Step 2 So the interesting parts all happen when we attach 2 cells or dimensions lower. What happens when
we attach 2 cells?
Fact 1:
π1(X ′) = Fn where x1 is the 1 skeleton of a CW complex.
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Fact 2:
If xf = x ∪f y and xg = X ∪g Y , then if f and g are homotopic maps, Xd ' Xg. ()homotopy equivalent.
Since a 2 cell is obtained by attaching D2 → X1 by a map (up to homotopy) on S1, attaching map is
determined by an element of π1(xn) = Fn.

Proposition:
Let G be a connected graph and let e2 be a 2 cell. Let π1(G) = 〈a1, a2, . . . , an | 〉. And let f : S1 → G
be so that f∗ : π1(S1)→ π1(G), f∗(1) = w. Then,

π1(G ∪f e2) = 〈a1, a2, . . . , an | w〉

Proof: Let e2 = {y ∈ R2 | |y| ≤ 1}. Let A = G ∪ {y ∈ D2 | y > 1/2}, let B = {y ∈ D2 | y < 2/3}. As before,
A ' G,B ' D2, and A ∩B ' S1 × I ' S1.

Want to know iAB(C) and iBA(C), where the former is mapping to A first and the latter is mapping to B
first. We know iBA(c) = id since it shrinks to the top. We know iAB(c) = w. So, π1(G∪f e2) = 〈a1, a2, . . . an |
w = 1〉.

�

Corollary 5: Let X be a connected 2d cw complex. Suppose that π1(X1) = Fn. Suppose X is built
with k 2-cells attached along w1, . . . wk, then π1(X) = 〈g1, . . . , gn | w1, . . . wk〉.

Definition 0.21: A group is finitely presented if it has a presentation with finite number of generators
and relations.

35



Corollary 6: Every finitely presented group is π1(X) for some 2d CW complex X.

Lecture 9

Surfaces

Definition: Surfaces are a special class of 2d CW complexes. They are finite CW complexes which
are 2d and are locally homeomorphic to R2. For example

Surfaces are a examples of manifolds.

There is an important operation on surfaces, called the connected sum demoted by #.

A#B is defined to be the surface obtained by removing R2 neighbourhoods of A and B surfaces, and gluing
the resulting pieces together.
Question: does it matter the location of you taking out the D2??

Note that like the above S2 is an identity for #, as cutting out S2 and gluing it back onn does nothing to
the surface.
Hence S2 is an identity for the operation of #.
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Definition (The closed orientable surface of genus g): #gT 2 = T 2#T 2# . . .#T 2︸ ︷︷ ︸
g times

is called the

closed orientable surface of genus g.

These spaces can be represented by polygons with gluing information.
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By corollary of VKT for 2 complexes, we have generators for every 1 cell. (the a, b, c, ds in the CW complex.
We also have a relation for every 2 cell.) Note that T 2#T 2 is CW complex with one 0 cell, four 1 cell, and
one 2 cell.
Recall that [a, b] = aba−1b−1. Where have we shown this at all?
So, if we denote the surface of T 2#T 2 by Σ2, then we have

π1(Σ2) = 〈a, b, c, d | [a, b][c, d] = 1〉

Note that the above? why is the product of them equal to 1?attention. Should consult to Hatcher for sure!!
In general, we can do this for a genus g surface. In general the surface will be a 4g gon.

Denote Σg = #gT 2.

Theorem:

π1(Σg) = 〈a1, b1, . . . , ag, bg | [a1, b1][a2, b2] . . . [agbg] = 1〉

Note that the [a1, b1][a2, b2] . . . [agbg] = 1 expands into aba−1b−1 . . . is exactly traversing around the the
genus g and getting back to the original point. That is why this long path formed this way is also in the
genus.

Theorem (HARD theorem):
The proof of this hard theorem could take up to an entire course!
Every closed (no boundary), orientable, surface is of the form

#gT 2

for some g.

Corollary 7: Closed orientable surfaces are classified by their fundamental groups.

Proof:
=⇒ :
That is, Σg ∼=homeo Σh, then by homeomorphic euqivalence invariance of π, we have that π1(Σg) = π1(Σh).
⇐= :
Suppose π1(Σg) = π1(Σh). Then we abelianize both fundamental groups.

Ab(π1(Σg)) = Ab(〈a1, b1, . . . , ag, bg | [a1, b1] . . . [ag, bg] = 1〉)
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In the abelianization, [a, b] = aba−1b−1 = 1. So the relation above is redundant. So Ab(π1(Σg)) = Z2g

Similarly, Ab(π1(Σh)) = Z2h. SInce Z2g ∼=is Z2h ⇐⇒ g = h, Σg = Σh. �

0.3 Non-Orientable surfaces

In a surface, one can make two choices for the normal vector to a loop.

The question is: Can this always be done consistently? Does dragging the vector around the loop change its
vector? The answer is no. Consider the mobius band.

A loop like this is called an orientation reversing loop.

Definition (Orientable surface): A surface is orientable if it does not contain an orientation
reversing loop. If a surface contains an orientable reversing loop, it is called non-orientable.

RP 2

Recall that RP 2 ∼= S2/x ∼ −x.

Note that the loop goes over a essentially twice. and the two antipodal points are now the same.
So RP 2 = e0 ∪g e1 ∪f e2 where g is the only possible mapping and g sends 1 ∈ π1(S1)→ a2.
By previous corollary to VKT for 2 complexes, we get

Proposition 0.20:
π1(RP 2) = 〈a | a2 = 1〉 = Z/2Z.
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Theorem 0.21 (Hard theorem again):
Every connected compact closed non-orientable surfaces is homeomorhic to #kRP 2 for some k ∈ N.

The blue and red lines represents the ”sticking”. That is, if you go in the hole of red line, then you pop out
from the red line on the right.
To apply the VKT, let A be the entire surface in the left while it pops out a little bit on the set on right.
Similarly right theo ther ones.

Now imagine what A∩B looks like. Note that A∩B = S1 × I (consider the green circle. It expands out to
cover the blue/red parts and it shrinks and goes to the other set to cover the blue/ red points.)
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Now, A = S1 × I ' S1, B = S1 × I ' S1.
So all of A ∩B,A,B have fundamental group of Z. So

π1(RP 2#RP 2) = 〈a, b | a2 = b2〉

Usually, we sub in a1 for a, to and get a−1
2 for b, to get

〈a1, a2 | a2
1a

2
2 = 1〉

Proposition:
π1(#kRP 2) = 〈a1, . . . , ak | a2

1a
2
2 . . . a

2
k = 1〉.

Fact: Ab(π1(#kRP 2)) = Zk−1 ⊕ Z/2Z 6= Z2g.

Corollary 8:
This is a very cool corollary!
Closed, connected, compact surfaces are classified by their fundamental groups.
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Lecture 10. More about covering space.

Recall definition of a covering space.

Definition: Let X be a topological space. A covering space is a space X̃ together with a map
p : X̃ → X such that ∀x ∈ X, there is a neighbourhood U 3 x such that p−1(U) =

∐
α∈I Uα, a

disjoint collection of sets Uα mapping so that p maps each set in
∐
α∈I Uα homeomorphically onto U .

Each U in this set up is called an evenly covered neighborhood and each Ui is called a sheet. If p−1(U) has
n sheets, it is called an n fold cover.
(boring cover) 2 fold cover of S1 : p(S1

∐
S1)→ S1 by

Disconnected covers are just disjoint unions of connected covers, which is really boring. So we just look at
connected covers.
(More interesting cover)
The 2 fold cover S1 → S1. Let S1 = {z ∈ C | |z| = 1}. Define p : S1 → S1 by p(z) = z2 (θ → 2θ.)
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We are particularly interested in the inverse image of p.

Consider the n fold cover S1 → S1, pn : S1 → S1, z 7→ zn. Below is an alternative visualization of the
connected cover of the n circles.

Example: p∗ : π1(X̃.x̃0) → π1(X,x0) for p2 : S1 → S1, z 7→ z2, is the induced homomorphism. Note that
the image of p2∗ is equal to 2Z. Similarly, p3∗ has the image 3Z.

Now, recall the homotopy lifting property. If p : X̃ → X is a cover and ft : Y → X is a homotopy, and
suppose that f̃0 : Y → X̃ is a lift of f0. Then there is a unique lift f̃t : Y → X̃ when looking at a loop in X.
The loop can lift to either a path or a loop.
For example, the path that walks the half circle in RHS is a loop when it is lifted to the space to the left.
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Injectivity of induced maps

Proposition:
The map p∗ : π1(X̃, x̃0) → π1(X,x0) induced by a covering map is injective. Moreover, the image
subgroup

p∗(π1(X̃, x̃0)) ≤ π1(X,x0)

consists of loops in (X,x0) which lifts to loops in (X̃, x̃0).

Proof: Suppose f̃0 : I → X̃ is a loop so that f0 = p ◦ f̃0 is trivial in π1(X,x0). That is, it is in the kernel of
p∗. Then there exists a homotopy ft from f0 to the trivial loop. By the homotopy lifting principle, we can
lift this to a homotopy f̃t of f̃0 since f1 is constant so is f̃1, so f̃0 is homotopic to a constant loop.
So p∗ : π1(X̃, x̃0)→ π1(X,x0) is injective.
If a loop f : I → X lifts to a loop f̃ : I → X̃, then clearly p∗(f̃) is in the image of p. Conversely, if f̃ : I → X
is a loop, then p(f̃) lifts to the loop f̃ once we specify that p−1(x0) = x̃0. �

Coverings of S1
∨

S1.

Recall that π1(S1 ∨ S1) = F2 with a basis given by [a] and [b].
At the vertex v a covering space must have a collection of disjoint 4 valent vertices. Moreover, the edges
must project so that 2 edges go to a (one in and one out), and same for b (one in and one out.)

Note that the space on the LHS is a covering space for the one on the RHS.

This is a covering map, as the yellow edge projects to the yellow, (b) and the a edges project to the a edges.
The preimage of the red set is the two disjoint red sets on the RHS. The purple set’s preimage is the two
purple sets on the left. Moreover, the four valences edges for the vertex has the preimage of the two little
cross in the left.
The LHS is homotopy equivalent to the wedge of 3 circles, whereas the RHS is the wedge of two circles. By
the proposition above, the free group of 3 generators is a subgroup of the free group of 2 generators.

44



Corollary: F3 is a subgroup of F2.

Note that this is actually related to some finite automata theory, where two generators are enough to
represent all sorts of group structures! (Construct the free groups and then use the corresponding relations.)
In fact, we can generalize the above and

Corollary: Fn is a subgroup of F2. For all n ∈ N.

Now, consider the following space

Corollary: F∞ is a subgroup of F2.
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The generators map to 〈bnab−n | n ∈ Z〉

More general theory

Here is a natural question: Given a map ψ : Y → X. When does ψ lift to a map ψ̃ : Y → X̃ for a cover
p : X̃ → X?

Proposition 0.22:
Let p : X̃ → X be a covering map and let Y be a path connected and locally path connected space.
Then a map

ψ : (Y, y0)→ (X,x0)

lifts to a map ψ̃ : (Y, y0)→ (X̃, x̃0) if and only if

ψ∗(π1(Y, y0)) ⊂ P∗(π1(X̃, x̃0))

Note that elements from the left are in π1(X) so are the elements from the right are in π1(X). This
inclusion makes sense.

Proof: =⇒
Assume there is a lift ψ̃. Then the following maps commute.

P∗ ◦ ψ̃∗ = ψ∗
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So ψ∗ is in the image of P∗.
⇐=
Suppose that ψ∗ is in the image of P∗.
Recall the path lifting property. For any path f : I → X with f(0) = x0 and any choice of point x̃0 ∈ p−1(x0),
there exists a unique lift of f starting at x̃0.
For every point y ∈ Y , choose a path fy so that f(0) = y0 and f(1) = y. This is possible since y is path
connected. Then, ψ ◦ fy is a path from ψ ◦ f(0) = ψ(y0) = x0 to ψ ◦ f(1) = ψ(y).

Lift this path to a path ˜ψ ◦ fy starting at x̃0.

Define ψ̃(y) = ψ ◦ fy(1).
We should be worried because there are some technnicalities to address.
Claim 1. ψ̃ is well defined. (We started off with arbitrarily choice of path, we need to show that the path
does not matter.)
Proof of claim 1. Suppose that f, f ′ are two paths from y0 to y in Y . Then f ′ · f is a loop based at y0 in Y .
By our assumption,

ψ∗(f
′ · f) ∈ P∗(π1(X̃, x̃0))

So, ψ(f ′ · f) is homotopic to some loop of the form p · g, where g is a loop based in x̃0.
So, p ◦ g ∼ ψ ◦ (f ′ · f) = ψ(f ′) ◦ ψ(f).
Composing with ψ ◦ f on both sides, we get (p ◦ g) · (ψ ◦ f) ' ψ ◦ f ′, as paths from x0 to f(y).
By uniqueness of path lifting, the lifts starting at x̃0 end at the same point. The lift of p ◦ g is just g, a loop
based at x̃0. So

ψ̃ ◦ f ′(1) = g ◦ ψ̃ ◦ f(1) = ψ̃ ◦ f(1)

so ψ̃(y) is independent of the choice of path.
Claim 2 ψ̃ is continuous (using continuity of ψ and evenly covering neighbourhoods). How about uniqueness?

Proposition:
Given a covering space p : X̃ → X and a map φ : Y → X. If two lifts ψ̃1 and ψ̃2 of ψ agree at a
single point of y, and y is connected, then ψ̃1 and ψ̃2 agree on all of Y .

�
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Lecture 11

Recall that if p : X̃ → X is a covering map, then P∗ : π1(X̃, x̃0)→ π1(X,x0) is injective.
A natural question is: Is every subgroup of π1(X,x0) given by P∗ : π1(X̃)→ π1(X) for some cover X̃.

Start: Is there a simply connected space X̃ so that X̃ covers X. This is the hardest case and other groups
will follow from it.
We need some conditions on X for it to have a simply connected covering space. In particular, if U ⊂ X
is an evenly covered neighbourhood and γ ∈ U is a loop, then p−1(γ) is a loop in p−1(u) (for some simply
connected covering p : X̃ → X.) Since X̃ is simply connected, p−1(γ) contracts to a point. Composing with
p, we get a null homotopy of γ ⊂ X.

Definition 0.22: A topological space X is semilocally simply connected (slsc), if every point x has
a neighbourhood u so that the inclusion map i : U → X induces the trivial map i∗ : π1(U, x0) →
π1(X,x0).

For example, all CW complexes are slsc. (in fact they are locally contractible.
For example, the Hawaiian earring is the subspace of R2 given by

∞⋃
n=1

{
(x, y) ∈ R2 | (x− 1/n)2 + y2 = (1/n)2

}
For example, at the origin, no neighbourhood which includes into π1(X) trivially, because each neighbour-
hood has infinitely many generators. In addition, this is different than the wedge of ∞ circles

∨∞
i=1 S

1. Are
they even homeomorphic? why is it different than the circles?

Definition 0.23: A covering space p : X̃ → X is called a universal cover if X̃ is simply connected.

Recall a space is locally path connected (lpc) if every point has a path connected neighbourhood.

Theorem 0.23:
Every path connected, lpc, slsc, topological space X, has a universal covering space.

Proof: Choose a basepoint x0 ∈ X. Define X̃ (as a set) to be the set of homotopy classes of paths �

Lecture 11

Recall that if p : X̃ → X is a covering map, then P∗ : π1(X̃, x̃0)→ π1(X,x0) is injective.
A natural question is: Is every subgroup of π1(X,x0) given by P∗ : π1(X̃)→ π1(X) for some cover X̃.

Start: Is there a simply connected space X̃ so that X̃ covers X. This is the hardest case and other groups
will follow from it.
We need some conditions on X for it to have a simply connected covering space. In particular, if U ⊂ X
is an evenly covered neighbourhood and γ ∈ U is a loop, then p−1(γ) is a loop in p−1(U) (for some simply
connected covering p : X̃ → X.) Since X̃ is simply connected, p−1(γ) contracts to a point. Composing with
p, we get a null homotopy of γ ⊂ X.
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Definition 0.24: A topological space X is semilocally simply connected (slsc), if every point x has
a neighbourhood u so that the inclusion map i : U → X induces the trivial map i∗ : π1(U, x0) →
π1(X,x0).

For example, all CW complexes are slsc. (in fact they are locally contractible.
For example, the Hawaiian earring is the subspace of R2 given by

∞⋃
n=1

{
(x, y) ∈ R2 | (x− 1/n)2 + y2 = (1/n)2

}
is not SLSC.
For example, at the origin, no neighbourhood which includes into π1(X) trivially, because each neighbour-
hood has infinitely many generators. In addition, this is different than the wedge of ∞ circles

∨∞
i=1 S

1. Are
they even homeomorphic? why is it different than the circles?

Definition 0.25: A covering space p : X̃ → X is called a universal cover if X̃ is simply connected.
One part why it is important, is that a universal cover space covers every other connected cover of
X! So the universal cover space is worthy of studying.

A necessary condition for X to have a simply connected covering space is that it must be SLSC. So each
point has a neighbourhood, such that the induced group from its neighbourhood into the induced group of
X is trivial. Why must we satisfy this condition if we want a simply connected covering space? Because
every x ∈ X has a neighbourhood U which lifts to Ũ ⊂ X̃ that is projected homeomorphically by p, and
each loop in U lift to a loop in Ũ . The lifted loop is nullhomotopic in X̃ so the original loop is nullhomotopic
in X.
Recall a space is locally path connected (lpc) if every point has a path connected neighbourhood.

Theorem 0.24:
Every path connected, lpc, slsc, topological space X, has a universal covering space.

Proof: Choose a basepoint x0 ∈ X. Define X̃ (as a set) to be the set of homotopy classes of paths starting
at x0. So X̃ = {[γ] | γ is a path in X with γ(0) = x0}.
Topology on X̃

Now, we put a topology on X̃. Let U be a set in X so that i∗ : π1(u)→ π1(x) is trivial. Suppose that γ is
a path which start at x0 and ends in U . Let U[γ] = {[γ · ν] | ν is a path in U which starts at γ(1)}
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That is, the place where it splits is γ(1), and ν is a path in U starting at γ(1), which is the three little
colorful strands.
Check that this is a neighbourhood basis of X̃.
Now we define a map p : X̃ → X so that p([γ]) = γ(1). The previously defined topology makes p continuous.
X̃ is simply connected

Let [ν] ∈ X̃ be a point. Let νt be a path in X given by

νt =

{
ν on [0, t]

ν(t) on [t, 1]

Then the map f : I → X̃ given by t → [γt] is a path from [γ0] = [x0] to [γ1] = [γ]. Next we want that
π1(X̃, [x0]) = 0. Since P∗ is injective, we only need to show that P∗(π1(X̃)) is trivial.
Recall that elements in the image of P∗ are those loops in X which lifts to loops in X̃. A loop γ ∈ X lifts to
the loop t 7→ [γt]. Since this is a loop in X̃, [γ1] = [γ0] = [x0] so [γ1] = [γ] is trivial. So p∗(π1(X̃, x̃0)) = 0 so
π1(X̃, x̃0) = {e}.
X̃ is a cover Send the set u[γ] to u, then p : U[γ] → U is a homeomorphism. While existence is nice, it doesn’t

tell us how to get X̃ in a useful form.
I should review this proof? �

Proof: Alan Hatcher’s Proof
The motivation of this construction is the follows: suppose p : (X̃, x̃0) → (X,x0) is a simply connected

covering space. Each point x̃ ∈ X̃ can be joined by x̃0 by a unique homotopy of paths (since it is simply
connected.) We view X̃ as a homotopy cllasses of paths starting at x̃0. We describe X̃ in terms of X.
Given a pc, lpc, slsc space X with basepoint x0 ∈ X, we define

X̃ = {[γ] | γ is a path in X starting at x0}

[γ] denotes the homotopy class of γ as a path, that is the homotopy of paths fixing the endpoints. We define
the function

p : X̃ → X, [γ] 7→ γ(1)

Since it is a homotopy of paths, the endpoint is well defined, so mapping to γ(1) is well defined. Since X is
path connected, the endpoint γ(1) can be any point of X, so p is surjective. In other words, all points in X
is hit.
(Some proofs omitted). Consider U , the collection of path connected open sets U ⊂ X such that π1(U) →
π1(X) is trivial. It turns out that U is a basis for the topology on X if X is locally path connected and
semilocally simply connected.
Now given a set U ∈ U , (that is one of the little neighbourhoods), and a path γ inn X, from x0 to a point
in U , let

U[γ]{[γ · ν] | ν is a path in U with ν(0) = γ(1)}

These are the paths that are path homotopic to the paths that start at x0, goes to γ(1), then go to another
point in U . Observe that p : U[γ] → U is surjective.

It then follows that U[γ] is a basis for a topology on X̃, p : U[γ] → U is a homeomorphism.
The rest of the proof follows from the previous proof provided by the prof. �
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Proposition 0.25:
If p : X̃ → X and q : Ỹ → Y are covering spaces, then so is

p× q : X̃ × Ỹ → X × Y, (x, y) 7→ (p(x), q(y))

id× q : X̃ × Ỹ → X̃ × Y, (x, y) 7→ (x, q(y))

p× id : X̃ × Ỹ → X × Ỹ , (x, y) 7→ (p(x), y)

Proposition 0.26:
A composition of covering maps is a covering map.

Proposition 0.27:
Suppose X is a path connected, l.p.c., slsc. Then for every H ≤ π1(X,x0) there exist a covering
space pH : XH → X so that PH∗(π1(xH , x̃0)) = H for some basepoint x̃0 ∈ XH .
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Proof: Let X̃ be the universal cover of X. Define an equivalence relation on points [γ], [γ′] ∈ X̃ by [γ] ∼ [γ′]
if γ(1) = γ′(1) and [γ · γ′] ∈ H ≤ π1(X).
Check this is an equivalence relation (based on the fact that H is a subgroup.)
Let XH = X̃ .̃ Let u ⊂ X be a slsc evenly covered neighbourhood. Recall a neighborhood basis for X̃ near
γ is given by Uγ = {[γ · ν] | γ(1) = ν(0) and ν ⊂ U}.
Note that if ν(1) = ν′(1) then ν is homotopic to ν′ if and only if γ · ν is homotopic to ν′ ·n. Then if [ν] = [ν′]
then the entire nbd U[γ] = U[γ′].

So the map p : X̃ → X given by [γ] 7→ γ(1) descends to a well defined covering map PH : XH → X.

Recall the image of π1(XH , x̃0) under PH consists of loops in X which lifts to loops in XH . Take x̃0 to be
the class of constant paths at x0.
If γ ∈ X lifts to a loop in XH starting at [x0] and ending at [ν], then [ν] ∼ [x0], where x0 is constant path,
so [ν · ~x0] ∈ H =⇒ [ν] ∈ H.

�

Example: recall p : R2 → T 2 is a universal cover if

H = id× Z ⊂ Z× Z be the relation on R2.
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Lecture 12 Deck Transformations

Let’s give a couple reminders about where we left off:

Proposition:
Give a path connected, (PC), locally path connected (LPC), semilocally simply connected (SLSC)
space, X:

1. If p : X̃ → X is a covering space then p∗ : π1(X̃)→ π1(X) is injective.

2. For every subgroup h ≤ π1(X), there exists a covering space X̃H , such that p : X̃H → X so

that p∗(π1(X̃)) = H.

3. Elements in the image of p∗ are loops in X that lifts to loops in X̃.

4. A map f : Y → X lifts to X̃ if and only if f∗(π1(Y )) ⊂ P∗(π1(X̃)).

The equivalence relation on covering spaces is called a covering space isomorphism.

Definition 0.26: Let p1 : X̃1 → X and p2 : X̃2 → X be covering spaces. Then a homeomorphism
f : X̃1 → X̃2 is a covering space isomorphism if p2 ◦ f = p1.

This means p−1
1 (x) is sent to p−1

2 (x) for all x ∈ X. In this image below, the points that the maps are sent to
would be a permutation.
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Proposition:
If X is p.c. and l.p.c. then two p.c. covering spaces are isomorphism via an isomorphiism taking
basepoints X̃1 to X̃2 if and only if p1∗(π1(X̃1, x̃1)) = p2∗(π1(X̃2, x̃2)).
In other words, covering spaves are isomorphic if their induced maps land in the same subgroup.

Proof:
=⇒
Suppose f : (X̃1, x̃1)→ (X̃2, x̃2) is c.s.iso. Then

p1 = p2 ◦ f =⇒ p1∗(π1(X̃1)) = p2∗(f∗(π1(X̃1)))

But f is a homeomorphism so f∗ is an iso. So f∗(π1(x̃1)) = π1(x̃2).
So,

p1∗(π1(X̃1)) = p2∗(f∗(π1(X̃1))) = p2∗(π1(X̃1))

⇐=

Going the other way, if p1∗(π1(X̃1, x̃1)) = p2∗(π1(X̃2, x̃2)). Then by the lifting criterion, p1 lifts to a map

p̃1 : X̃1 → X̃2.

Similarly, p2 lifts to p̃2 : X̃2 → X̃1. (once basepoints are chosen.) So that p̃1(x̃1) = x̃2, p2(x̃2) = p̃1(x1).
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Now, p̃1 and p̃2 are continuous and also, p̃2 ◦ p̃1(x̃1) = x̃1.

But the identity id(X̃1) and p̃2 ◦ p̃1(X̃1) are both lifts of p1 that agree at x̃1. So p̃2 ◦ p̃1 = id and p̃1 ◦ p̃2 = id.
So p̃1 and p̃2 are inverse homeomorphisms.

�

Theorem:
Let X be a p.c., l.p.c., and s.l.s.c. space. Then there is a bijection between sets of basepoint preserving
isomorphism classes of covering spaces p : (X̃, x̃0) → (X,x0) and the set of subgroups of π1(X,x0).
(This is what we have already shown above.)
Moreover, if basepoints are ignored, then we get a bijection between isomorphism classes of p.c.
covering p : X̃ → X and conjugacy classes of subgroups of π1(X,x0).

Proof: We only need to prove the case without basepoints.
Let x̃0 and x̃1 be two basepoints in p−1(x0) for p a covering map. Then γ̃ be a path in X̃ from x̃0 to x̃1.
Now, p(γ̃) is a loop in X representing some elements g ∈ π1(X,x0).

If f is a loop based in x̃0, then γ̃ ◦ f ◦ γ̃ is a loop based at x̃1.
So

[p(γ̃ ◦ f ◦ γ̃)] = g−1 ◦ h ◦ g

for h ∈ p∗(π1(X̃, x0)).

Letting Hi = p∗(π1(X̃, x̃i)) for i ∈ {0, 1}. We have shown that g−1H0g ⊂ H1. (Because those loops
themselves are in H1 as it starts and ends at x̃1.) Reversing the path γ̃ above shows gH1g

−1 ⊂ H0. Conjugate
this second containment by g−1 to get H1 ⊂ g−1H0g.
Conversely suppose H0 and H1 are conjugate subgroups of π1(X,x0). Let H1 = g−1H0g. Let γ ⊂ X be a

loop representing g. Lifting g to a path in X̃ starting at x0 and repeating the argument before gives the
desired result.
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Since there is only 1 conjugacy class of trivial groups in a given group, we get the following corollary.

Corollary 9: Universal covering spaces are unique up to covering space isomorphism.

Deck Transformations

Definition: Let p : X̃ → X be a covering. A deck transformation of X̃ is a covering space
isomorphism F : X̃ → X̃. The group of such isomorphism is denoted G(X̃). We can quickly check
that this is a group.

By the unique lifting property, a deck transformation F ∈ G(X̃) is determined by where it sends a single
point. (Why is this? I am not sure.)
Examples.

• gggg

• gggg

• gggg

56



Definition (Normal covering space): A covering space p : X̃ → X is called normal if for every

x ∈ X and x̃0, x̃1 ∈ p−1(x), ∃ F ∈ G(X̃) so that F (X̃0) = X̃1.

Intuitively these are the covering spaces with “most symmetry”. For example, all the covering spaces above
are normal covering space.
Non example is the following

Why are the covers called normal? It’s because they are related to normal subgroups.

Proposition:
Let p : (X̃0, x̃0) → (X,x0) be path connected c.s. of a p.c., l.p.c., s.l.s.c., space X. Let H be the

subgroup p∗(π1(X̃, x̃0)) ⊂ π1(X,x0). Then

1. H is normal (as a subgroup) ⇐⇒ p is normal (as a cover)

2. G(X̃) is isomorphic to N(H)/H where N(H) is the normalizer of H in G. In particular, if p is

normal, then G(X̃) = π1(X,x0)/H. And for the universal cover G(X̃) = π1(X,x0).
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Proof:

1. Recall that changing basepoint in cover changes the subgroup by a conjugation by [γ] ∈ π1(X) which
lifts to a path between the two basepoints x̃0, x̃1.

[γ] ∈ N(H) ⇐⇒ p∗(π1(X̃, x̃0)) = p∗(π1(X̃, x̃1))

⇐⇒ The covering spaces are basepoint preserving isomorphic

That happens if one element is in the normalizer. Now, H is normal ⇐⇒ N(H) = H ⇐⇒
there exists deck transformation between any two basepoint preserving isomorphisms or p : X̃ → X is
normal.

2. Let ϕ : N(H) → G(X̃) set [γ] to the deck transformation sending x̃0 to x̃1. Can check that ϕ is a

homomorphism, and surjective. So the kernel of this map is loops in X which lifts to loops in X̃. These
are elements of p∗(π1(X̃, x̃0)) = H. By first isomorphism theorem, N(H)/H = G(X̃).

I dont really understand this second proof

�

Example

Let p : S1 → S1 be p(z) = zn. Since π1(S1) = Z is abelian, every connected cover is normal. Moreover, in

this case G(X̃) = N(H)/H = Z/nZ.
I dont really understand this second proof
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Lecture 13. Continuous Groups Actions

Group Actions

Definition: A topological group is a group G together with a topology on the underlying set of G,
so that the maps · : G ×G → G given by (g1, g2) 7→ g1 · g2, and −1 : G → G such that g 7→ g−1 are
continuous on the underlying topology.

Example 1:

Let S1 ⊂ C be ~z ∈ Z with |Z| = 1. Such numbers are of the form eiθ for some θ ∈ R. Then S1 is a topological
group under complex multiplication. eiθ1eiθ2 = ei(θ1+θ2).
We needed that S1×S1 → S1 given by (eiθ1 , eiθ2) 7→ ei(θ1+θ2) is continuous. The product is continuous and
the inversion is continuous. So S1 is a top group.

Example 2:

Example 3:

Continuity is given for free because of discrete topology.
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Definition: Given a top group G and a space X, a continuous G action, denoted G y X, is a
continuous map G×X → X, (g, x) 7→ g · x, so that

1. e · x = x, for all x ∈ X where e ∈ G is identity.

2. (gh) · x = g · (h · x).

Example: Let x ∈ Sn define −x to be the antipodal point. Then Z/2Z = {0, 1} acts on Sn by 1 · x = −x.
Check that 0 · x = x, 1 · (1 · x) = 1 · (−x) = x = (1 · 1) · x.
Example: S1 = {z ∈ C | |z| = 1} acts on T 2 = {(x, y) ∈ C× C, |x| = 1, |y = 1|},
by z · (x, y) = (z · x, y) which rotates around the first factor.

Or z · (x, y) = (x, z · y), rotates around the second factor.

Or z · (x, y) = (z · x, z · y).

Aside: for a fixed g ∈ G, the map x 7→ g ·x is a homeomorphism since it has a continuous inverse x 7→ g−1 ·x,
where x 7→ g · x 7→ g−1 · (g · x) = (g−1 · g) · x = e · x = x.
So a group action gives a group isomorphism from G→ Hom(X).

Definition: Suppose that Gy X. Given x ∈ X, define the orbit of x to be G · x = {g · x | g ∈ G.}
Similarly, if u is a subset of X, then G · u =

⋃
x∈uG · x.
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We can define an equivalence relation on X by x ∼ Y if G · x = G · y. That is x ∼ y if ∃g ∈ G so that
g · x = y.

Definition: Given a group action G y X, X/G is the quotient space X/ ∼ where x ∼ y if
G · x = G · y.
Note that we can call the points in X/G as G · x for some representative x.

Example

If Z/2Z y S2 by antipodal map S2/Z2 = RP2.
Example
Let Z y R by n · r = n+ r. That is, the integers form an orbit.

R/Z = [0, 1]/0 ∼ 1 = S1.
Note that π1(RP 2) = Z2 and π1(S1) = Z.

Definition: An action G y X is properly discontinuous if every x ∈ X has a nbd u so that
u ∩ g · u = ∅ for all g ∈ G with g 6= e. Caution: there are many defns of properly discontinuous in
different books.
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Proposition:
If Gy Y properly discontinuously with Y p.c. and l.p.c. Then

1. p : Y → Y/G given by p(y) = G · y is a normal covering map.

2. G is the group of deck transformations.

3. G is isomorphic to π1(Y/G)/p∗(π1(Y )).

In particular if Y is simply connected, then π1(Y/G) = G.

Proof:
First cover Y by sets {uα} so that g · u ∩ u = ∅ for all u ∈ {uα} and g ∈ G with g 6= id. why is this always
possible?

1. For all g ∈ G, g · u ∼= u(homeo), since g−1 is the inverse map.

The quotient map p : Y → Y/G simply identifies all of these sets to a single copy of G · u, by the
definition of quotient topology, G · u ∼= u.

So p is a local homeomorphism on these sets so it is a covering map. (The properly continuous sets
serve as the evenly covered neighbourhoods.)

Why is this normal???

2. G acts by deck transformations. First, G acts by homeomorphisms. Also, it preserves fibers.
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Finding covers

Example 1
The genus 5 surface is a 4 fold cover of the genus 2 surface. Morevoer, Σ5/Z4 = Σ2.

This tells us that π1(Σ5) E π1(Σ2), because it gives us a normal covering map, which implies the induced
subgroup is a normal subgroup. And π1(Σ2)/π(Σ4) ∼= Z4.
Example 2

Let S3 ⊂ R4 = C2 given by (z1, x2) ∈ C, |z1|2 + |z2|2 = 1. Complex multiplication is a great way to generate
group actions. Zp acts on S3 properly discontinously by

[q] · (z1, z2) = (e2πi·q/pz1, e
2πi·q/pz2)

The space S3/Zp is called the Lens space L(p, q).
Interesting fact, the space L(7, 1), L(7, 2) are homotopy equivalent but not homeomorphic.
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Lecture 14 Knots and the Wirtinger Presentation

Intuitively, a knot is a closed piece of string in the 3 space.
Are mirror images of knots equivalent?

Knots are considered up to continuous deformations but no passing through itself.

Definition 0.27 (Embedding): Let X and Y be topological spaces then an embedding of X onto
Y is a map f : X → Y which is a homeomorphism onto its image.

Note that the part of the crossing is NOT injective. So it is not a homeomorphism.

Definition 0.28 (Isotopy): An isotopy of a topological space X is a map F : X × I → X so that
for each t ∈ I, f |X×{t}: X × {t} → X is a homeomorphism.

is it more strict than a homotopy because at each slice, it needs to be homeomorphic to the original set.
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Definition 0.29 (Knot): A knot is an embedding f : S1 → R3 which can locally be approximated
by a line. We call f(S1) the knot. The reason why we use “Approximated by a line” is because we
want to rule out knots like the below: (the wild knot)

At the limit point, there is no line that can approximate it.

Definition 0.30 (Equivalent knots): Two knots k1, k2 are equivalent if there exists an isotopy
F : R3 × [0, 1]→ R3 that takes k1 to k2.

In fact, we can squish a knot down to R2 × [−ε, ε].
So we can encode a knot in R2 using a knot diagram which is a 4−valent (4 edges at each vertex) with
over/under crossing information. Manipulating these objects is easier than manipulating objects in 3 space.

Reidemeiter moves

There are three Reidemeister moves.
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These three are all we need!
Since these moves correspond to isotopies. Any two diagrams related by these moves represent equivalent
knots.

Theorem 0.28 ((Reidemeister, Alexander, Briggs)):
Two knots k1, k2 are equivalent ⇐⇒ they have diagrams related by RI,RII,RIII and planar
isotopy. (wiggle a connected line.)

Problems:

1. Given two knots, which are equivalent, how many moves do you need to do to get between them? (A
lot, it can be arbitrarily big.)

2. If k1, k2 are equivalent knots, then R3 \K1, and R3 \K2 are homeomorphic. So if we can distinguish
the complements, we can distinguish the knots.

Our favourite way of distinguishing spaces is π1. So now we need to figure out ways to compute
π1(R3 \Ki).

0.4 Wirtinger Presentation

Wirtinger presentation takes in a knot diagram and outputs a group presentation for π1(R3 \ K). Small
amount of auxiliary data is an orientation of the knot, but this won’t affect the group.
So, we need generators and relations.
Generators: place a basepoint “above” the diagram, and draw loops arouund each connected components
of diagram using right hand rule. (imaging you’re holding onto the coil, and your thumb point towards
directionn, and the directions follow from your lower arms onto your finger).
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Relations: we can assign a sign to each oriented crossing by the following. Take the top strand and rotate
it counterclockwise until it aligns with bottom strand.

• if arrow matches then +

• if arrow clash then −

Zoom in on a + crossing, we can see a relation.

So xkxi = xi+1xk =⇒ xi+1 = xkxix
−1
k .

Similarly, at a negative crossing, we have xi+1 = x−1
k xixk.

It turns out that these are all the relations!
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Theorem 0.29:
Let K ⊂ R3 be a knot and let D be a diagram for k with n strands, α1, . . . , αn. Let xi be the loop
around αi and let ri be the relation at each crossing given by

xi+1 = xkxix
−1
k at + crossing

xi+1 = x−1
k xixk at - crossing

then
π1(R3 \K) = 〈x1, . . . , xn | r1, . . . , rn〉. Moreover, any one relation can be omitted and this is still a
presentation for π1(R3 \K).

Examples

Given these two presentations, how do we know it’s actually the same?
Note that we can throw out a relation, and get rid of a generator because one can be written in terms of the
two others.

p, q are still generators of the group!
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This finally proves that the trefoil is not equivalent to the unknot.
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Lecture 15. Simplicial Homology

Intuition

Problem with π1 is that they only see low dimensional information. That is, if X is a CW complex, then
π1(X) = π1(X2) where X2 is the 2 skeleton.
There exist groups πk for k ≥ 2 but they are difficult to compute.
We will define homology groups which come in degrees H0(X), H1(X), H2(X). These are abelian groups.
Roughly, Hi(X) sees i−dimensional holes in the space. Namely, Hi(X) detects i-dimensional objects which
do not bound i+ 1-dimensional objects.

In here, H1(R2 \ pt) = Z

In here, H1(R3 \ pt) = Z

∆-complexes

Recall that polygons can be cut into triangles. Similarly, solids can be cut into tetrahedra.

Similarly, this works on more intricate shapes.
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Simplices

Definition (Standard n simplex):
A standard n-simplex ∆n = {(t0, . . . , tn) ∈ Rn+1 |

∑
ti = 1, ti ≥ 0,∀i}.

We usually write this as ∆n = [v0, v1, v2 . . . vn], where the square bracket [] represents the convex hull.
Deleting a vertex and filling in the convex hull of an n−simplex leaves an n− 1 simplex.

Definition (Boundary, faces, open simplex.): Given a simplex ∆n = [v0, . . . , vn], the simplices
[v0, . . . , v̂i, . . . vn] (the ·̂means omit) are call the faces. The union of all the faces is called the boundary
of ∆n. The open simplex is the space ∆n − ∂∆n and is denoted ∆on.

Definition (∆-complex structure): A ∆−complex structure on a space X is a collection of maps
σα : ∆n → X with n depending on α, such that

1. The restriction σα |∆on is injective and for each x ∈ X, x is in the image of some σα |∆on . (This
prevents squashing everything down into a point.)

2. Each restriction of σα to a fact of ∆n is one of the maps σβ : ∆n−1 → X. (This ensures that
the simplices are glued along the correct corresponding faces.)

3. A set A ⊂ X is open iff σ−1(A) is open in ∆n for each σα.

If a space has a ∆-complex structure, then it is obtained by gluing togehter simplices.
All CW complexes have a ∆−complex structure.
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Chains and boundaries

Definition (Chains): Let X be a ∆−complex. We define ∆n(X) to be the free abelian group
generated by n−dim simplices on X. Elements of ∆n(X) are called n−chains.

Elements of ∆n(X) can be written as
∑
i niσi for ni ∈ Z. Recall faces are of the form [v0, . . . , v̂i, . . . , vn].

We want to orient everything so that ∂∆n is an n− 1chain.

Definition 0.31 (∂σα): If σα : ∆n → X be an n−simplex in X, then we define

∂σα =

n∑
i=0

(−1)iσα | [v0, . . . , v̂i, . . . , vn]

If
∑
α nασα is an n−chain, then define

∂
∑
α

nασα =
∑
α

nα∂σα

Lemma 1 Short exact sequences

So basically
∂2 = 0.

Note that this literally means the ∆n−1 map restricted to one of the boundaries of the ∆ complex structure.2
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Proof: We prove it for a basis element σ ∈ ∆n(X).

∂n(σ) =

n∑
i=1

(−1)iσi |[v0,v1,...,v̂i,...,vn]

so ∂n−1∂n breaks up.

∂n−1∂n(σ) =
∑
j<i

(−1)i(−1)jσ |[v0,...,v̂j ...v̂i...vn]

+
∑
j>i

(−1)i(−1)j−1σ |[v0,...,v̂i...v̂j ...vn]

Note that every term in the first line also appear in second line with opposite sign so ∂n−1∂n(σ) = 0.

�

Simplicial Homology

Definition 0.32 (Chain complex): We now have a setup

∆n+1(X)
∂n+1−−−→ ∆n(X)

∂n−→ ∆n−1(X)
∂n−1−−−→ ∆n−2(X) . . .

with ∂2 = 0.
This is called a chain complex.
In particular, Im(∂n+1) ⊂ Ker(∂n). All groups are abelian so we can take quotients.

Definition 0.33 (nth simplical homology group): The nth simplical homology group of a
∆−complex X is the group H∆

n (X) = ker(∂n)/Im(∂n+1). Note that this makes sense. That is,
every thing in the image of ∂n is in the kernel of ∂n by the previous lemma. Also the group is abelian,
we have normal subgroups so we can take quotients.
Ker(∂n) are called n-cycle. Im(∂n+1) are called boundaries of other objects.
Intuitively, cycles are objects with no boundary. So we are measuring is objects with no boundaries,
which are also not the boundaries of other objects.

Example 1

Let S1 be built with one copy of ∆o and one copy of ∆1.

∆0 = Free ab gp gen by 0-simp=free ab gp on V0 = Z.
∆1 = Free ab gp gen by e1 = Z.
∆2 = ∆3 = . . . = 0
So ∂0 is always 0 so ker ∆0 = Z generated by v0.
∂1(e1) = [v0]− [v0] = 0 so Im(∂1) = 0 ⊂ ∆0. Ker(∂1) = Z generated by e1. ∂2 = 0.
So
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• H∆
0 (S1) = Ker∂0/Im∂1 = Z

• H∆
1 (S1) = Ker∂1/Im∂2 = Z

• H∆
2 (S1) = H∆

3 (S1) = . . . = 0

Another way to write this is:

Hi(S
1) =

{
Z i = 0, 1

0 o.w.

Example 2 What if we build the S1 in another way?

We built S1 as above.
So

• ∆0(S1) = Z⊕ Z, ∆1(S1) = Z⊕ Z

• ∂1(e1) = [v1]− [v0], ∂1(e2) = [v0]− [v1], so ∂(e1 + e2) = 0.

So Kernel (∂1) is 1d generated by e1 + e2. H
∆
1 (S1) = Z, which is the free ab gp generated by e1 + e2.

• Ker(∂0) = Z⊕ Z

• Im(∂1) = span(1,−1), where 1 is v0, −1 is v1

• So H∆
0 (S1) = Z.

Example 3
Recall that Sn = Dn ∪Dn, former is the lower hemi, latter is the upper hemi. Similar to previous construc-
tions, Sn = A ∪B with A,B = ∆n.
Then ∆n(S1) = Z ⊕ Z and Ker(∂n) = A + B. So Hn(Sn) = Z. And Hn+l(S

n) = 0 for k ≥ 1. This means
that Sn 6= Sm for n ≥ m.
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Simplicial homology groups of Torus, RP2 and K

Torus

Simplices

• C0 = Z, generated by v

• C1 = Z⊕ Z⊕ Z, generated by a, b, c

• C2 = Z⊕ Z, generated by U,L

• for n ≥ 2, Cn = 0

Boundary maps

• ∂0 = 0 by definition

• ∂1(a) = ∂1(b) = ∂1(c) = v − v = 0

• ∂2(U) = ∂2(L) = a+ b− c (Since abelian, we can move generators around)

Homology groups

• H∆
0 = ker(∂0)/Im(∂1)

Note that ker(∂0) = C0 = Z and Im(∂1) = 0.

So H∆
0 = ker(∂0)/Im(∂1) = Z/0 = Z.

• H∆
1 = ker(∂1)/Im(∂2)

ker(∂1) is generated by a, b, c, so ker(∂1) = Z⊕Z⊕Z, and Im(∂2) is generated by multiplies of a+b−c.
So Im(∂2) = Z.

Hence H∆
1 = ker(∂1)/Im(∂2) = Z⊕ Z⊕ Z/Z = Z⊕ Z.

• H∆
2 = ker(∂2)/Im(∂3)

Note that Im(∂3) = 0 because C3 = 0.

ker(∂2) = Z. Say ∂(pU + qL) = (p+ q)(a+ b− c) = 0 ⇐⇒ p = −q, so kernel generated by (U − L).

So H∆
2 = ker(∂2)/Im(∂3) = Z/0 = Z.

• For n ≥ 2, H∆
n = ker(∂n)/Im(∂n+1), we know Cn is empty for n ≥ 2. So It is always H∆

n = 0.
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Projective plane

Simplices

• C0 = Z⊕ Z, generated by w, v.

• C1 = Z⊕ Z⊕ Z, generated by a, b, c.

• C2 = Z⊕ Z, generated by U,L.

• for n ≥ 2, Cn = 0

Boundary maps

• ∂0(w) = ∂0(v) = 0 by definition.

• ∂1(a) = ∂1(b) = (w − v), ∂1(c) = v − v = 0.

• ∂2(U) = c+ b− a, ∂2(L) = a− b+ c.

Homology groups

• H∆
0 = ker(∂0)/Im(∂1)

So ker(∂0) = Z⊕Z by definition. Im(∂1) is generated by w−v, so equal to Z. SoH∆
0 = ker(∂0)/Im(∂1) =

Z⊕ Z/Z = Z.

• H∆
1 = ker(∂1)/Im(∂2)

Note that ∂1(qa + pb) = (q + p)(w − v), so kernel is generated by 〈b − a, c〉. Im(∂2) is generated by
c+ b− a, a− b+ c.

So we have {b−a, c}/{c+b−a, a−b+c} = {b−a, c}/{2c, a−b+c} = {a−b+c, c}/{2c, a−b+c} = Z2.

Therefore H∆
1 = ker(∂1)/Im(∂2) = Z2.

• H∆
2 = ker(∂2)/Im(∂3)

∂1(pU + qL) = p(c+ b− a) + q(a− b+ c). This is 0 iff p = q = 0. So the kernel is 0.

Hence H∆
2 = ker(∂2)/Im(∂3) = 0.

• For n ≥ 2, H∆
n = ker(∂n)/Im(∂n+1) = 0.

76



K

Simplices

• C0 = Z, generated by v

• C1 = Z⊕ Z⊕ Z, generated by a, b, c

• C2 = Z⊕ Z, generated by U,L

• for n ≥ 2, Cn = 0

Boundary maps

• ∂0(v) = 0 by definition

• ∂1(a) = ∂1(b) = ∂1(c) = v − v = 0

• ∂2(U) = a+ b− c, ∂2(L) = a− b+ c

Homology groups

• H∆
0 = ker(∂0)/Im(∂1)

ker(∂0) = Z by definition. Im(∂1) = 0. So H∆
0 = ker(∂0)/Im(∂1) = Z/0 = Z.

• H∆
1 = ker(∂1)/Im(∂2)

ker(∂1) = Z⊕ Z⊕ Z since ∂1 sends everything to 0. Also, Im(∂2) is generated by a+ b− c, a− b+ c.

Then 〈a, b, c〉/〈a+b−c, a−b+c〉 = 〈a+b−c, b, c〉/〈a+b−c, 2b−2c〉 = 〈b, c〉/〈2b−2c〉 = 〈b−c, c〉/〈2b−2c〉 =
〈d, c〉/〈2d〉 = Z2 ⊕ Z.
So H∆

1 = Z2 ⊕ Z.

• H∆
2 = ker(∂2)/Im(∂3)

ker(∂2) = 0 because ∂2(pU + qL) = p(a+ b− c) + q(a− b+ c) = 0 iff p = q = 0.

So H∆
2 = 0.

• For n ≥ 2, H∆
n = ker(∂n)/Im(∂n+1) = 0.

77



March 9th office hours

Some intuitions
Simplicial complexes vs ∆ complexes

• Simplicial complexes are very complicated where the ∆ complexes are easier to work with. For exam-
ple, simplicial complexes in torus requries 10 generators (10 × 10 matrix reductions) whereas the ∆
complexes only is 3 generators.

Galois correspondence of covering spaces

• Deck transformations fix the important parts. So the deck transformations relate to the group auto-
morphisms which relates to galois correspondences.

Homology measures what property of two maps

• Homology measures how two maps fit into short exact sequences. Or how the image of one fits into
the kernel of anther one. Whether the kernel fits inside the image, and so we observe the quotients.

How homology measures holes

• Recall how if we have a triangle missing a hole, we cannot fit D2 in the interior of that triangle. So in
some sense, we wont have the image map of some ∆2 into this boundary. So we can think of it as one
less copy of Z to be moded out, i.e. one less Z in the quotient, so one more copy of Z in the homology
group. Speaking of copies is too generalized, but you get the idea why it’s called ”measuring holes”.

For example, H1(Rn − pt1, pt2, . . . , pt− k) = Zk.

Why do elements commute

• Because the Cn are generated by generators, so they are the free groups Z ⊕ Z ⊕ . . . ⊕ Z, hence
commutative.
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Lecture 16

Last time, we learned about ∆ complexes- simplicial decompositions of spaces. We defined ∆n(X) the free
abelian group generated by simplices ∂[v0, . . . , vn] =

∑n
i=1(−1)i[v0, . . . , v̂i, . . . , vn] ∈ ∆n−1(X).

The maps ∂n : ∆n → ∆n−1 had the property that ∂n−1 ◦ ∂n = 0.

Definition (Chain complex (of Abelian groups)): The chain complex (C·, ∂·) is a collection of
abelian groups/maps

. . . Cn+1
∂n+1−−−→ Cn

∂n−→ Cn−1
∂n−1−−−→ . . .

so that ∂i−1 ◦ ∂i = 0 for all i.

In a chain complex, we have im(∂i+1) ⊂ Ker(∂i) so we may define the following:

Definition 0.34: Given a chain complex (C·, ∂·), we define Hn(C) = Ker(∂n)/Im(∂n+1).

Singular Homology

Definition 0.35: A singular n-complex is a map ∂ : ∆n → X, here singular is said in the sense
of singularities. That is, we don’t have the same descriptions as in ∆ complexes. Also the singular
complexes can “fold up” on itself, and it’s still okay. (But ∆n cannot fold on itself.)
Let Cn(X) be the free abelian group generated by all of these maps (σ : ∆n → X), we call elements
of Cn(X) (singular) n − chains,. We have the same ∂ mas as before, which on the basis, is defined
by

∂σ =

n∑
i=0

(−1)i[v0 . . . v̂i . . . vn]

Some proofs as before shows that ∂2 = 0. So we get a chain complex

. . . Cn+1
∂n+1−−−→ Cn

∂n−→ Cn−1
∂n−1−−−→ . . .

Definition 0.36: The singular homology groups of a space X are defined to be Hn(X) =
Ker(∂n)/Im(∂n+1) where

Cn+1
∂n+1−−−→ Cn

∂n−→ Cn−1
∂n−1−−−→

is the group of singular n chains on X.

Lemma 0.30:
If X and Y are homeomorphic then Hn(X) = Hn(Y ) for all of n.
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Proof: Proof idea: If σ : ∆n → X is an n-chain and f : X → Y is a homeo, then f ◦σ : ∆n → Y is a singular
n chain on Y .
Also ∂(f ◦ σ) = f ◦ ∂σ, so all elements in Ker/Im goes to Ker/Im. �

Definition 0.37: a, b ∈ Cn(x) are homologous if a = b ∈ Hn(X). Note that a = b ⇐⇒ a− b = 0 ∈
Hn(x) =⇒ a− b = 0 ∈ Ker(∂n)/Im(∂n+1). So a− b ∈ Im(∂n+1).

Since a and b cobound an annulus, they are homologous.

Properties of Singular Homology

Lemma:
If X is path connected then H0(X) = ker(∂0)/Im(∂1) = C0/Im(∂1) = Z.

Proof: The proof idea:
Note that any one point is not a boundary, but if you have two points, then the two points is a boundary of
the path that connects eachother. So, each points are homologues to any one point.

The proof:
Define a map ε : C0(X)→ Z by ε(

∑
i niσi) =

∑
i ni. This is surjective and we claim that ker(ε) = Im(∂1).

To show that Im(∂1) ⊂ Ker(ε) : Let C1 =
∑
i niσ

1
i be a 1 diml simplex. Then we will show its boundary

lies inside the kernel of ε. Then

ε(∂1c1) = ε

(∑
i

niv
1
i −

∑
i

niv
0
i

)
=
∑
i

ni −
∑
i

ni = 0

note that the 1 index means terminal vertex of σi and the v0
i means the initial vertex.

80



To show that Ker(ε) ⊂ Im(∂1) : if c0 ∈
∑
i nixi has ε(c0) = 0, then

∑
i ni = 0. Since X is path connected,

we can fix a basepoint b and take paths from b to each xi which we call τi. Let C1 =
∑
i niτi.

Then ∂c1 =
∑
i nixi−

∑
i nib. Since

∑
i ni = 0, we have ∂c1 =

∑
i nixi, so we have found that for any c0 that

ε maps to 0, we find some C1 with boundary ∂c1 = c0. so ker(ε) = Im(∂1) and H0(X) = C0(X)/Im(∂1) =
C0(X)/ker(ε). Now, what is ker(ε)? it is zero. So we know that C0(X) is surjective, and it mod the kernel
is 0: C0(X)/ker(ε) = C0(X)/0 = Z/0.
Ask why this is Z?? �

Proposition 0.31:
If X has path components X1, . . . Xk, then Hn(X) = ⊕Hn(Xi).

Proof: The proof idea is since ∆n is connected, so is σi : ∆n → X, so each map lies in 1 connected component.
Also if Σn ⊂ Xi, so is ∂∆n. So the components do not interact. �

Corollary 10: H0(X) = Zk where k is the number of components.

Induced maps

If f : X → Y is a map, we get a map f# : Cn(X)→ Cn(Y ), on a basis.

This is given by σ : ∆n → X 7→ f ◦ δ : ∆n → Y .
So if C =

∑
i niσi ∈ Cn(X). Then f#(c) =

∑
i nif ◦ σi ∈ Cn(Y ).

Now
f#(∂σ) = f#(

∑
i

(−1)iσ | [v0, . . . , v̂i . . . , v])

=
∑
i

(−1)if#(σ | [v0 . . . v̂i . . . vn]) =
∑
i

(−1)if ◦ σ | [v0, . . . v̂i . . . vn] = ∂f#(σ)

So ∂f# = f#∂.
We get the following commutative diagram.

Definition 0.38: If (Cn, ∂
c) and (Dn, ∂

D) are chain complexes, then a chain map is a collection of
maps of the form f : Cn → Dn with f(Ci) = Di and f ◦ ∂C = ∂D ◦ f .

81



Proposition 0.32:
If f : (C·, ∂

C)→ (D·, ∂
D) is a chain map, then f induces a map f∗ : Hn(C·)→ Hn(D·).

Proof:
In short words, f maps things from kernel of partial C into kernel of partial D. It also maps images in partial
c to images of some other elements in partial D. Therefore, the elements there makes sense.
If c ∈ Cn is a cycle, ∂c = 0, then

∂Df(c) = f(∂Cc) = f(0) = 0

so f(c) ∈ Ker(∂D).
Similarly, if b ∈ Cn is a boundary with ∂Ca = b, then

f(b) = f(∂ca) = ∂Df(a)

so f(b) is a boundary.
Then if h ∈ Hn(c) = ker(∂cn)/Im(∂cn+1) is represented as c + b where c is cycle, b is boundary, then
f(h) = f(c) + f(b) where the f(c) ∈ Ker(∂Dn ) and f(b) ∈ Im(∂Dn+1) ∈ Hn(D). �
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Lecture 17.

Review

A map f : X → Y induces a map f# : Cn(X)→ Cn(Y ) by σ 7→ f ◦ σ.
This map is a chain map since f# ◦ ∂ = ∂ ◦ f#. So we get a map f∗ : Hn(X)→ Hn(Y ).
We can check (f ◦ g)∗ = f∗ ◦ g∗ and id∗ = id where the former is map induced by id : X → X and the latter
is identity on Hn(X).

Chain homotopies and homotopies

Recall that a homotopy between f, g : X → Y is a map F : I ×X → Y with F |X×{0}= f and F |X×{1}= g.
Given a simplex ∆n in X, a homotopy has a natural ∆n × I sitting inside of it.
So we need to understand ∆n × I in terms of simplices.
Some low dimension examples include ∆0 × I which is already a 1 simple. ∆1 × I

In general, ∆n × I can be broken up into n+ 1 of the n+ 1 simplices, given by

∆n × I =
⋃
i

[v0, . . . , vi, wi, . . . , wn]

If σ : ∆n → X is a map then we get a map

σ × id : σ × I → X × I

given by σ × id(x, t) = (σ(x), t).

Definition: Given a homotopy F : X × I → Y , we define the prism operator to be the map
p : Cn(X)→ Cn(Y ) given on basis elements as (whereas σ is an n-simplex)

P (σ) =
∑
i

(−1)iF ◦ (σ × id) | [v0, . . . , vi, wi, . . . , wn]

This means whenever we have the domain ∆n × I, we can split it up into n + 1 of n + 1 simplices,
and have a map that also maps simplices to the map X × I. This means we can break ∆n × I into
simplices as well.
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Definition: Let (Cn, ∂
c) and (Dn, ∂

D) be chain complexes and let f, g : Cn → Dn be chain maps.
Then a chain homotopy equivalence is a map p : Cn → Dn+1 such that

P ◦ ∂C + ∂D ◦ P = g − f

Note the above is not a commutative diagram!

Also the illustration above, the composition of map is written in wrong order.

Proposition 0.33:
If F : X×I → Y is a homotopy between maps f and g then the prism operator p : Cn(X)→ Cn+1(Y )
is a chain homotopy between the maps f# and g#. (that is ∂p+ p∂ = g# − f#.)

Proof: Proof idea is that:
∂P + P∂ = g# − f#, we can rephrase this as ∂P = g# − f# − p ◦ ∂.
Remember the prism operator, takes X × I, and cut it up to pieces, and map over to homotopy map. Note
the boundary of p is broken up in this way. The actual proof can be check by formulas directly.

�
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Note that g# is the top and f# the bottom, and p ◦ ∂ is the sides. So ∂P is the entire boundary of the
square.

Lemma 0.34:
If f, g : (Cn, ∂

c)→ (Dn, ∂
D) are chain maps, which are chain homotopic, then f∗ and g∗ : Hn(C)→

Hn(D) are the same map.

Proof:
If f, g are Chain homotopies, then ∃P : Cn → Dn+1 so that ∂P + P∂ = g# − f#. If α ∈ Cn is a cycle, then
∂P (C) + P∂(C) = g#(C)− f#(C) =⇒ ∂P (C) = g#(C)− f#(C).
So g#(C)− f#(C) is a boundary, so g∗(C)− f∗(C) = 0 ∈ Hn(D) implies g∗(C) = f∗(C).
Is the α here supposed to be a C instead? �

Theorem 0.35:
If f : X → Y is a homotopy equivalence then f∗ : Hn(X)→ Hn(Y ) is an isomorphism.
This shows that homology is a homotopy equivalence invariant of a space.

Proof: Let h : Y → X be the inverse if f so that f ◦ h ∼= idX , h ◦ f ∼= idY . Then (f ◦ h)∗ = f∗ ◦ h∗ also
(f ◦ h)∗ = id so f∗ ◦ h∗ = idHn(Y ). Similarly
h∗ ◦ f∗ = idHn(X) so f∗ and g∗ are inverse group isomorphisms. �

Here is a better explanation of chain homotopy:
https://ncatlab.org/nlab/show/chain+homotopy
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Lecture 18. Free abelian groups

Definition 0.39: The free abelian group of rank n is the group Zn.

Lemma 0.36:
If B is a subgroup of Zn then B ∼= Zm for m ≤ n.

Proof: Proof is too long so omitted. �

Homomorphisms on Free abelian groups

Free abelian groups are very similar to vector spaces. If G and G′ are free abelian groups generated by
g1, g2, . . . gn and g′1, g

′
2 . . . g

′
m respectively and f : G → G′ is some homomorphism then we can represent f

by a matrix.
If f(gi) =

∑m
i=1 aijg

′
j then the matrix A = (aij) is such that

A · g = g′ ⇐⇒ f(g) = g′

For example we can repressent a map f : Z3 → Z2 by a 2× 3 matrix.
Our goal is to find a nice form for homomorphisms which is amenable to homology calculations. This is
called the Smith normal form.

86



Theorem 0.37:
Let G and G′ be free abelian groups of rank n and m respectively. Then there are bases for G and
G′ such that the matrix representing an arbitrary form f : G→ G′ looks like:

with b1 | b2 | b3 . . . bl−1 | bl
We will given an algorithm for this.
Given an arbitrary bases for G and G′, we can modify the matrix by

This new matrix can be viewed as the same map on difference basis:

1. exchanges gi and gk

2. replaces gi by −gi
3. replaces gi by gi − qgk

Similarly there are column operations which do thhe same thing to g′i.

Using these operations we will get to smith normal form.
Given a matrix A = (aij), not all zero. Let min(A) = mini,j |ai,j |, We will proceed in two steps.

1. reduce min(A)

2. reduce matrix size

1. Claim: If min(A) = aij does not divide some entry in its row or column then we can reduce the size
of min(A).

To see this, if min(A) - akj. Divide with remainder to get akj = min(A) · q + r with |r| < |min(A)|.
Replace row k by row k-q row ji. Then akj becomes r, which replaces min(A) by a new ak,j and go
back to step 1.

Now, suppose that min(A) = aij divides all entries in its row/col but does not divide some other as,t.
Consider the following operations:

87



Now aij does not divide the shown entry in its row. Then we can do the same thing as before to reduce
min(A).

2. St the start we have a matrix where min(A) divides every other entry in the matrix. Move min(A) to
top left and perform row/col operations to make all other elements in the leftmost column and topmost
row to be 0. Repeat the algorithm in the submatrix B.

Stop when B is the 0 matrix or empty. At the end we have a matrix in the smith normal form. Since
at the end of each step 2 we have a matrix where bi divides all elements in the matrix, and row/col
operations don’t change this. So b1 | b2 | . . . bl.

Smith normal form and homology

If ∂i : Zm → Zn is given by the matrix

then

1. Im(∂i) = b1Z⊕ b2Z⊕ . . .⊕ bkZ and

2. Ker(∂i) = {0} ⊕ {0} ⊕ . . .⊕ {0} ⊕ Zm−k
Can we make ∂i−1 compatible at the same time?

Corollary 11: Let (Cn, ∂) be a chain complex of a finitely generated free abelian groups. Then for
each i, there are subgroups ui, vi, wi such that

ci = ui ⊕ vi ⊕ wi

where ∂i(ui) ⊂ wi−1, ∂(vi) = 0, ∂(wi) = 0.
vi is the free part, and wi is the torsion part of the group.
Zn is the free part, and Z/biZ is the torsion part.
When diagonalize, all the nonzero parts ui, maps to wi, all in bottom i are the vi and wi. Look at
smith normal form one level up, the partial of the new ones land inside wi.
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Proof: Let wi = {wi ∈ ci | nwi ∈ Im(∂i+1), n ∈ Z | {0}}.
Then n∂i(wi) = ∂i(nwi) = 0 =⇒ ∂(wi) = 0 =⇒ wi ⊂ ker(∂i).
Rest of the kernel is vi, rest of the group is ui.
The upshot is, with basis as above

Hn(X) = ker(∂i)/Im(∂i+1) = vi ⊕ wi/Im(∂i+1) = vi ⊕ (wi/Im(∂i+1))

if ∂i+1 is written in the smith normal form.
Then

wi/Im(∂i+1) = Z/bi1Z⊕ Z/bi2Z⊕ . . .⊕ Z/bilZ

�
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Lecture 19 Homology and the fundamental group

Please resolve to J.Lee textbook ”intro to top. mani. PAGE 351!!!!!!
First homology is completely determined by the fundamental group of the space, which is called the abelian-
ization of the space.

Abelianization

If G is a group, its commutator subgroup [G,G] is normally generated by elements of the form [x, y] =
xyx−1y−1. Note that if [x, y] = 1 then xy = yx. Then, G/[G,G] is abelian and is called the abelianization
of G, denoted by Ab(G). Basically, abelianization measures how the group fails to be abelian.
Example:

Let G = Dn = 〈r, s | rn = s2 = 1, rs = srn−1〉. In Ab(G), we quotient by [r, s] = srs−1r−1 = srsrn−1

rn−1s2rn−1 = r2n−2 = r−2.
We need to quotient out by 〈r2〉. This is normal so Dn/〈r2〉 is the abelianization and it is generated by r
(image of r) and s (image of s).
If n is odd, then rn = 1 =⇒ r2k+1 = 1 =⇒ r2kr = 1 so r2kr− 1. Still have s2 = 1. So Ab(D2k+1) = Z/2Z.
If n is even, then rn = 1 =⇒ r2k = 1 =⇒ r2k = 1, this is known since r2 = 1 still s2 = 1. Also rs = sr so
Ab(D2k) = Z/2Z× Z/2Z.
Consider this:
If H is abelian and f : G → H is a homomorphism then f([x, y]) = 0, ∀x, y ∈ G. Then f factors through
the abelianization. So the following diagram commutes.

Π1(X) and H1(X)

If l : I → X is a loop, then [l]π ∈ π1(X). We can also regard I as an 1−simplex in ∆1 with l(0) = l(1). So l
is a cycle [l]H ∈ H1(X).
We will get a map γ : π1(X)→ H1(X) given by γ([l]π) = [l]H .
Since H1(X) is abelian, this map will factor through γab = Ab(π1(X)) → H1(X). We will see that γab is
also an isomorphism.
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Lemma:
γ is well defined. More exactly, if p0, p1 : I → X are homotopy of paths, then p0 − p1 is a boundary
in C1(X).

Proof: Let p : I × I → X be the homotopy between p0 and p1. Consider the map b : I × I → ∆2 given by
b(x, y) = (x− xy, xy).

• If x = 1 then b(x, y) = (1− y, y)

• If x = 0 then b(x, y) = (0, 0)

• If y = 1 then b(x, y) = (0, x)

• If y = 0 then b(x, y) = (x, 0)

Since b identifies points if and only if they are identified under p, so b factors to a map p∆ : σ2 → X.
∂p∆ = [p0]H + Cp0(1)− [p1]H . But Cp0(1) is ∂ of constant simple σc : δ2 → X, a 7→ p0(1), so ∂(p∆ − σc) =
[p0]H − [p1]H .
So [p0]H − [p1]H = 0 ∈ H1.

�

Lemma 0.38:
γ is a homomorphism

Proof: We start with [f ]H = −[f ]H . To see this, define a singular 2 simplex σ(x, y) = f(x).

∂σ = f + f − Cf(0) =⇒ ∂(σ − σc) = f + f so f + f = 0 in H1(X). So f = −f ∈ H1(X).
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If f and g are paths with f(1) = g(0) then we will show that γ[f · g] = [f ]H + [g]H .
Given such paths, define a 2 simplex γp : ∆2 → X by the following:

Check boundary and get that [f · g]H = [f ]H + [g]H .

�

Lemma 0.39:
γ is surjective.

Proof: Fix a basepoint q and for all x ∈ X, let α(x) be a chosen path from q to x which α(q) be the constant
path.
Since a point is a 0chain and a path is a 1 chain, this assignment extends to a homomorphism α : C0(X)→
C1(X).
For any path σ in X, define a loop σ̃ based at q by σ̃ = α(σ(0)) · σ · ασ(1).

Now, γ([σ̃]π) = [α(σ(0)) · σ · α(σ(1))]H = [α(σ(0))]H + [σ]H − [α(σ(1))]H = [σ]H − [α(∂σ)]H .
Now suppose that c = σmi=1niσi is an arbitrary 1 chain.
Let f be the loop (σ̃1)n1 · (σ̃2)n2 · . . . · (σ̃m)nm . Then

γ([f ]π) =

m∑
i=1

ni[σi]H − [α(∂σi)]H = [C]H − [α(∂c)]

If c is a cycle then γ([f ]π] = c so γ is surjective on homomlogy. �
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Lemma 0.40:
ker(γ) = [π1(X), π1(X)].

Proof: Let A = Ab(π1(X)). For any loop f , let [f ]A be image of f under the quotient.
If σ is a 1−simplex. Let β(σ) = [σ̃]A. Since C1(X) free abelian and A is abelian, β extends uniquely to a
hom β : C1(X)→ A. We will show that β takes boundaries to 1 ∈ A.
Let σ : ∆2 → X be a 2 simplex in the image. We have the following pictures:

∂σ = σ0 − σ1 + σ2. Note that σ0, σ1 and σ2 is homotopic to a constant loop.
Now, all in the group A, we have

So Im(∂2) ⊂ Ker(β).
Now suppose f is a loop based at q with fπ ∈ kerγ. Then [f ]H = 0 so that f is a boundary. Then since f
is a loop at q, β(f) = [f̃ ]A = [f ]A but since β of a boundary is 0, [f ]A = 1. =⇒ f is in [π1(X), π1(X)].
Since H1(X) is abelian, ker(γ) must contain [π1(X), π1(X)]. So this is exactly the kernel.
Summary of the theorem is, if X is a path connected then γ : π1(X) → H1(X) given [f ]π → [f ]H is a
surjective group hom with ker[π1(X), π1(X)]. So Ab(π1(X)) = H1(X).

�

Some quick applications

• H1(Sn) = 0 for n > 1

• H1(RP 2) = Ab(Z/2Z) = Z/2Z

• π1(S1 ∨ S1) = Ab(〈a, b |〉) = Ab(〈a, b | ab = ba〉) = Z× Z.
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Lecture 20. Exact sequences

Refer to J Lee Intro to Topological Manifolds page 356

Exact sequences

Goal: If X = U ∪ V with U, V open then we have inclusions

For all n, we want to define a map ∂∗ : Hn(X)→ Hn−1(U ∩ V ) such that the following sequence is exact:

. . .
∂∗−→ Hn(U ∩ V )

i∗⊕j∗−−−−→ Hn(U)⊕Hn(V )
k∗−l∗−−−−→ Hn(X)

∂∗−→ Hn−1(U ∩ V ) . . .

Note that this is called connecting homomorphism which connects homology from an upper level into a
lower level.

Definition 0.40 (Exact): A sequence of homomorphisms

αn+2−−−→ An+1
αn+1−−−→ An

αn−−→ An−1
αn−1−−−→ . . .

is said to be exact if for all n,
Ker(αn) = Im(αn+1)

These are chain complexes with 0 homology at every level.

Many familiar relations can be expressed as exact sequences as follows:

1. 0 −→ A
α−→ B exact means α is injective

2. A
α−→ B −→ 0 exact means α is surjective

3. 0 −→ A
α−→ B −→ 0 exact means α is an isomorphism

4. 0 −→ A
α−→ B

β−→ C −→ 0 exact means α is injective, β is surjective with Ker(β) = Im(α). So
C = B/Im(α) = B/A if we think of α as inclusion of A as subgroup of B.

An exact sequence like the one in 4 is called a SES, short exact sequence.
Recall that a chain map F : (C∗, ∂

C)→ (D∗, ∂
D) is a map with F (Cn) ⊂ Dn and ∂D ◦ F = F ◦ ∂C .

If C∗, D∗, E∗ are chain complexes of abelian groups, then a sequence of chain maps

C∗
F−→ D∗

G−→ E∗ is exact if each of the sequences

Cp
F−→ Dp

G−→ Ep is exact.
Notation: if c ∈ Cp and ∂c = 0, let [c] ∈ Hp(C) be the homology class.
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Lemma 0.41 (The zig-zag lemma):

Let C∗
F−→ D∗

G−→ E∗ be a SES of chain maps. Then for each p, there is a “connecting homomorphism
” ∂∗ : Hp(E∗)→ Hp−1(C∗) such that the following sequence is exact:

. . .
∂∗−→ Hp(C∗)

F∗−−→ Hp(D∗)
G∗−−→ Hp(E∗)

∂∗−→ Hp−1(C∗)
F∗−−→ Hp−1(D∗)

G∗−−→ . . .

(the long exact sequence)
The word long exact sequence comes from when you give a short exact sequences, it returns u a long
exact sequence.

Proof: Consider the following diagram:

The proof will be using diagram chase. I will omit the details. The goal would be to get from Ep(E) down
to ECp−1

somehow. �

Lemma 0.42 (Five lemma):
Let Ai, Bi be abelian groups such that the diagram commutes and has exact rows.

If f1, f2, f4, f5 are isomorphisms, then so is f3.

Proof: Proof is by diagram chase again. �
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Lecture 21. The Mayer-Vietoris Sequences

Setup
Let X = U ∪ V for U, V open. We want to compute the homology of X in terms of U and V . This can be
seen as an analogue of VKT of π1(X). There, we expressed loops in X as product of loops in U and V . In
here, we need to do something similar.
First hurdle: A chain σ : ∆n → X may not land completely in either U or V .

The solution is to divide up chains into little pieces, each of which fits in U or V .
The division of a simplex like this is called barycentric subdivision.

(Lebesgue number lemma).

U-small homology

LetX =
⋃
α Uα be an open cover. Define CUn (X) be the free abelian group generated by simplices σ : ∆n → X

so that σ(∆i) ⊂ Ui for some i. Note that if σi ∈ CUn (X) then ∂σi ∈ CUn−1.
So we get a homology theory, U−small homology. We denote it by HU

n (X).
We want to get a map Su : Cn(X)→ CUn (X).
We define this on a basis element: δ : ∆n → X.
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1. Divide all 1 simplices in ∆n in half by placing a vertex at the center of each edge

2. Put a point in the middle of each 2 simplex face and draw a line between each vertex and that new
vertex in the middle.

3. Put a point in the middle of each 3 simplex face and draw a line from each vertex to the new point.

4. Continue inductively up to N simplices

5. In the end, we define S(σn) to the signed sum of resultnig simplices.

We can extend this to a map S : Cn(X)→ Cn(X) by giving the barycentric divisions.
Define Sm(σ) = S(Sm−1(σ)). If X =

⋃
α Uα is an open cover and σ : ∆n → X is a map, then for some m,

each simplex of Sm(σ) lands in a single Ui. The key word is lebesgue number lemma. N simplex is complex
and Uα is open, but keep doing it will eventually have the simplices sitting inside Uα.
Define Su(σ) be the minimal m, sm(σ) such that Sm(σ) fits in Ui.
We defined this on generators, we can now extend this into a map

SU : Cn(X)→ Cun(X)

Lemma 0.43:

1. If f : X → Y and Uα, Vβ are open covers of X and Y , then SV ◦ f# = f# ◦ SU
2. ∂ ◦ s = s ◦ ∂ so s is a chain map.

Proposition 0.44:
Sm : Cn(X)→ Cn(X) is chain homotopic to id

Proposition 0.45:
Hu
n(X) is isomorphic to Hn(X).

Mayer Vietoris Theorem

If X = A ∪B with A,B open then we have inclusions (replace U, V with A,B)

Then for each p there are connecting homomorphisms ∂∗ : Hn(X) → Hn−1(A ∩ B) so that the following
sequence is exact

. . .
∂∗−→ Hn(A ∩B)

i∗⊕j∗−−−−→ Hn(A)⊕Hn(B)
k∗−l∗−−−−→ Hn(X)

∂∗−→ Hn−1(A ∩B) . . .

Note that this is called connecting homomorphism which connects homology from an upper level into a
lower level.
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Proof: Let U = A ∪B. Consider the maps

Cn(A ∪B)
i#⊕j#−−−−→ Cn(A)⊕ Cn(B)

k#−l#−−−−→ CUn (X)

We claim this is a SESS.
Since i#, j# are just maps which takes a simplex in A∪B and regard it as a simplex in A or in B, this map
is injective.
If C ∈ Cn(A∩B), then (k# − l#)((i# ⊕ j#)(c)) = 0. That is, this is similar to include it in i, and include it
in j, and identifying them as the same thing, so we subtract it off.
In fact this is the entire kernel so it is exact at Cn(A)⊕ Cn(B).
Next check k# − l# is surjective by the definition of CUn (X). (Since CUn simplices are generated by elements
either entirely in A Or B, those are contained, and it will hit over the element.)
This is a SES of chain complexes. Indeed. Now, we get a long exact sequence of homologies.
It looks like

∂∗−→ Hn(A ∩B)→ Hn(A)⊕Hn(B)→ HU
n (X)

∂∗−→ Hn−1(A ∩B)

But by prop HU
n
∼= Hn so replacing it with Hn above gives us desired result.

�

Applications

Hi(S
n)

By a similar decomp to V KT, we can find Hi(S
n).

Let A =northern hemi plus a bit, B =southern hemi plus a bit.
So A,B ∼=h.e.q Dn and A ∩B ∼=h.e.q Sn−1. By MVS, we get a LES

Hn+1(Sn−1)=A∩B → Hn+1(Dn)=A ⊕Hn+1(Dn)=B → Hn+1(Sn+1)=X → Hn(Sn−1)

→ Hn(Dn)⊕Hn(Dn)→ Hn(Sn)→ Hn−1(Sn−1)→ Hn−1(Dn)⊕Hn−1(Dn)

Recall we showed that Hi(S
1) =

{
Z if i = 0, 1

0 o.w.

We will show by induction that Hi(S
n) =

{
Z if i = 0, n

0 o.w.

Suppose it was true for Sn−1, then we can substitute the above sequence.

Hn+1(Sn−1)0 → Hn+1(Dn)0 ⊕Hn+1(Dn)0 → Hn+1(Sn+1)? → Hn(Sn−1)0

→ Hn(Dn)0 ⊕Hn(Dn)0 → Hn(Sn)? → Hn−1(Sn−1)Z → Hn−1(Dn)0 ⊕Hn−1(Dn)0

• 0 → Hn+1(Sn) → 0 → 0 so Hn+1(Sn) = 0 as sandwiched between two zeroes, get isomorphic, so it is
zero. Similarly, Hn+k(Sn) = 0 for k > 0.

• 0→ Hn(Sn)→ Z→ 0 =⇒ Hn(Sn) = Z

• for 0 < k < n, 0→ Hk(Sn)→ 0→ 0 implies Hk(Sn) = 0 for 0 < k < n.

Also since Sn is connected H0(Sn) = Z. In summary

Hi(S
n) =

{
Z if i = 0, n

0 o.w.
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Corollary 12: Rn 6=homeo Rm for n 6= m. Since Rn \ {pt} ∼= Sn−1, Rm \ {pt} ∼= Sm−1, but homology
groups are homotopic invariance, so they are certainly not homeo.

Suspension

Definition 0.41: If X is a top space, then we define the suspension of X, denoted ΣX, to be X×I/ ∼
where ∀x, y ∈ X, (x, 0) ∼= (y, 0) and (x, 1) ∼= (y, 1). If f : X → Y is a map, we denote by Σf the map
Σf : ΣX → ΣY by Σf(a, t) = (f(a), t).

For example ΣS1 = S2 and ΣSn = Sn+1.

Proposition 0.46:
For n ≥ 1, Hn+1(ΣX) = Hn(X).

Proof: Take a similar decomp of Σx to Sn. Let A = X × [0, 3/4] and B = X × [1/4, 1] both A and B are
contractible, we have A ∩B ∼= X. So by MVS, we have LES:

Hn(X)→ 0=Hn(A)⊕Hn(B) → Hn(Σx)
∂∗−→ Hn−1(X)→ 0=Hn−1(A)⊕Hn−1(B)

So we get two zeros, the ∂∗ again is an isomorphism. �
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Lecture 22. Mayer Vietoris Applications

The connecting homomorphism

Note that i∗, j∗, k∗, l∗ all come from inclusion. The map ∂∗ was defined algebraically via the zigzag lemma.
We want to define ∂∗ geometrically. ∂∗ : Hn(X) → Hn−1(A ∩ B). Need to take an n cycle and return an
n− 1 cycle in A ∩B.
Suppose cn is some n cycle in X. By barycentric subdivision, we can break up cn into a sum of simplices,
each of which is contained entirely in A or B.
The following is an example. Note that A ∩B does not need to be connected.
we can see the following example:
The black circle is Cn, the n chain, and we broke it up to be in either entirely in A and B.
Call these CAn , C

B
n .

Then ∂Cn = 0 as it is a cycle, so ∂(CAn ) + ∂(CBn ) = 0 so ∂(CAn ) = −∂(CBn ). So we conclude that boundaries
of these simplices must lie in A ∩B.
Define ∂∗Cn = [∂CAn ] ∈ Hn−1(A ∩B).
But here, we made a choice to pick to choose ∂CAn instead of ∂CBn . These maps are negations of eachother.
So while the map on the MVS level depends on which space A/B, the resulting groups do not depend, since
Im/Ker(f) = Im/ker(f).

Surfaces

Calculate homology groups of T 2.
Let T 2 = A ∪B where A = T 2\ small disk and B = slightly bigger disk

So A =wedge of two circles, B =point, and A ∩B = S1.
Also we know the homology of those sets:

Hn(A) =


Z⊕ Z n = 1

Z n = 0

0 else

, Hn(B) =

{
Z if n = 0

0 else
, Hn(A ∩B) =

{
Z if n = 1

0 else
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If n ≥ 3, then MVS looks like:

0=Hn(A∩B) → 0=Hn(A)⊕Hn(B) → Hn(T 2)→ 0Hn−1(A∩B) → 0=Hn−1(A)⊕Hn−1(B)

Looking at the two underlined terms, they are both zero, so the two groups in between are isomorphic. This
means Hn(T 2) is zero for n ≥ 3.
If n = 2 then the MVS looks like:

0=H2(A∩B) → 0=H2(A)⊕H2(B) → H2(T 2)
∂∗−→ ZH1(A∩B) i∗⊕j∗−−−−→ Z⊕ Z=H1(A)⊕H1(B)

Since H2(A)⊕H2(B) = 0, H2(T 2) injects into Z.
A generator for H1(A∩B) is a loop, j∗ is clearly 0 since it lands in H1(B) = 0. When including into A, it goes
around aba−1b−1 inside homology of wedge of two circles in Z⊕ Z. So i∗(1) = aba−1b−1 ∈ H1(∞) = Z⊕ Z.
Since, direct sum is commutative, i∗ is also the 0 map. So ker i∗ ⊕ j∗ = Z =⇒ Im(∂∗) = Z, so ∂∗ is
surjective. Since ∂∗ is injective, it is bijective and we have H2(T 2) = Z.
At n = 1, the MVS look like:

Z=H1(A∩B) f−→ Z⊕ Z=H1(A)⊕H1(B) g−→ H1(T 2)
h−→ ZH0(A∩B) i=i∗⊕j∗−−−−−→ Z⊕ Z=H0(A)⊕H0(B)

(Wait, I think H1(B) = 0?) We have seen f = 0 so ker(g) = 0 so Z ⊕ Z injects into H1(T 2). Now i
takes 1 7→ 1 ⊕ 1 so i is injective means Im(h) = Ker(i) = 0. Therefore since h maps everything to 0,
ker(h) = H1(T 2) so im(g) = H1(T 2). So since g is both surjective and injective, it is bijective so we have
H1(T 2) = Z⊕ Z.
Also H0(T 2) = Z as it is a path connected space.
In summary,

Hn(T 2) =


Z⊕ Z if n = 1

Z if n = 0

0 else

Calculate the homology groups of the Klein bottle K

Let A/B be as in the picture. Then A,B,A ∩B are all mobius bands.

Let A be the blue strip in the middle and B be the red regions.
Then

Hn(all) =

{
Z n = 0, 1

0 else

As before, Hn(K) = 0 for n > 3. At n = 2 we have

0=H2(A)⊕H2(B) → H2(K)
∂∗−→ Z i−→ Z⊕ Z

So H2(K) = Im∂∗ = ker(i). i is given by including into A and into B. When you have a loop in intersection,
i.e. going in between twice loops, when u include it into A and B, it goes to the boundary of the mobius

101



band, which is equal to 2 in the H1(A), H1(B). So i∗(1) = j∗(1) = 2. So i∗ ⊕ j∗(1) = (2, 2). So i is injective.
Since by exactness ∂∗ is injective, and 0 = ker(i) = im(∂∗) but ∂∗ is injective, so H2(K) must only have the
identity element. So H2(K) = 0. Then, at H1(K) we have

Z=H1(A∩B) → Z⊕ ZH1(A)⊕H1(B) f−→ H1(K)
∂∗−→ Z h−→ Z⊕ Z.

Since A∩B is connected, subdividing any loop into smaller loops results in an even number of points in the
same component. So ∂∗ = 0 so f is surjective.
why is this 0? and why does it make it even number points?
please revisit this component!!
please revisit this component!!
please revisit this component!!
So

H1(K) = Z⊕ Z/ker(f) = Z⊕ Z/IM(g), or i∗ ⊕ j∗ = Z⊕ Z/span(2, 2)

Now Z⊕ Z = span((1, 0), (0, 1)) = span((1, 0), (1, 1)) = Z(1, 0)⊕ Z(1, 1).
So Z⊕ Z/span(2, 2) = Z(1, 0)⊕ Z(1, 1)/span(2, 2) = Z⊕ (Z/2Z).
In summary,

Hn =


0 n ≥ 2

Z⊕ (Z/2Z) n = 1

Z n = 0

Knot complements

Recall that if K ⊂ S3 is a not then π1(S3 \K) is a powerful invariant of that knot. How does H1(S3 \K)
work as a knot invariant?
Let us use the Meyer vietoris sequence to figure this out.
By the definition of knot, a knot can be “thickened up” to an embedding of S1 ×D2. Given a knot K, let
ν(K) be a slight thickening of K. Also let ν+(K) be a slightly larger thickening of K.
We define A = ν+(K) and B = S3 \ ν(K). Note that S3 = A ∪B. Now, also A ∩B = T 2 × I ∼= T 2.
I don’t see why this is is true. I only see how it is a flat annulus times I.
At n = 1, the MVS is

0=H2(S3) ∂∗−→ Z⊕ ZH1(A)∩H1(B) → Z=H1(A) ⊕H1(B)→ 0=H1(S3)

So H1(B) = H1(S3 \ ν(K)) = Z.
In conclusion H1(S3 \ ν(K)) can not distinguish knots. This is part of a larger phoenomena.

Theorem 0.47:
If h : Sk → Sn is an embedding with k < n. Then

Hi(S
n \ h(Sk)) =

{
Z i = n− k − 1, 0

0 else
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Lecture 23. Degree theory for spheres

Recall

Hi(S
n) =

{
Z i = 0, n

0 else

By MVS,

Recall
A map f : X → Y induces a map f∗ : Hk(X)→ Hk(Y ).
Then a map f : Sn → Sn induces a map f∗ : Hn(Sn)→ Hn(Sn), which is f∗ : Z→ Z. Such maps f∗ : Z→ Z
are completely determined by f∗(1).

Definition 0.42: f : Sn → Sn is a degree n map if f∗ : Hn(Sn)→ Hn(Sn) has f∗(1) = n.

Example

If f : S1 → S1 is f(z) = zn, then f has degree n.

Note that the maps sends the one generator of one simplex to the copy of three simplices in its image.

Some straightforward properties

1. deg(idSn) = 1 since it induces the identity map Z→ Z.

2. If g ' g then deg(f) = deg(g) since f∗ = g∗.

3. If f is not surjective, then deg(f) = 0. Since f ' constant map. That is, if it misses a point, then it
would be homotopic equivalent to Rn, which is contractible.

4. deg(f ◦ g) = deg(f) deg(g) since (f ◦ g)∗ = f∗ ◦ g∗.
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Proposition 0.48 (Naturality of connecting homomorphism):
Suppose we have a commutative diagram (of chain complexes) of exact rows, given by

Then the following diagram commutes for each p. Note that this is the same setup as in zig zag
lemma.

Degree of reflections

Let Sn = {(x1, x2, . . . , xn+1) ∈ Rn+1 |
∑
x2
i = 1}.

Let Ri : Sn → Sn be the map (x1, . . . , xi, . . . , xn+1)→ (x1, . . . ,−xi, . . . , xn+1).
If Sij is the map that swaps xi, xj then Rj = SijRiSij .
So

deg(Rj) = deg(SijRiSij) = deg(Sij)deg(Ri)deg(Sij)

= deg(Sij)deg(Sij)deg(Ri) = deg(SijSij︸ ︷︷ ︸
id

)deg(Ri) = deg(Ri).

So all deg(Ri) have the same degree.

Lemma 0.49:

deg(Ri) = −1

Proof:
We will induct on n.
Base case
For n = 1, take the generating 1-chain of H, given by
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Compose where the 1 chain is mapped to by R1, it goes to −σ. So deg(R1) = −1 on S1.
Inductive step

Recall in MVS, we found Hn(Sn) ∼= Hn−1(Sn−1). (by ∂∗)
We seek to make this compatible with R1. I.e. we want the following diagram to commute.

Note that these R1∗ technically are different maps, but the R1∗ on bigger space does induce the same on the
lower space.
Let U = U ∪ V be the open cover of Sn given by U = northern hemi + little, and V = southern hemi +
little.
Note that R1 preserves U and V . Note that R1 reflects across the vertical axis, and the nothern hemi,
southern hemi are preserved by R1.
Then R1 induces chain maps:

By the naturality of ∂∗, we get a commutative square of maps on homology as follows: (Using the fact that
U small homology is isomorphic to original homology.)

Now, since R1∗ on the right is the −1 map and the diagram is commutative, R1∗ on the left is a degree −1
map.
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�

Recall that the antipodal map A : Sn → Sn is A(~x)→ −~x.

Corollary 13:
deg(ASn) = (−1)n+1

Proposition 0.50:
A : Sn → Sn is homotopic to the identity ⇐⇒ n is odd.

Proof:
=⇒ : Contrapositive is : n even implies A not homomorphic to id. By previous corollary, if n is even, then
deg(A) = (−1)n+1 = −1. Since deg 6= 1, and degree is invariant under homotopies, then the result follows.
⇐= : Suppose n = 2k − 1 is odd. Then there is an explicit homomotopy (this is quite complicated, I omit

the proof). We have H(X, 0) = id and H(x, 1) = A. Each H(x, t) : Sn → Sn well defined.
A continuous vector field is a continuous map V : Sn → Rn+1 so that at every x ∈ Sn, V (X) is tangent to
Sn at X. Algebraically, V (X) ·X = 0. These play important role in physics and diff geo.
A vector field is said to be non-vanishing if V (X) 6= 0 at any x.
Consider the Hairy ball theorem. �

Theorem 0.51 (Hairy Ball Theorem):
Sn admits a non-vanishing vector field ⇐⇒ n is odd.

Proof: ⇐=
If n = 2k − 1 is odd, then the vector field V : S2k−1 → R2k given by

V ((X1, . . . , X2k))→ (−x2, x1,−x4, x3 . . .− x2k, x2k−1)

is nonvanishing.
=⇒
Suppose Sn admits a nonvanishing vector field. Let w be the new vector field. w = v

|v| . Note that |w(x)| = 1

and x · w(x) = x · v|v| = x·v
|v| = 0.

We have a explicit homotopy. H(x, t). (Too lazy to write it down.) At t = 0, H(x, t) = id, t = 1, H(x, t) =
−~x = A.
And the homotopy is 1 at any point. So deg(A) is odd.

�

Theorem 0.52:
If f : Sn → Sn has no fixed points, then deg(f) = (−1)n+1.
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Proof: We can obtain a homootopy between f and A by

H(x, t) =
(1− t)f(x)− tx
|(1− t)f(x)− tx|

Recall G ↪→ x freely means there is a homomorphism ↪→: G→ homeo(X) with ∀x, g · x 6= x unless g = id.�

The following prop gives us a severe restriction on a group acting on a space.

Proposition 0.53:
If n is even, then Z/2Z is the only nontrivial group that can act on Sn.

Proof: Remark
We have already seen the converse, that Z/2Z acts on Sn by antipodal map, so the quotient is RPn. So the
universal cover of RPn is Sn. It turns out that this is all that can happen.
If f ∈ Homeo(Sn), then deg(f ◦ f−1) = deg(f) · deg(f−1) so deg(f) = ±1. So we get a composed homomor-
phism d : G→ {±1}, defined by G→ Homeo(X)→ {±1}.
If G ↪→ freely by the previous proposition, ∀g with g 6= id, d(g) = (−1)n+1 = −1 since n even. Then d has
trivial kernel. This is injective homomorphism. So G ≤ Z/2Z. �

The question of which groups act freely on Sn for n odd is much more subtle.
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Lecture 24. Cellular Homology

Last time:
We showed f : Sn → Sn has degree n if f∗ : Hn(Sn)→ Hn(Sn) (or Z→ Z) has f∗(1) = n.

Interesting fact:
Two maps f, g : Sn → Sn are homotopic ⇐⇒ deg(f) = deg(g).

Recall that a CW complex is built by attaching ncells (Dn) to the n− 1 skeleton Xn−1 by maps f : Sn−1 →
Xn−1 where Sn−1 = ∂(Dn).

Goal: define a homology theory HCW
∗ (X) based on these attaching maps. For today, we let CW complexes

have finitely many cells in each dimension.

Observation: If X is CW complex, then Xn/Xn−1 ' ∨kSn where k is the index of # of n−cells.
Then attaching an n + 1−cell gives a map f : Sn → ∨kSn obtained by compositing the attaching map
f : Sn → Xn with quotient map Xn → Xn/Xn−1 ∼= ∨kSn.
So on homology we get a map f∗ : Z→ Zn. This sends 1 7→ (n1, n2, . . . , nk).
Can think of this as a multidegree. Further quotienting out by all but the ith sphere gives a map of degree
ni.
Let CCWn be the abelian group generated by the n−cells.
If eni is an n-cell, it is attached by a map with multi-index (n1

i , n
2
i , . . . , n

k
i ). They each correspond to

en−1
1 , en−1

2 , . . . , en−1
k . We define ∂n : CCWn → CCWn−1 on each cell by ∂eni =

∑k
j=1 n

j
ie
n−1
j . ni is the number of

times the cell is wrapped around the other boundaries. ∂0 is the 0 map and ∂1 is terminal vertex - initial.

Theorem 0.54:
∂2 = 0 so we get a homology theory HCW

∗ . Moreover, if X is a CW complex, then

HCW
∗ (X) = H∆

∗ (X) = H∗(X)

0.5 Cellular homology examples

CW homology of Σg
Recall the CW decomposition of Σg is the 2n gon with boundary [a1b1] . . . [ayby].
So

• CCW0 (Σg) = Z

• CCW1 (Σg) = Z2g

• CCW2 (Σg) = Z

Every 1−cell has both ends attached to the same 0cell. So ∂1 = 0. The 2−cell is attached along [a1b1] . . . [ayby],
we quotient out each generator, since each degree is 0, so they each cancel. So ∂2 = 0.

0→ Z 0−→ Z2g 0−→ Z 0−→ 0

So

Hn(Σg) =


Z n = 2

Z2g n = 1

Z n = 0

0 else
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It is faster than MVS, simplicial homology, it is almost impossible to work with singular homology.
We can try to work out RP 2 or more general non-orientable surfaces.
Homology of T 3

We consider the CW decomposition of the T 3. The opposite sides are identified with each other. There is
only 1 0−cell so ∂1 = 0. There are 3 2−cells all attached like T 2. So ∂2 = 0. What about the 3cell? look at
the degree in 2-cell. If we look at the attachment across the equator, we see that the two faces are attached
oppositely so the degree is again 0. So the picture is symmetric in all three faces so ∂3 = 0. So

CCW∗ (T 3) = 0→ Z 0−→ Z3 0−→ Z3 0−→ Z→ 0

So

Hn(T 3) =


Z n = 3, 0

Z3 n = 1, 2

0 else

Much easier than if we were trying to chop up into simplicial/ singular homologies.
Some general properties if X is CW complex

1. If X is n dimensional then Hi(X) for i > n

2. If X has no i−cells then Hi(X) = 0

3. If X has k i−cells then Hi(X) is generated by at most k elements.

4. If X has no two of its cells in adjacent dimensions, then Hi(X) is free abelian and generated by its
cells, for all i. In this case, it is Cn(X)→ 0→ Cn−2(X)→ 0→ Cn−2(X)→ 0 . . .. Because ker/im is
everything / 0 so it works out.

Example CPn was built out of 1 even dimensional cell in each even dimension up to 2n.

Then CCW∗ (CPn) = Z2n → 02n−1 → Z2n−2 . . .Z2 → 01 → Z0. So

Hi(CPn) =

{
Z if i is even and i ≤ 2n

0 else

Note there is a space CP∞ with homology Z in every even dimension.

0.6 Making spaces with given homology

Recall that the map fn : S1 → S1 given by f(z) = zn is a degree n map. How do we get a degree n map?
Recall ΣSn = Sn+1, (suspension, i.e. cross it with I and quotient the top, and bottom), and a map
f : X → Y induces a map Σf : ΣX → ΣY. To do this, we have map f from X × I to Y × I, and now, we
crush the top, and the bottom, similarly.
In MVS, for ΣSn−1, we got

0→ Hn(Sn)
∂∗−→ Hn−1(Sn−1)→ 0

Note that Σfn : S2 → S2 respects the north/south hemi decomposition, so by the naturality of ∂∗, we get a
commutative diagram as follows. I.e.
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By commutativity, we have that Σf∗ is degree n map. Iterating this construction shows that Σk−1fn : Sk →
Sk is a degree n map.
We can construct a space with Hn(X) = Zm and Hi(X) = 0 for i 6= 0, n by attaching an n+ 1 cell to Sn by
the ncell to the 0cell. By a map of degree m, then

CCW∗ = 0→ Zdim n+1 m−→→ Zdim n 0−→ 0→ . . .→ 0→ Zdim 0 → 0

so we get the desired homology groups.

Definition 0.43: Let G be an abelian group and n ≥ 1 be an integers. A Moore space M(G,n) is a
CW complex with Hn(M(G,n)) = G, H0(M(G,n)) = Z, Hi(M(G,n)) = 0 if i 6= 0, n. If n > 1, we
also require π1(M(G,n)) = 0.

For a finitely generated abelian group G by the funamental theorem of finitely generated abelian groups,

G ∼= Zk ⊕ Zd1 ⊕ . . .⊕ Zdl

To construct M(G,n), take
∨l+k
i=1 S

n for Xn and attach l n+ 1 cells by maps of degree d1, . . . , dl, to separate
N−spheres.
Recall that Hp(

∨
iXi) = ⊕iHp(Xi), then given a list of groups G1, . . . , Gl, we can construct a space X with

Hi(X) = Gi by
∨`
i=1M(Gi, i).
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Lecture 25. The Euler Characteristic

This is the first topological invariant discovered.
We consider CW compositions of S2, we notice that V − E + F = 2 for all decompositions. Now, consider
the CW decomposition of T 2, where V − E + F = 0 for all those decompositions.

Definition 0.44: Let X be a finite CW complex with a CW structure, with Ci i−cells. We define
the Euler Characteristic, χ(X), to be

χ(X) =

n∑
i=0

(−1)iCi

where n = dim(X).

Natural question: Does this depend on the CW-structure?

Definition 0.45: Let G = Zk ⊕ Zd1 ⊕ Zd2 ⊕ . . .⊕ Zdl be a finitely generated abelian group. Define
rank(G) = rk(G) to be the integer k above, which refers to the free abelian part.

Lemma 0.55:
How does rank behave in short exact sequence?
If

0→ A→ B → C → 0

be a short exact sequence of abelian groups. Then rk(B) = rk(A) + rk(C), where C is roughly like
B/A.

Proof: Proof idea: Tensor the sequence with Q, make torsion go away, and use rank-nullity theorem. Not
sure about torsion and tensor with Q. �

Theorem 0.56:

χ(X) =

n=dim(X)∑
i=0

(−1)irk(Hi(X))

The point is that the sum on the RHS does not depend on X, so this is a topological space invariant.

Proof: The cellular homology chain complex looks like:

0→ CCWn (X)
dn−→ CCWn−1(X)

dn−1−−−→ CCWn−2(X) . . . CCW1 (X)→ CCW0 (X)→ 0

�
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Let Zi = ker di and Bi = Im di+1. Then we have a SES

0→ Bi → Zi → Zi/Bi = Hi(X)→ 0

we also have another SES
0→ Zi

i−→ CCWi (X)
di−→ Bi−1 → 0

By our lemma, 1 implies rk(Zi) = rk(Bi) + rk(Hi), 2 implies rk(ci) = rk(zi) + rk(Bi−1). Sub 1 into 2, we
get

rk(Ci) = rk(Bi) + rk(Hi) + rk(Bi−1)

Taking an alternating sum get
∑
i(−1)irk(ci) =

∑
i(−1)irk(Bi) + rk(Hi) + rk(Bi−1) In each adjacent

summand, rk(bi−1) appear with opposite signs. So they all cancel.
So
∑n
i=0 rk(ci) =

∑n
i=0(−1)irk(Hi).

Quick examples

• χ(Σg) can be computed using polygon picture, Σg has 1 vertex, 2g edges, and 1 face. So χ(Σg) =
1− 2g + 1 = 2− 2g.

• χ(#kRP 2) = 2− k.

• The only overlap is that χ(Σg) = χ(#2gRP 2), so surfaces are classificed by orientability and Euler
characteristic.

•

χ(Sn) =

{
0 n odd

2 n even

0.7 Euler Characteristics and vector fields

Recall that S2 has no non-vanishing vector fields but it does have a vector field with 2 zeroes on it, that is,
the vector field with 0 on the top and bottom, and have a flow going from the top to bottom.
Also χ(S2) = 2. So we observe that the spheres with euler characteristic of 2 has two zeroes, whereas the
spheres (odd degree) has non vanishing vectorfields, and have EC of 0.
Also consider T 2, it has non vanishing vector field. (imagine the square with all vectors flowing the same
way). Also χ(T 2) = 0. So is this a coincidence?

Definition 0.46: Let V be a vector field on a differentiable manifold. (assignment of vector at each
point). If z is an isolated 0 of the vector field, the we can look at Dn neighbourhood of z with no
other zeroes. At each point of ∂Dn, we have a n-dim vector, which after rescaling, we can consider as
a point in Sn−1. That is, we can scale each vector to the length of 1 in its direction. The only vector
we cannot do so is 0, but since there are no zero vectors, we can apply this for every vectors. So we
get a map ∂Dn = Sn−1 → Sn−1. (i.e. looking at the boundary, and the vectors on that boundary).
Call this map U . Define indZ(v) = deg(U).

112



So χ(S2) =
∑
i indzi(V ) for V the vector field.

It has a source on top and a sink on the bottom. THey add up to 2.

Theorem 0.57 (Poincare Hopf index theorem):
Let X a differentiable manifold and let V be a vector field on X with isolated zeroes zi. Then
χ(X) =

∑
i indzi(v).

Corollary 14: If |χ(X)| = n, then any vector field has at least n zeroes. This generalizes the hairy
ball theorem.

fun exercise: try drawing minimum number of zeroes on different surfaces.
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Lecture 26. Homology with Coefficients

Let us first recall the ordinary definition of homology, which is with Z coefficients. (The normal homology).
Take

∑
i niσi with ni ∈ Z and σi : ∆n → X a singular n chain to be Cn(X) = Cn(X,Z). Take homology of

C∗(X) to get Hn(X) = Hn(X,Z). This is the homology with integer coefficients.

Definition 0.47: Let G be an abelian group, let Cn(X,G) be elements of the form
∑
i giσi and

σi : ∆n → X is a singular n-simplex.
Like before, we can define ∂gσi =

∑
j(−1)jg(faces of σi).

So the coefficient of each face, ∆n is either g or −g. Like before, ∂2 = 0. So we obtain a chain
complex, we call C∗(X;G).

Definition 0.48: Define H∗(X;G) is the homology of the complex C∗(X;G). Note that we use
abelian groups so that Ker(∂n)/Im(∂n+1) is a group. We assume abelian because this always ensure
this subgroup is normal.
Most of the machinery developed works just fine with homology with coefficients.
For example, MVS works, cellular homology works, which is equal to the simplicial homology and
the singular homology.

The questionn is, which coefficients do I use?

• Z2: simplicity, as signs disappear and orientation does not matter!

• Q torsion diappear. I am no sure what this means!

• R captures analytic behaviour and can be used for an algebraic approach to integration. The past two
items are both under the umbrella of De Rham cohomology.

Today, we will focus on Z2 and see how it captures non-orientable information.
Example: Calculate H∗(RP 2;Z2)

RP 2 has the following cell decomposition:

So

• C0(RP 2,Z2) = ZV2 ⊕ ZW2

• C1(RP 2,Z2) = Za2 ⊕ Zb2

• C2(RP 2,Z2) = ZC2
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∂a = w − v, ∂b = w − v, ∂c = 2a− 2b = 0.
How, we see that

• H2(RP 2,Z2) = Z2 (big win), why, since H2(RP 2,Z) = 0, so Z homology cannot detect 2-diml be-
haviour.

• H1(RP 2,Z2) = Z2

• H0(RP 2,Z2) = Z2

Now, here are some more general examples: Hn(Sn;G) = G since the cellular complex for n > 1, it looks
like

0n+1 → Gn → 0n−1 → . . .

For computing maps in cellular homology complexes, the following is useful.

Lemma 0.58:
If f : Sk → Sk has degree m, then the induced map f∗ : Hk(Sk;G)→ Hk(Sk;G) is multiplication by
M , as (g 7→ g + g + . . .+ g).

Recall that RPn has a cell structure with an i−cell for each 0 ≤ i ≤ n. The attachment map ψi : ∂Di =
Si−1 → RP i−1 is the 2 sheeted covering map.
The boundary map on cellular homology is the degree map ψi ◦ q where we have

Si−1 → RP i−1 q−→ RP i−1/RP i−2 = Si−1

What happens when we trace out the top cell of Si−1?

Get a homeo on the top and bottom hemisphere of Si−1−Si−2 → Si−1−{pt}, the homeos differ by pre-comp
with antipodal map. So deg(ψi ◦ q) = 1 + (−1)i. The (−1)i comes from flipping i coordinates.
So with Z coefficients, we have C∗(RPn;Z) is

0→ Z 2−→ Z 0−→ Z 2−→ . . .Z 0−→ Z 2−→ Z 0−→ 0 , n is even

0→ Z 0−→ Z 2−→ Z 0−→ . . .Z 0−→ Z 2−→ Z 0−→ 0 , n is odd

So Hk(RPn;Z) =


Z if k = 0 or if k = n odd

Z2 if k is odd, 0 < k < n

0 else

So homology with integer coefficient sees things in the

odd degrees, not even behaviour of RP 2. On the other hand, C∗(RPn;Z2) is equal to

0→ Z2
0−→ Z2

0−→ Z2
0−→ . . .Z2

0−→ Z2 → 0

It alternates between 0 and multiplication by 2. But everything multiply by 2 is the zero map.

So, see below, which helps us to see behaviours in the even degrees Hk(RPn;Z2)

{
Z2 if 0 ≤ k ≤ n
0 else
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Definition 0.49: Let X be a topological space and A ⊂ X a nonnempty closed subspcae so that
there exists a NBD N ⊂ X with N deformation retracting to A. Then (X,A) is said to be a good
pair. I.e. there exists some rooms for A to expand into N and for N shrink back to A.

For example, if X is a CS complex and A is a subcomplex then (X,A) is a good pair.

Theorem 0.59:
If (X,A) is a good pair, then there exists a LES in homology of the form:

Hn(A;G)
i∗−→ Hn(X;G)

q∗−→ Hn(X/A;G)
∂∗−→ Hn−1(A;G)

where i∗ is inclusion, q∗ is quotient map, ∂∗ is from zig zag lemma.

Apply this to (RP 2,RP 1), we get

H2(RP 1;Z2)
i−→ H2(RP 2;Z)

q−→ H2(RP 2/RP 1(=S2);Z2)

0→ Z2
q∗−→ Z2

So q∗ is an injection and isomorphism. In particular, q is not null homotopic. It induces a nontrivial map
on the second homology with Z2 coefficients.
Note that homology with Z coefficients cannot detect this map. The reason being none of the homology
groups line up. At H1, H1(S2) = 0 and H2(RP 2) = 0, but Z2 coefficients do work.

Theorem 0.60 (Borsuk Ulam Theorem):
For every map g : Sn → Rn,there exists a pair of antipodal points X and −X with g(X) = g(−X).
This is a surprising theorem.

Most of the heavy lifting is in the following:

Proposition 0.61:
An odd map f : Sn → Sn (a map satisfying f(−x) = −f(x)) for all x has odd degree.

First, note that if f is odd, then f induces a map f : RPn → RPn. (Need f(−x) = f(x), have f(−x) =odd

−f(x) =RPn

f(x))
we have the following commutative diagram. So f ◦ p = p ◦ f.

A singular i simplex is a map, by lifting criterioin, there exists a lift σ : ∆i → RPn. We get two lifts σ̃2, σ̃1

because there are two chocies depending on where it gets lifted to.
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We write Pn for RPn and everything is in Z2.
Let τ : Cn(Pn)→ Cn(Sn) be τ(σ) = σ̃1 + σ̃2.
We then get a SES

Proof: The SES of chain complexes leads to LES in H∗ which looks like the following:

where the ∂ come from the zig zag lemma. Note that τ∗ is an isomorphism. And ∂∗ is surjection, and
isomorphism. Similarly for the bottom level. Now consider the f, f maps.
We get a commutative diagram

So by naturality of ∂∗, we get a chain map of the LES to itself. The point is all these maps commute.
Goal: f# is isomorphism in all dimensions. We do this by inductoin. Base case is i = 0 is easy, because the
map preserves connected components.
Now, suppose that this true for Hi−1, by the commutative square above,

The ∂∗ are isomorphism in all degrees, and f∗ is isomorphism by hypothesis. So by commutativity the f∗ is
also an isomorphism.
So we conclude f∗ is an iso on all i.
Also by the other square, since it is isomorphism by induction, and there are also isomorphisms, so the
leftover map is also isomorphism. So f∗ : Hn(Sn) → Hn(Sn) must be an isomorphism. So f∗ needs to be
multiplication by a odd number. (otherwise u always get 0). So f has odd degree. �
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Proof: Proof of Borsuk Ulam
Let g : Sn → Rn be a map. Suppose that g(X) 6= g(−X) for all X. Define a map f : Sn → Sn−1

by f(x) = g(x)−g(−x)
|g(x)−g(−x)| , then f is odd and so is f |Sn−1 where Sn−1 is equator. Then f must have odd

degree. But we can continuously deform the map, so f |Sn−1 is nullhomotopic, so it has degree 0. We get
contradiction.

�
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