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Algebraic Geometry Insights

(Chat with Prof David Jao)

• Main ideas for algebraic geometry

Consider differential geometry, things are (rather) nice and (relatively) easy to visualize, because we
are usually working with vectors in spaces like Rn for some finite n. Now, we want to do similar
geometry stuff on more abstract algebraic objects, such as fields, maximal ideals and prime ideals, and
even more complicated ones. It is obviously much harder to visualize them!

But what mathematicians do is to make alternative definitions for the algebraic objects in order to do
geometry on them. For example, Zariski tangent space on algebraic sets as the usual sense tangent
space on usual sets. So the main point of algebraic geometry is to make algebraic objects nicer in
order to do geometry on them. Algebraic geometry makes nice definitions on algebraic objects, so that
the geometry operations would carry out. This is done in the sense that if you’re working with those
definitions for object in Rn, you get the equivalent result as usual (as in differential geometry), but if
you’re working with algebraic objects, things are still elegant and make sense.

One line summary: In algebraic geometry, mathematicians define definitions and theorems in order to
do geometry (i.e. differential geometry sense) on abstract algebraic objects.
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• Zariski tangent space:

Why is the zariski tangent space defined as TP (V ) = (M/M2)∗?

Why taking the dual?

Direction derivative is the inner product. For example, we want some object that are of the form

V ∗ = {f : W → F | ∃u ∈ U,∀u, f(v) = 〈u, v〉}

So for φ ∈ M/M2, we take an element f ∈ (M/M2)∗, where f(φ) = 0 implies orthogonality. Just as
in the linear algebra/ functional analysis/ differential geometry sense.

Why taking the M/M2?

We are taking the maximum ideals, and “discarding” the elements in M2. In some sense, the ideal
M2 represents upper derivatives. What we want to do is to only look at the vectors at the “current
tangent space” level. So we only look at the “constant terms”, which is elements in M , removing the
“upper dimensional derivatives”. This is similar to how evaluating x = a for this taylor series only
ourputs the constant term, and ignores all the upper level derivatives.

• Projective closure vs algebraic closure

Why projective closure?

Again, here’s an example on how projective closure identifies “all points of intersection”.

Consider Bezout’s theorem.

”If two plane algebraic curve of degrees d1 and d2 have no component in common, then they have d1d2
intersection points, counted with their multiplicity, and including points at infinity and points with
complex coordinates.”

Let’s try a simple example: consider the intersection point of E : y2 = x3 +ax+b and L = mx+ny+c.
By Bezou’t theorem, there should be 3 · 1 points in common.

Consider the following, elliptic curve in R2.

A normal situation

Here are three intersection points
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A situation we need algebraic closure

The two other roots are in C2 which is the algebraic closure of R2.

A situation where we need projective closure

In this case, even if you look in C2, you can’t find the intersection point.

So, mathematicians used projective spaces to find the other point. The third intersection point is
actually denoted O, which is a point at infinity. This point is in the projective closure of these two
curves.

• Scheme is defined as the set of prime ideals, where you can see the prime ideals as points. This is
another definition that makes the theory more elegant.
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1 Algebraic Geometry Week 1

1.1 Algebraic Sets

Definition 1.1 (2.1): Let n be a positive integer. Affine space An is the set Cn.

Definition 1.2 (2.2): Let S be a subset of the polynomial ring C[x1, . . . , xn]. The algebraic set correspond-
ing to S is the set:

V (S) = {x ∈ An | f(x) = 0,∀f ∈ S}

In other words, V (S) is the set of points where all the functions in S vanish.

Definition 1.3 (2.3): Let X ⊂ An be a subset of affine space. The ideal of X is the set

I(X) = {f ∈ C[x1, . . . , xn | f(P ) = 0,∀P ∈ X}

In other words, I(X) is the set of polynomials that vanish on all of X.

Theorem 1.1 (2.4):
Let X be a subset of An, I(X) the ideal of X. Then I(X) is an ideal of the ring C[x1, . . . , xn].
Moreover, I(X) is a radical ideal: if fn ∈ I(X) for some positive integer n, then f ∈ I(X).

Proof: To check the set is an ideal, we need to check it is an additive subgroup and it is closed under
multiplication by elements in the ring.
I.e. show f, g ∈ I(X) =⇒ f ± g ∈ I(X), 0 ∈ I(X), and any element h in C[x1, . . . xn we have hf ∈ I(X).
To show radical ideal, if fn ∈ I(X), then (f(x))n = 0,∀x ∈ I(X), so f(x) = 0 for all x ∈ I(X). Hence
f ∈ I(X). �

Note that every algebraic set is defined by a finite set of polynomials. By Hilbert Basis Theorem, that says
every ideal of C[x1, . . . , xn] is finitely generated. So if I(X) = (f1, . . . , fr) then X = V (f1, . . . , fr).

Definition 1.4 (2.5): An ideal I of a ring R is called radical if every r ∈ R with rn ∈ I for some positive
integer n satisfies r ∈ I. In other words, I is closed under radicals. For an arbitrary ideal I, of a ring R,
define the radical of I to be

Rad(I) = {r ∈ R | rn ∈ I for some integer n > 0}

Theorem 1.2 (2.6):
Let I be an ideal of a ring R. Then rad(I) is a radical ideal of R containing I.
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Proof: Containing I is obvious, take n = 1.
We will just show rad(I) is radical ideal.
It contains 0 is clear. Now, if r ∈ rad(I), r ∈ R, then jn ∈ I, (rj)n = rnjn ∈ I, so rj ∈ rad(I).
If jn ∈ rad(I) then (jn)m ∈ I, =⇒ jnm ∈ I so j ∈ rad(I). This shows rad(I) is radical.
Last to do is to show closure under addition, subtraction. Say j1, j2 ∈ rad(I). Then jn1

1 , jn2
2 ∈ I. Then

consider (j1± j2)n1+n2 . When it is expanded, every term in the expanded product will either contain factor
of jn1

1 or jn2
2 so all terms lie in I. So (j1 ± j2)n1+n2 ∈ rad(I). �

Theorem 1.3 (2.7 Hilbert’s Nullstellensatz):
Let n be a positive integer. There is a bijection

{algebraic subsets of An} ⇐⇒ {radical ideals of C[x1, . . . , xn]}

The bijection is given by X 7→ I(X), I 7→ V (I).

Note forany X ⊂ An, I(X) is radical ideal, so that is why we restrict to radical ideals. Also V (I) is alwasy
an algebraic set by definition. We also have V (I(X)) = X for every algebraic set X.
Proving I(V (I)) = I is hard though, we will see online proofs.
Here are some useful notes:

• Bigger ideals correspond to smaller algebraic sets. X ⊂ Y if and only if I(Y ) ⊂ I(X).

• Union of algebraic sets correspond to intersection of ideals:

I(X ∪ Y ) = I(X) ∩ I(Y )

TO see why, say f vanishes on X and Y , that is, f ∈ I(X∪Y ), then it is simultaneously in I(X), I(Y ).
If f ∈ I(X) ∩ I(Y ), f vanishes on both X,Y , also their union.

• If I(X) is a maximal ideal, the algebraic set it correspond to is a point. (Proof see page 9 in W1 notes).

• Best way to show an ideal is maximal is to mod out and showing quotient is a field.

• Best way to show R/I is a field is to find an onto homomorphism of R to a field, such that its kernel
is I.

• I(X) is a maximal ideal if and only if X is a single point.

• If I(X) is not prime ideal, then X can be written as union of two proper algebraic subsets.

• I(X) is not prime if and only if X is the union of two proper algebraic subsets.

Definition 1.5 (2.8): Let X be a nonempty algebraic set. We say that X is reducible if and only if it is
the union X = Y1 ∪ Y2 of two proper algebraic subsets.
We say X is irreducible iff it is not reducible. If X is empty, it is not irreducible nor reducible.

Theorem 1.4:
I(X) is a prime ideal if and only if X is an irreducible algebraic set.
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2 Algebraic Geometry Week 2

Definition 2.1 (1.1.): Let X ⊂ An Y ⊂ Am be algebraic sets. A polynomial map from X to Y is a funciton
φ : X → Y such that the coordinates of φ = (φ1, φ2, . . . , φm) are all polynomials in the coordinates of An.

Definition 2.2 (1.2.): Let X and Y be algebraic sets. A polynomial map f : X → Y is an isomorphism if
and only if there is a polynomial map g : Y → X such that f ◦ g = id, g ◦ f = id.

The above means that an isomorphism is one to one and onto. But it is NOT true that a polynomial map
(bijective) is an isomorphism. There is an example in assns.
Ideally, we want an algebraic helper for an algebraic set X that is invariant under isomorphisms. That is,
isomorphic algebraic sets have isomorphic partners.

Definition 2.3 (1.3): Let X ⊂ An be an algebraic set, with ideal I(X). The coordinate ring of X is the
ring

Γ(X) = C[x1, . . . , xn]/I(X)

which is the ring of polynomial maps from X to A.

My understanding of this: The reason why we mod it out by the ideal is that any polynomial in the ideal
would vanish the points in the algebraic set. So any two polynomials that vanish the sets are regarded as
the same. So we can mod it out by this ideal.

Themain idea is: a polynomial map from Γ(X) → A1 is a single polynomial in n variables. But do they
agree? Note that f, g agree on X if and only if f − g is identically 0 on X. But we already built the place
for those polynomials are zero on X, which is exactly our ideal! So f, g agree on X if and only if they are
congruent modulo I(X).

Theorem 2.1 (1.4):
Let X ⊂ An be an algebraic set, with coordinate ring Γ(X). Then there is an one-to-one correspon-
dence between algebraic subsets of X and radical ideals of Γ(X), given by

Y 7→ I(Y ) mod I(X)

and
I 7→ V (I)

where I denotes the ideal of C[x1, . . . , xn] generated by the elements of C[x1, . . . , xn] that lie in I
modulo I(X).

Moreover, under this correspondence, points correspond to maximal ideals, and irreducible subsets of X
correspond to prime ideals.
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Definition 2.4 (1.5 Pullback): Let φ : X → Y be a polynomial map of algebraic sets. The pullback of φ
is the homomorphism

φ∗ : Γ(Y )→ Γ(X)

given by φ∗(f) = f ◦ φ.

Theorem 2.2 (1.6):
Let X and Y be algebraic sets with coordinate rings Γ(X) and Γ(Y ) respectively. For any homomor-
phism ψ : Γ(Y )→ Γ(X), there is a polynomial map φ : X → Y such that ψ = φ∗.

Proof:
Say X ⊂ An and Y ⊂ Am. IF we want to build a polynomial map φ : X → Y , then we need to find m
polynomials φ1, . . . , φm in n variables.
φ : X → Y, we can write φ as (φ1, . . . , φm).
Note that φi is the ith coordinate of φ. Now, φi is just the ith coordiante of φ. Let xi bte the polynomial
that picks out the ith coordinate in Am. So we can write φi = ψ(xi). That is, pick out the xi coordiante first
then apply ψ (i.e. pick out the ith coordinate in Y and then apply the pullback.). Make that the same as
φi. It doesnt make sense in that ψ(xi) is not a polynomial, but instead an equivalence class of polynomials
in the ring of polys.
We therefore pick a polynomial on ψ(xi)....?
this is the key.... formula?
For each i, we pick a polynomial φi ∈ C[x1, . . . , xn] such that ψ(xi) = φi (mod I(X)). Now we define
φ : X → Y by

φ(P ) = (φ1(P ), . . . , φm(P ))

This φ is a polynomial map. If we have f ∈ I(Y ), then ψ(f) = 0, and we have

φ∗(f(x1, . . . , xm)) = (f(x1φ, . . . , xmφ)) = f(φ1, . . . , φm)

Modulo I(X), we have

0 = ψ(f(x1, . . . , xm)) = f(ψ(x1), . . . , ψ(xm)) = f(φ1, . . . , φm)

So we conclude that φ∗(I(Y )) ⊂ I(X). This means that φ∗ is well defined from Γ(Y ) to Γ(X). (That is, if it
vanishes in Γ(Y ) then it would vanish in Γ(X)) So φ is well defined from X to Y . If P ∈ X, then f(P ) = 0
for all f ∈ I(X). So, for all g ∈ I(Y ), g(φ(P )) = [φ∗(g)](P ) = 0.
FInally we check φ∗ = ψ. FOr any polynomial p(x1, . . . , xm) we have modulo I(X):

φ∗(p) = p ◦ φ = p(φ1, . . . , φm)

and
ψ(p) = ψ(p(x1, . . . , xn)) = p(ψ(x1), . . . , ψ(xn)) = p(φ1, . . . , φm)

You can switch the ψ, p around is because homomorphism....?

�
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Theorem 2.3 (1.7):
Let X and Y be algebraic sets, with coordinate rings Γ(X) and Γ(Y ), respectively. Then X is
isomorphic to Y if and only if Γ(X) is isomorphic to Γ(Y ).
Moreover, if φ : X → Y is an isomorphism, then for any algebraic subset V ⊂ Y then

I(φ−1(V )) = φ∗I(V )

Note that φ∗I(V ) is an ideal of Γ(X) because φ∗ is an isomorphism.

3 Algebraic Geometry Week 3

Note: recall that an algebraic set X is irreducible if and only if its corresponding ideal is prime, which is
true if and only if its corresponding ring Γ(X) is a domain. (aka rings with no zero divisors.)
Note that an algebraic set X is always a union of finitely many irreducible algebraic sets. This union
is unique. (To show this, for any reducible set X, write it as union of two proper subvarieties. If they
are reducible, write them again. Note that this process always stops. If it does not stop, we would have
an infinite descending chain of varieties: X ) X1 ) . . .. This translates to an ascending chain of ideas.
I(X) ⊂ I(X1) ⊂ . . .. This is impossible because C[x1, . . . , xn] is Noetherian.)

Definition 3.1 (1.1.): Let X be an algebraic set. Write X = X1 ∪ . . . ∪ Xr as union of finitely many
irreducible algebraic subset. THen Xi are irreducible components of X.

Definition 3.2 (1.2.): A variety is an irreducible algebraic set.

Definition 3.3 (1.3.): Let X be a variety. The function field K(X) of X is the fraction field of the
coordinate ring Γ(X). An element of K(X) is called a rational function.

Definition 3.4 (1.4.): Let f be rational function on a variety X. Let P ∈ X be a point. then f is defined
at P if and only if there exists expression

f =
p

q

for p, q ∈ Γ(X), q(P ) 6= 0. If f is not defined at P , then P is a pole of f or f has a pole at P .
Note that there is no best representation for any function. You would have to use different versions for
different points.

Theorem 3.1 (1.5):
Let f be a rational function on a variety X. P ∈ X be a point. If there is a representation

f =
p

q

for which q(P ) = 0, p(P ) 6= 0, then P is a pole of f .
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Proof: Choose any representation f = a/b, a, b ∈ Γ(X). Then a/b = q/p yields qp = bq. Since q(P ) =
0, (bp)(P ) = 0. Since p(P ) 6= 0, b(P ) = 0. So denominator of f is always zero at P . So P is a pole.
The only way you have a “stealth” nonpole is both denominator and numerator are zero. �

Definition 3.5 (1.6): Let X be a variety, P ∈ X. The local ring at P is the ring

OP (X) = {f ∈ K(X) | f is defined at P}

It’s pretty easy to show OP (X) is subring of K(X). A local ring is a ring with unique maximal ideal. That
is the set of nonunits is an ideal. Then we would realize that OP (X) is also a local ring whose maximal ideal
MP (X) is:

MP (X) = {f ∈ K(X) | f =
a

b
, a(P ) = 0, b(P ) 6= 0}

Note that a unit of OP (X) is a rational function whose reciprocal is also in OP (X). The units are the ones
where the denominator does not vanish at P , nor the numerator. If the numerator vanish, by shortcut
theorem, the reciproval would have a pole at P .

We also have
MP (X) = I(P )OP (X)

4 Algebraic Geometry Week 4

Definition 4.1 (0.1): Let V be an algebraic variety. A zariski closed subset of V is an algebraic subset of
V . An subset U ⊂ V is zariski open if V − U is zariski closed.

Definition 4.2 (0.2): Let V and W be varities. A rational map from V to W is a function f : U →W for
some nonempty Zariski open subset U ⊂ V , such that for every point P ∈ U , there are rational functions
f1, . . . , fr on V , all defined at P such that

f(Q) = (f1(Q), . . . , fr(Q))

for all Q such that f1(Q), . . . , fr(Q) are all defined.
A rational map is said to be defined at P ∈ V if athere are rational functions f1, . . . , fr on V , all defined at
P such that

f(1) = (f1(Q), . . . , fr(Q))

, for all Q such that f(Q), f1(Q), . . . fr(Q) are all defined.
A rational map is a morphism on a subset V ′ ⊂ V if it is defined at every point of V ′.

Definition 4.3 (0.3): Let U ⊂ V be a Zariski open subset. Then the ring of functions on U is the ring

Γ(U) = {f ∈ K(V ) | f has no poles in U}
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Definition 4.4 (0.4): Let φ : V1 → V2 be a morphism of varieties, and Ui ⊂ Vi be zariski open subsets such
that φ(U1) ⊂ U2. Then there is a C algebra homomorphism φ∗ : Γ(U2)→ Γ(U1) defined by φ∗(f) = f ◦ φ.

Theorem 4.1 (0.5):
Let V be an affine variety, U ⊂ V a nonempty Zariski open subset.
If U = V − V (f) for some f ∈ Γ(V ). Then

Γ(U) = Γ(V )[1/f ] = {p/fr | r ∈ Z, p ∈ Γ(V )}

Theorem 4.2 (0.6. Krull’s Hauptidealsatz):
Let X be a variety of dimension n, and f ∈ Γ(X) a non-constant function. Then every irreducible
componennt of the algebraic set V (f) ⊂ X has dimension n− 1.

Theorem 4.3 (0.7):
Let V and W be two varieties, φ : V → W a rational map. P ∈ V a point where φ is defined. Then
φ∗ introduces an morphism from Oφ(P )(W ) to OP (V ) given as usual by φ∗(p) = p ◦ φ.

Definition 4.5 (0.8): A rational map f : V → W is birational if and only if there is a rational map
g : W → V such that f ◦ g and g ◦ f are both defined, and both equal to the identity function whenever they
are defined.
A map f is said to be dominant if and only if there is no proper closed subset Y ⊂W such that f(V ) ⊂ Y.

Theorem 4.4 (0.9):
Let f : V → W be a dominant rational map of varieties. Then there is a C algebra homomorphism
f∗ : K(W )→ K(V ) of function fields defined by

f∗(p) = p ◦ f

for all p ∈ K(W ). Moreover, f is birational if and only if f∗ is an isomorphism.

Theorem 4.5 (0.10):
Let f : V →W be a birational map with f(P ) = Q, f−1(Q) = P . Then f∗ : K(W )→ K(V ) induces
an isomorphism from OQ(W ) to OP (V ).

Definition 4.6 (0.11): Let A be a domain. P a prime ideal of A. K the fraction field of A. The localization
of A at P is the set

AP = {a
b
| a, b ∈ A, b /∈ P}
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Theorem 4.6 (0.12):
The localization of A at P is a local ring. Recall that a local ring is a ring with a unique maximal
ideal; that is, the set of all non-units is an ideal.

Theorem 4.7 (0.13):
Let A be a noetherian domain, P a prime ideal of A. Then localization AP is noetherian.

5 Algebraic Geometry Week 5

Definition 5.1 (1.1): Let V a variety, let

V0 ( V1 ( V2 ( . . . ( Vn = V

be a chain of maximal length s.t. each Vi is a variety. Then the dimension of V is equal to n. Empty set
does not have a dimension.

Definition 5.2 (1.2): Let D be a domain. Let

V0 ) P1 ) . . . ) Pn = (0)

be chain of maximal length such that each Pi is a prime ideal of D. Then the Krull dimension of D is n. If
no such maximal chain exists, then the Krull dimension of D is infinite.

Theorem 5.1 (1.3):
The dimension of An is n.

Strategy to determine the dimension of an algebraic set.

Definition 5.3 (1.3): Jacobian matrix: a matrix whose rows are ∇fi(P ).
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Definition 5.4 (2.2): Let P be a point on a variety V = V (f1, . . . , dm) ⊂ An. Then P is a smooth point
of V if and only if tha rank of JV (P ) equal n− dimV. If P is not a smooth point of V then it is a singular
point of V .

Theorem 5.2 (2.3):
Let V = V (0) be a subvariety of An. Let P ∈ V be a point. Then dimV = n− 1. And V is smooth
at P if and only if ∇(f)(P ) 6= 0.

Theorem 5.3 (2.4):
Let P be a point on a variety V ⊂ An. Let M = M(P ) ⊂ Γ(V ) be the maximal ideal corresponding
to P . Then

dim(M/M2) + rank(JV (P )) = n

where the dimension on the left hand side is the dimension as a vector space over C. In particular,
the rank of the Jacobian matrix does not depend on the choice of genrators for the ideal of V .

6 Algebraic Geometry Week 6

The Zariski tangent space.
The rowspace of Jacobian matrix is the span of∇fi(P ). This is perpendicular to the nullspace of the Jacobian
matrix, which we just hsowed was isomorphic to M/M2.

Definition 6.1 (1.1): Let V ⊂ An be a variety, P ∈ V a point. Let OP (V ) be the local ring at P , and let
M =MP (V ) be the maximal ideal of OP (V ). The zariski tangent space to V at P is

TP (V ) = (M/M2)∗

This is, TP (V ) is the dual C−vector space to MP (V )/MP (V )2.
The tangent space to V at P is the set

TP (V ) = P + kerJP (V ) = {Q ∈ Qn | Q− P ∈ kerJP (V )}

where JP (V ) is the Jacobian matrix of V at P .
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Theorem 6.1 (1.2):
Let D be a domain, DM the localization of D at a maximal ideal M . For any positive integer n, the
natural inclusion M ↪→M includes an isomorphism

Mn−1/Mn ∼=Mn−1/Mn

where M denotes the ideal of DM generated by M . Particularly, n = 1, n = 2 we have

D/M ∼= DM/M

and
M/M2 ∼=M/M2

7 Algebraic Geometry Week 7

The projective space...

Definition 7.1 (1.1): Let n be a positive integer. Complex projective space Pn is the set of nonzero
(n + 1)−tuples of complex numbers, modulo the equivalence that V ∼ W if and only if v = λw for some
λ ∈ C.

For example, P1 = C ∪ {∞}.
Similar to P1, there is a copy of A2 sitting inside P2, namely (x, y) 7→ [x : y : 1]. Any points [x : y : z] with
z 6= 0 corresponds to the point (x/z, y/z) in A2. So we can disect this field as P2 = A2 ∪ P1.
Note that projective n− space, Pn is just n + 1 copies of An glued together, and in each case, Pn − An is
just a copy of Pn−1.

Definition 7.2 (1.2): An algebraic subset of Pn is a subset X ⊂ Pn. Such that for all i, X ∩ Ui is an
algebraic subset of Ui ∼= An.

Definition 7.3 (1.3): A polynomial f(X0, . . . , Xn) is homogeneous if and only if every term of f has the
same degree.

Theorem 7.1 (1.4):
A subset V ⊂ Pn is algebraic if and only if it is the zero set V (F1, . . . , Fr) of a finite set of homogeneous
polynomials Fi.

Definition 7.4 (1.5): The irrelevant ideal of C[X0, . . . , Xn] is the ideal (X0, . . . , Xn).
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Theorem 7.2 (1.6):
Let n be a positive integer. There is a bijection between set of algebraic subsets of Pn and RRH
ideals of C[x0, . . . , Xn]. RRH stands for “relevant radical homogeneous”. The bijection is given by
X 7→ I(X) and I 7→ V (I).
Note that the irrelevant ideal is the only radical ideal left out of this correspondences. This is because
its zero set is empty, despite not being a unit ideal. There are no points of Pn with all coordiantes
zero!

Definition 7.5 (1.7):
A nonempty projective algebraic set is reducible if and only if it is the union of two proper projective algebraic
subsets. It is irreducible if it is not reducible. An empty set is neither.

Theorem 7.3 (1.8):
A projective algebraic set V is irreducible if and only if the ideal I(V ) is prime.

Definition 7.6 (1.9): Let V ⊂ An be an affine algebraic set, and consider An as the subset x0 6= 0 in
Pn. The proejective closure of V in Pn is defined to be the intersection W of all projective algebraic sets
containing V .

Theorem 7.4 (1.10):
Let V ⊂ An be an affine algebraic set. W ⊂ Pn be its projective closure. If V = V (F ) for some
polynomial F of degree d in C[X1, . . . , Xn], then W = V (f), where f = xd0F (x1/x0, . . . , xn/x0). So
f is the homogenization of F and F is the dehomogenization of f.

Theorem 7.5 (1.11):
Let V be an affine algebraic subset, W its projective closure. Then I(W ) is the ideal generated by
the homogenization of elements of I(V ).

8 Algebraic Geometry Week 8

Definition 8.1 (1.1. Morphism): Let V ⊂ Pn and W ⊂ Pm be projective algebraic sets. A morphism
from V to W is a function f : V → W such that every point P ∈ V , there is a m+ 1 tuple [f0 : f1 . . . : fm]
homogeneous polynomials of the same degree such that fi(P ) 6= 0 for some i and

f(Q) = [f0(Q) : . . . : fm(Q)]

for all Q ∈ V with fi(Q) 6= 0 for some i.
An isomorphism is a morphism with an inverse morphism.

The most important exmaples of projective isomorphisms are projective change of coordinate.
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Definition 8.2 (1.2): Let V ⊂ Pn be a projective variety. The function field K(V ) of V is the field K(U)
where U is any affine piece of V .
That is, U is the affine variety obtained by intersecting V with any standard affine piece of Pn.
Moreover, if P ∈ V is any point, then the local ring of V at P is the local ring OP (U) where U is any affine
piece of V .

Definition 8.3 (1.3): Let V be a projective variety, P ∈ V any point. Then P is a singular point of V if
and only if P is a singular point of U , U being any affine piece of V . P is a smooth point of V othewise. If
all points are smooth we call V smooth.

Definition 8.4 (1.4): Let P be a point on a projective variety V . The zariski tangent space to V at point
p is the zariski tangent space to any affine piece V that contains P . Namely the dual of MP (V )/MP (V )2.
The tangent space to V at P is the projective closure of the tangent space to V at P in any affine piece of
V containing P .

Definition 8.5 (1.5): Let V be a projective variety. THe dimension of V is the dimension of any nonempty
affine piece of V .
We don’t care about homogeneous coordinate rings rn (C[X0, . . . , Xn]/I(V ))

Definition 8.6 (2.1): A curve is an algebraic variety of dimension one. A projective curve is a projective
algebraic variety of dimension one, and an affine curve is an affine algebraic variety of dimension one.

Definition 8.7 (2.2): 2.2. A discrete valuation ring (or DVR, for short) is a Noetherian local ring whose
maximal ideal is principal. A generator for the maximal ideal is called a uniformizing parameter, or uni-
formizer, for short.

Theorem 8.1 (2.3):
Let C ⊂ An be a curve,and P ∈ C a smooth point. Then the local ring OP (C) is a DVR, and any
linear function f whose zero set is not tangent to C at P is a uniformizer for OP (C).
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