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1 Ring theory

Definition (Radical): A radical is an expression involving only +,−,×, /,n√

Note that linear quadratic, cubic (Cardano’s formula) equations can be solvable by radicals. Same with
quartic. How about quintic? Euler, Bezout, Langrage cant solve. Abel finally proved insolvability with
Ruffini. We ask, given quintic, is it solvable radical? Reverse: Suppose radical solution exist, what does the
quintic look like?
There are two main parts of galois theory. The first part is to link a root α, to the smallest field containing
Q, α. The second is linking the field Q(a) to a group. We specifically associate the field extension Q(α)/Q
to the group. Galois theory turns infintie field questions into finite group problem.

1.1 Review for ring theory

Definition 1.1 (Commutative ring with 1): A commutative with 1 is a set R equipped with +,× such
that

• R is an abelian group under + with identity 0

• multiplication is commutative and associative. Also there exists 1 ∈ R such that 1r = r1 = r for all
r ∈ R.

• For all r, s, t in R, r(s+ t) = rs+ rt. (distributive law)

In the following, we use the word ring to mean a commutative ring with 1.

Definition 1.2 (Field): A field F is a commutative ring with 1 such that every elements a ∈ F \ {0} is a
unit. (That is, ab = 1 for some b ∈ F.)
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Definition 1.3 (Integral domain): A ring R is an integral domain if for a, b ∈ R, ab = 0 implies either
a = 0 or b = 0.

For example, Z is an integral domain. The sets Q,R,C,Zp are all fields.

Proposition 1.1:
Every subring of a field is an integral domain.

Definition 1.4 (Ideal): An ideal in a ring R is a subset I containing 0 such that for a, b ∈ I and r ∈ R,
a− b ∈ I and ra ∈ I. (I.e. it “absorbs” all elements and differences are contained.) Note that an ideal is a
subring.

Example: the only ideals of a field F are {0} and F.

Definition 1.5 (PID- Principle Ideal Domain): An integral domain R is a PID if every ideal is generated
by one element. Note that it has to be an integral domain to begin with.

In the following examples, we will list out common properties of Z and F[x] (set of polynomials in x over a
field F.)
Example: Z

• It is an integral domain and the units of Z are ±1.

• Why is Z a PID? Using division algorithm in Z, for a, b ∈ Z with a 6= 0, we can write b = aq + r with
q, r ∈ Z, 0 ≤ r < |a|. So using the division algorithm in Z, we are able to prove that an ideal I of Z is
of the form I = 〈n〉 = nZ. If n > 0 then the generator n is unique. what if n = 0, n < 0?

• Consider all fields containing Z. Their intersection (the smallest field containing Z) is the set of rational
numbers

Q =
{a
b
, a, b ∈ Z, b 6= 0

}
Example: Polynomials of x over a field F Let F be a field. We define

F [x] = {f(x) : a0 + a1x+ a2x
2 + . . .+ amx

m, a1 ∈ F, (0 ≤ i ≤ m)}

• If am = 1, we call f(x) monic. If am 6= 0, the deg(f) is equal to m. deg(0) = −∞.

• for f(x), g(x) ∈ F [x], deg(fg) = deg(f)deg(g). To preserve this degree formula, we define deg(0) = ±∞.
why did we define it as −∞ earlier? Why not ±∞ earlier?

• The set F [x] is an integral domain and the units of F [x] are F ∗ = F \ {0}.

• F [x] is a PID: this can be shown using division algorithm. For f(x), g(x) ∈ F [x], f(x) 6= 0, we can write
g(x) = q(x)f(x)+r(x), with q, r ∈ F [x], deg(r) < deg(f), we define def(0) = −∞. Yes, in here you can
only define it −∞. Using this, we can prove that an ideal I of F [x] is of the form I = 〈f(x)〉 = f(x)F [x].
This shows that F [x] is a pid. If f(x) is monic, then the generator f(x) is unique. why? why must
generator be unique?
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• Now, consider all the fields containing F [x]. Their intersection, which is the smallest field that contains
F [x], is the set of rational functions

F (x) =

{
f(x)

g(x)
: f(x), g(x) ∈ F [x] and g(x) 6= 0

}

Definition 1.6 (Quotient ring): The quotient ring of R modulo I, denoted by R/I, contains elements of
the form r + I, (r ∈ R). The addition and multiplication on R/I are defined by:

(r1 + I) + (r2 + I) = (r1 + r2) + I and (r1 + I)× (r2 + I) = r1r2 + I

For example, for n ∈ Z, we have

Z/〈n〉 = {r = r + 〈n〉, 0 ≤ r < |n|}

For f(x) ∈ F [x], we have

F [x]/〈f(x)〉 = {r(x) = r(x) + 〈f(x)〉,deg(r) < deg(f)}

Theorem 1.2 (First isomorphism theorem):
Let φ : R → S be a ring homomorphism. Then the kernel of φ is an ideal I. Furthermore, there is
an isomorphism

R/I = R/ker(φ)→ imφ, r + I 7→ φ(r)

or equivalently,

• the kernel φ is an ideal of R.

• the image of φ is a subring of S.

• the image of φ is isomorphic to the quotient ring R/ ker(φ).

For example, let F be a field and S be a ring. Let φ : F → S be a ring homomorphism. Since the only ideals
of F are {0} and F , either φ is injective or φ = 0.

Definition 1.7 (Maximal ideal and prime ideal): An ideal I in R is maximal if there does not exist a
ring J such that I ( J ( R. An ideal I in R is prime if I 6= R and ab ∈ I implies a ∈ I or b ∈ I.

Proposition 1.3:
Every maximal ideal is prime. Moreover, in PID, every prime ideal is maximal. ooops, I forgot the
proof.

Example: In Z, 〈n〉 is maximal if and only if n is a prime. In F [x], 〈f(x)〉 is maximal if and only if f(x) is
irreducible.
PLEASE fill in proof for all of those theorems or props.

3



Theorem 1.4:
Let I be an ideal of a ring R, and R 6= I. Then

• I is a maximal ideal if and only if R/I is a field.

• I is a prime ideal if and only if R/I is an integral domain.

1.2 Eisenstein’s criterion

In this section, we apply Gauss’s lemma to prove Eisenstein’s criterion, which is needed in a later chapter.

Proposition 1.5 (Gauss’ lemma for Z[x]):
Let f(x) ∈ Z[x], with deg(f) ≥ 1. If f(x) is irreducible in Z[x] then it is irreducible in Q[x].

Please fill in the proof for Gausses lemma.

Definition 1.8 (Irreducibility): Note that in integral domain D, a polynomial f(x) ∈ D[x] that is neither
the zero polynomial nor a unit in D[x] is said to be irreducible over D if, whenever f(x) is expressed as a
product g(x)h(x), with g(x), h(x) ∈ D[x], then g(x) or h(x) is a unit in D[x].

Remark: The converse of the above is not true. That is, if a function is irreducible in Q, it is possibly
reducible in Z. (Whenever writing it as a((2x/a)+(4/a)) for some a ∈ Q, a will be a unit in Q, so irreducible).
For example, the polynomial 2x+8 is irreducible in Q, but it is not irreducible in Z[x] because 2x+8 = 2(x+4)
and both 2 and x+ 4 are non-units.

Theorem 1.6 (Eisenstein’s criterion Z[x]):
Let f(x) = anx

n + . . . + a0 ∈ Z[x] with n ≥ 1. Let p ∈ Z be prime. If p - an, and p | ai for all
0 ≤ i ≤ n− 1 and p2 - a0, then f(x) is irreducible in Q[x].

Proof: Consider the map Z[x]→ Zp[x] defined by:

f(x) 7→ f(x) = anx
n + an−1x

n−1 + . . .+ a0 (mod p)

where ai ∈ Zp with ai = ai (mod p) for 0 ≤ i ≤ n. Since p - an and p | ai for all 0 ≤ i ≤ n − 1, we
have f(x) = anx

n with an 6= 0. If f(x) is reducible in Q[x], by Gauss’s lemma, it is reducible in Z[x]. Let
f(x) = g(x)h(x) for g(x).h(x) ∈ Z[x] with deg g ≥ 1,deg h ≥ 1. It follows that anx

n = g(x)h(x). Since Zp[x]
is a UFD, WHY is it a UFD and why does it imply that?, we can see that g(x) = bxm and h(x) = cxk for
some b, c ∈ Zp. This means that g(x), h(x) both have the 0 constant in Zp. (that is, the constant term of
those polynomial is 0.) This means the constant terms of both g(x), h(x) are divisible by p, so p2 | a0. This
is a contradiction. Therefore f(x) is irreducible in Q[x].

�
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Example 1.7:
For example, 2x7 + 3x4 + 6x2 + 12 is irreducible over Q[x] by applying eisentein’s criterion for p = 3.

Example 1.8:
Let p be a prime. Let

ζp = e
2πi
p = cos

2π

p
+ i sin

2π

p

be the pth root of 1. It is a root of the pth cyclotomic polynomial:

Φp(x) =
xp − 1

x− 1
= xp−1 + xp−2 + . . .+ x+ 1

Eisenstein’s criterion does not imply irreducibility of Φp(x) immediately. However, we can consider

Φp(x+ 1) = (x+1)p−1
(x)

Φp(x+ 1) =
(x+ 1)p − 1

(x)
= xp−1 +

(
p

1

)
xp−2 +

(
p

2

)
xp−3 + . . .+

(
p

p− 2

)
x1 +

(
p

p− 1

)
∈ Z[x]

Since p is a prime, we know p - 1 and p |
(
p
i

)
for 1 ≤ i ≤ p−1, and p2 -

(
p
p−2
)
. By Eisenstein’s criterion

for Z[x], we know that Φp(x+ 1) is irreducible over Q[x]. This implies that Φp(x) is also irreducible
in Q[x]. Since Φp(x) is primitive, Φp(x) is also irreducible in Z[x]. why does primitive & irreducible
in Q[x] imply irreducible in Z[x]?

why does primitive & irreducible in Q[x] imply irreducible in Z[x]?
The above results can be generalized to unique factorization domains.

Proposition 1.9 (Gauss’ Lemma for PID):
Let R be a principle ideal domain with the field of fractions (definition) F. Let g(x) ∈ R[x] with
deg(g) ≥ 1. If g(x) is irreducible in R[x], then it is irreducible in F [x].

Let R be a principal ideal domain and l ∈ R be irreducible. Then R〈l〉 is a field and R/〈l〉[x] is a unique
factorization domain.Not sure about this
Applying the same proof for the Eisenstein’s criterion of Z[x], we obtain the following result:

Theorem 1.10 (Eisenstein’s criterion for PID):
Let R be a principal ideal domain with the field of fractions F . Let g(x) = bnx

n + bn−1x
n−1 + . . .+

b1x + b0 ∈ R[x] with n ≥ 1. Let ` ∈ R be an irreducible element. If ` - bn, ` | bi for 0 ≤ i ≤ n − 1,
and `2 - b0, then the polynomial g is irreducible in F [x].

Proposition 1.11 (Gauss’ Lemma for UFD):
Let S be a UFD with the field of fractions E. Let h(x) ∈ S[x] with deg(h) ≥ 1. If h(x) is irreducible
in S[x] then it is irreducible in E[x].
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Theorem 1.12 (Eisenstein’s Criterion for UFD):
Let S be a unique factorization domain with field of fractions E. Let h(x) = cnx

n+. . .+c1x+c0 ∈ S[x]
with n ≥ 1. Let l ∈ S be an irerducible element. If l - cn, l | ci for all 0 ≤ i ≤ n− 1 and l2 - c0, then
h(x) is irreducible in E[x].

Proof: Prove by contradiction. If h(x) is reducible in E[x] then by Gauss’ lemma for UFD, there exists
s(x), t(x) ∈ S[x] of degree ≥ 1 such that h(x) = s(x)t(x). We write

s(x) = a0 + a1x+ a2x
2 + . . .+ amx

m

t(x) = b0 + b1x+ b2x
2 + . . .+ bkx

k

where 1 ≤ m, k < n. Since h(x) = s(x)t(x) we have

c0 = a0b0, c1 = a0b1 + a1b0, c2 = a0b2 + a1b1 + a2b0, . . .

Consider the constant term. Since l | c0, we have l | a0b0. Since l is irreducible, l | a0 or l | b0. WLOG say
l | a0. Since l2 - c0, we have l - b0.
If we consider the coefficient of x, since l | c1, we have l | (a0b1 + a1b0). Since l | a0, we have l | a1b0. Since
l - b0, we have l | a1.
By repeating the above argument, the condition on coefficients of h(x) imply that l | ai for all 0 ≤ i ≤ (m−1)
and l - am. Consider the reduction h(x) = s(x)t(x) ∈ S/〈l〉[x]. By the assumption on the coefficient of h,
h(x) = cnx

n. However, since f(x) = s(x)t(x) = amx
m and l - b0, s(x)t(x) contain the term amb0x

m, which
leads to a contradiction (because the m term is supposedly having f as a factor). So h(x) is not reducible
in E[x].

�

2 Field Extensions

2.1 Degree of Extensions

Definition 2.1 (Field extensions): If E is a field containing another field F , then E is a field extension
of F , denoted by E/F .
We note that the notation E/F is NOT a quotient ring, because the field E does not have ideals other
than {0} and E. (Recall that all ideals of a field are either {0} or itself.)

If E/F is a field extension we can view E as a vector space of F .

• addition: if e1, e2 ∈ E then we set e1 + e2 := e1 + e2 (Addition of E)

• scalar multiplication: for c ∈ F , e ∈ E, ce := ce (Multiplication of E)

Definition 2.2: The dimension of E over F (viewed as a vector space) is called the degree of E over F ,
denoted by [E : F ]. If [E : F ] < ∞, then we say that E/F is a finite extension. If [E : F ] = ∞, we say
E/F is an infinite extension. It is important to notice that, the finite/infinite just refers to the degree of
the extension.
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Example 2.1:
Examples: [C : R] = 2 is a finite field extension, since C ∼= R + Ri.

Example 2.2:
Let F be a field. Let

F [x] = {f(x) : a0 + a1x+ . . .+ anx
n where a0, a1, . . . , an ∈ F, n ∈ N ∪ {0}}

Let

F (x) =

{
f(x)

g(x)
, f(x), g(x) ∈ F [x] and g(x) 6= 0

}

Note that F [x], square bracket is polynomials, yet F (x) is the rational functions (i.e. fractions whose de-
nominator and numerators are F (x), polynomials, with the denominator nonzero.)

Then [F (x) : F ] is ∞, an infinite field extension, since {1, x, x2, . . .} are linearly independent over F . Is this
a basis? What is a basis of [F (x) : F ]?
Note that F (x) is indeed a field! But F [x] is not a field.

Theorem:
If E/K and K/F are finite field extensions, then E/F is a finite field extension and that

[E : F ] = [E : K][K : F ]

Particularly, if K is an intermediate field of a finite extension E/F , then [K : F ] | [E : F ].

Proof:
Suppose that [E : K] = m and [K : F ] = n. Let {a1, a2, . . . am} be a basis of E/K and {b1, b2, . . . bn} be a
basis of K/F .
Claim 1: every element of E is a linear combination of {aibj} over F . For e ∈ E, we have

e =

m∑
i=1

kiai, where ki ∈ K

for ki ∈ K we have

ki =

n∑
j=2

ci,jbk, where ci,j ∈ F

Thus

e =

m∑
i=1

n∑
j=1

ci,jbjai.

�

Claim 2: the set {aibj , 1 ≤ i ≤ m, 1 ≤ j ≤ n} is linearly independent over F .
This is because
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suppose that
m∑
i=1

n∑
j=1

ci,jbjai = 0 where ci,j ∈ F

Since
∑n
j=1 ci,jbj ∈ K and {a1, a2, . . . , am} is independent over K, we have

n∑
j=1

ci,jbj = 0.

Since {b1, b2, . . . bn} is independent over F , we have ci,j = 0. This implies that {aibj , 1 ≤ i ≤ m, 1 ≤ j ≤ n}
is a basis for E/F and we have

[E : F ] = [E : K] · [K : F ]

For example, [C : R] = 2. {1, i} is a basis of C/R.

Algebraic and Transcendental extensions

Definition 2.3 (Algebraic vs Transcendental): Let E/F be a field extension and α ∈ E is algebraic
over F is there exists f(x) ∈ F [x] \ {0} such that f(α) = 0. Otherwise we say that α is transcendental
over F .

For example, c
d ∈ Q,

√
2,
√

2 +
√
−2 are algebraic over Q, but e and π are transcendental over Q.

Definition 2.4 (F [α], F (α)): Let E/F be a field extension and α ∈ E. Let F [α] denote the smallest subring
of E containing F and α. Let F (α) be the smallest subfield of E containing F and α. For α, β ∈ E, we
define F [α, β] and F (α, β) similarly.
This notion is similar to F [x], F (x), where the earlier defines the polynomials where as the latter is F (x),
which is the radicals, it is a field.) So the latter F (x) is very large compared to F [x], and we can say that
similarly F (α) is the smallest field that contains F [α].

Definition 2.5 (Simple extensions): If E = F (α) for some α ∈ E, then we say that E is a simple
extension of F.

The degree of the simple extension F (α)/F is either infinite or finite. In this section, we will show this
depends on whether α is transcendental or algebraic.

Definition 2.6 (F homorphism): Let R and R1 be two ring which both contains F . Then a ring homo-
morphism φ : R→ R1 is said to be a F homomorphism if φ |F= 1F . That is, the homomorphism fixes every
element in F .
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Theorem 2.3 (Relationships between F [α], F [x], F (α), F (x) for transcendental α):
Let E/F be a field extension and α ∈ E. If α is transcendental over F , then

F [α] ' F [x], and F (α) ' F (x)

In particular, F [α] 6= F (α).

Proof: Let φ : F (x) → F (a) be the unique F−homomorphism defined by φ(x) = a. Thusm for f(x), g(x) ∈
F [x], g(x) 6= 0, we have

φ(f/g) = f(α)/g(α) ∈ F (α)

Note that since α is transcendental, we have g(α) 6= 0. So the map is well defined. Since F (x) is a field and
ker(φ) is an ideal of F (x), we know that ker(φ) = F (x) or 0. Thus φ = 0 or φ is injective.
Since φ(x) = α 6= 0, we know that φ is injective. Also, since F (x) is a field, im(φ) contains a field generated
by F and α. That is, F (α) ⊆ Im(φ). Thus Im(φ) = F (α) and φ is surjective. It follows that φ is an
isomorphism and we have

F (α) ' F (x), and F [α] ' F [x]

�

Theorem 2.4:
Let E/F be a field extension and α ∈ E. If α is algebraic over F , then there exists a unique monic
irreducible polynomial p(x) ∈ F [x] such that there exists a F− isomorphism

ψ : F [x]/〈p(x)〉 → F [α], ψ(x) = α

From which we conclude F [α] = F (α).

Proof: We first notice that α is algebraic, then the map from the last theorem, f/g 7→ f(α)/g(α) is no longer
well defined because denominator may be 0. Consider the unique F -homomorphism

ψ : F [x]→ F (α)

defined by ψ(x) = α. Thus, for f(x) ∈ F [x], we have ψ(f) = f(α) ∈ F [α]. Since F [x] is a ring, im(ψ)
contains a ring generated by F and α, that is F [α] ⊆ im(ψ). Therefore, im(ψ) = F [α].

Let
I = kerψ = {f(x) ∈ F [x], ψ(f(x)) = f(α) = 0}

Since α is algebraic, I 6= {0}. We have F [x]/I ' Im(ψ), a subring of a field F (α). Thus, F [x]/I is an integral
domain and I is a prime ideal. (since a subring of a field is always an integral domain, and the quotient ring
of a ring by an ideal is ID iff the ideal is prime.) So it follows that I = 〈p(x)〉 where p(x) is irreducible. (Since
F [x] is a PID, prime ideals are maximal. So p(x) is a maximal ideal. This implies that p(x) is irreducible.)
If we assume that p(x) is monic, then it is unique. It follows that

F [x]/〈p(x)〉 ' F [α]
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Since p(x) is irreducible, F [x]/〈p(x)〉 is a field (the ideal is maximal, and quotienting by maximal ideal yields
a field). Thus F [α] is a field. Also, since F (a) is the smallest field containing F [α] we have

F [α] = F (α)

This completes the proof.

�

Definition 2.7 (Minimal polynomial over F ): If α is algebraic over a field F , the unique monic irre-
ducible polynomial p(x) in the previous theorem is called the minimal polynomial of α over F. From the proof
of the above theorem, we see that if f(x) ∈ F [x] with f(α) = 0, then p(x) | f(x). (That is, f(x) ∈ 〈p(x)〉
hence must be some multiple of p(x).)

As a direct result from the two above theorems, we obtain that

Theorem 2.5:
Let E/F be a field extension and α ∈ E. Then

1. α is transcendental over F if and only if [F (α) : F ] is ∞.
2. α is algebraic over F if and only if [F (α) : F ] <∞.
3. Moreover, if p(x) is the minimial polynomial of α over F , we have [F (α) : F ] = deg(p) and
{1, α2, . . . , αdeg(p)−1} is a basis of F (α)/F . (That is why we call [F (α) : F ] the degree of a field
extension.)

Proof: It suffices to prove the =⇒ direction of 1 and 2, as the reverse direction is the contrapositive.

1. =⇒ . From the earlier theorem, if α is transcendental over F , then F (α) ' F (x). In F (x), the
elements {1, x, x2, . . .} are linearly independent over F . Thus [F (α) : F ] is ∞.

2. From the other theorem, if α is algebraic over F , F (α) ' F [x]/〈p(x)〉, with x 7→ α. Note that

F [x]/〈p(x)〉 = {r(x) ∈ F [x],deg(r) < deg(p)}

Is the above by division algo?

thus {1, x2, . . . , xdeg(p)−1} forms a basis of F [x]/〈p(x)〉. It follows that [F (α) : F ] = deg p and
{1, α2, . . . , αdeg(p)−1} forms a basis of F (α) over F .

�

Example: Let p be a prime. Let ζp = e2πi/p, a pth root of 1. We have seen in chapter 1 that ζp is a root of
the pth cyclotomic polynomial Φp(x), which is irreducible. Thus, by the big theorem, Φp(x) is the minimal
polynomial of ζp over Q and

[Q(ζp) : Q] = p− 1

The field Q(ζp) is called the pth cyclotomic extension of Q.

10



Theorem 2.6 (Changing a finite extension to chains of simple extensions):
Let E/F be a field extension. If [E : F ] <∞, there exists α1, α2, . . . αn ∈ E such that

F ( F (α1) ( F (α1, α2) ( . . . ( F (α1, α2, . . . αn) = E

Therefore, if we want to understand a finite extension, it suffices to understand a finite simple exten-
sion.

Proof:
We prove this theorem by induction on [E : F ]. If [E : F ] = 1 then E = F , we are done. Suppose that
[F : F ] > 1, and the statement holds for all field extensions Ẽ/F̃ with [Ẽ : F̃ ] < [E : F ].
Let α1 ∈ E \ F . By the theorem on degrees

[E : F ] = [E : F (α1)] · [F (α1) : F ]

Since [E : F (α1)] > 1, we have [E : F ] > [F (α1) : F ]. By induction hypothesis, there exists α1, α2, . . . , αn
such that

F (α1) ( F (α1)(α2) ( F (α1)(α2, α3) ( . . . ( F (α1)(α2, . . . αn) = E = F (α1, α2, . . . αn)

Hence we have
F ( F (α1) ( F (α1, α2) ( . . . ( F (α1, α2, . . . αn) = E

�

Definition 2.8 (Algebraic vs transcendental field extensions): A field extension E/F is algebraic if
every α ∈ E is algebraic over F . Otherwise it is transcendental.

Theorem 2.7:
Let E/F be a field extension. If [E : F ] <∞, then E/F is algebraic over F .

Proof: The proof basically uses the maximality definition of linearly independence of a basis.
Suppose that [E : F ] = n. For α ∈ E, the elements {1, α, α2, . . . αn} are not linearly independent over F .
So there exists ci ∈ F, 0 ≤ i ≤ n not all 0 such that

n∑
i=0

ciα
i = 0

Then α is a root of the polynomial
∑n
i=0 cix

i ∈ F [x]. So it is algebraic over F . �
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Theorem 2.8 (Algebraic closure is a field):
Let E/F be a field extension. Define

L = {α ∈ E, [F (α) : F ] <∞}

Then L is an intermediate field of E/F.

Proof: If α, β ∈ L, we need to show α± β, αβ, α/β(β 6= 0) ∈ L.
By definition of L, we have [F (α) : F ] <∞ and [F (β) : F ] <∞. Now we consider the field F (α, β). Since the
minimal polynomial of α over F (β) divides the minimal polynomial of α over F . (the minimal polynomial
of α over F , say p(x) ∈ F [x], is also a polynomial over F (β), i.e. p(x) ∈ F (β)[x] such that p(α) = 0. The
min poly on F might be bigger because it is not equipped with β.), we have [F (α, β) : F (β)] ≤ [F (α) : F ].
(this is explained by the min poly over F (β) is a factor of the min poly over F .) Combining this with the
degree of extensions theorem,

[F (α, β) : F ] = [F (α, β) : F (β)] · [F (β) : F ] ≤ [F (α) : F ] · [F (β) : F ] <∞

Since α+ β ∈ F (α, β), F (α+ β) is a subfield of F (α, β). it follows that

[F (α+ β) : F ] ≤ [F (α, β) : F ] <∞

This says α+ β ∈ L. Similarly, α− β, αβ, α/β(β 6= 0) ∈ L. This shows that L is a field. �

Definition 2.9 (Algebraic closure): Let E/F be a field extension. The set

L = {α ∈ E, [F (α) : F ] <∞}

is called the algebraic closure of F in E. Recall the lattice? Is it the smallest field that contains all the
algebraic numbers over F?

Definition 2.10 (Algebraically closed): A field F is algebraically closed if for any algebraic extension
E/F , E = F . For example, C is algebraically closed but R is not.

Example: By the fundamental theorem of algebra, C is algebraically closed, and C is the algebra closure of
R in C and we have [C : R] = 2.
Example: Let Q be the algebraic closure of Q in C. That is,

Q = {α ∈ C, α is algebraic over Q}

since ζp ∈ Q, we have
[Q : Q] ≥ [Q(ζp) : Q] = p− 1

since p → ∞, we have [Q : Q] = ∞. We have seen that that in a previous theorem, if E/F is finite, then
E/F is algebraic, this example show that algebraic extensions does not need to be finite. It is an algebraic
extension because everything in Q is algebraic over Q. So the theorem: finite extension implies algebraic
extension, its converse is not true.
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Splitting Field

Definition (Splits over): Let E/F be a field extension. We say f(x) ∈ F [x] splits over E if E contains
all roots of f(x), that is, f(x) is a product of linear factors in E[x].

Definition (Splitting field): Let Ẽ/F be a field extension, f(x) ∈ F [x], and F ⊆ E ⊆ Ẽ. If

• f(x) splits over E

• there is no proper subfield of E such that f(x) splits over

Then we say that E is a splitting field of f(x) ∈ F [x] in Ẽ. An intuition of this is that a splitting field is
the smallest field extension such that the polynomial splits.

Existence of splitting fields

To show the existence of a splitting filed of f(x), we first find a field extension of F which contains at least
one root of f(x).

Theorem (3.1.1):
Let p(x) ∈ F [x] be irreducible. The quotient ring F [x]/〈p(x)〉 is a field containing F and a root of
p(x).

Proof: Since p(x) is irreducible, the ideal I = 〈p(x)〉 is maximal. Thus E = F [x]/I is a field. Consider the
map

ψ : F → E, a 7→ a+ I

Since F is a field and ψ 6= 0, ψ is injective. Thus, by identifying F with ψ(F ), and F can be viewed as a
subfield of E.
Claim: Let α = x+ I ∈ E, then α is a root of p(x).
Write

p(x) = a0 + a1x+ . . .+ anx
n = (a0 + I) + (a1 + I)x+ . . .+ (an + I)xn ∈ E[x]

We have

p(α) = (a0 + I) + (a1 + I)α+ (a2 + I)α2 + . . .+ (an + I)αn

= (a0 + I) + (a1 + I)(x+ I) + (a2 + I)(x+ I)2 + . . .+ (an + I)(x+ I)n

= (a0 + a1x+ . . .+ anx
n) + I ( since ((x+ I)i = xi + I(0 ≤ i ≤ n)))

= p(x) + I = 0 + I = I

Thus α = x+ I ∈ E is a root of p(x).

�
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Theorem (3.1.2. (Kronecker)):
Let f(x) ∈ F [x]. There exists a field E containing F such that f(x) splits over E.

Proof: We prove this theorem by induction on deg(f). If deg(f) = 1, then E = F and we are done. Suppose
deg(f) > 1 and the statement holds for all g(x) with deg(g) < deg(f). (g(x) is not necessarily in F [x].) We
write f(x) = p(x)h(x) where p(x), h(x) ∈ F [x] and p(x) is irreducible. (It is possible h(x) has degree 0.)
By the theorem 3.1.1., (Using irreducible polynomial p(x)) there exists a field K such that F ⊆ K and K
containing a root of p(x), say α. Thus

p(x) = (x− α)q(x) and f(x) = (x− α)q(x)h(x)

where q(x) ∈ K[x]. We also see that all of (x− α),h(x),q(x) ∈ K[x].
Since deg(hq) < deg(f), by induction, there exist a field E containing K over which h(x)q(x) splits. Since
α ∈ K, we also have (x− α) ∈ E[x]. So all the factors split in E. It then follows that f(x) splits over E. �

Theorem (3.1.3):
Every f(x) ∈ F [x] has a splitting field, which is a finite extension of F .

Proof: For f(x) ∈ F [x], by Theorem 3.1.2, there exists a field extension E/F such that f(x) splits, say
α1, . . . , αn are roots of f(x) in E. Now, consider F (α1, . . . , αn). This is the smallest subfield of E containing
all roots of f(x). This means f(x) does not split over any proper subfield of it. This means that F (α1, . . . , αn)
is the splitting field of f(x) in E. (that is, if you make a strictly smaller subfield, it wont contain all the
roots anymore, so it is indeed the splitting field). Also, since αi are all algebraic, it means F (α1, . . . , αn)/F
is finite.

�

Uniqueness of Splitting fields

We have seen from theorem 3.1.3 that for a fixed field extension E/F , a splitting field of f(x) ∈ F [x] in E
is of the form F (α1, . . . , αn) such that αi are the roots of f(x) in E. This means that the splitting field of
f(x) is unique within E. The question is: if we change E/F to a different field extension, for example Eq/F ,
what is the relation between the splitting field of f(x) in E and the one in E1?
What are some examples of having two field extensions E1, E2 of F , each has a different splitting field?

Definition (Extending the homomorphism): Let φ : R → R1 be a ring homomorphism, and
Φ : R[x]→ R1[x] be the unique ring homomorphism satisfying Φ |R= φ and Φ(x) = x. In this case, we say
that Φ extends φ.

Basically it is the unique homomorphism of the polynomial rings that comes from the
homomorphism of the rings.

More generally, if R ⊆ S, and R1 ⊆ S1, and Φ : S → S1 is a ring homomorphism with Φ |R= φ, we say Φ
extends φ.
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Theorem (3.2.1):
Let φ : F → F1 be an isomorphism of fields and f(x) ∈ F [x]. Let Φ : F [x] → F1[x] be the unique
ring homomorphism which extends φ. Let f1(x) = Φ(f(x)) and E/F and E1/F1 be splitting fields of
f(x) and f1(x) respectively. Then there exists an isomorphism ψ : E → E1 which extends φ.

Proof: We prove this theorem by induction on [E : F ]. If [E : F ] = 1, then f(x) is a product of linear factors
in F [x], so is f1(x) in F1[x]. Thus E = F and E1 = F1. Take ψ = φ and we are done.

Now, suppose [E : F ] > 1 and the statements is true for all field extension Ẽ/F̃ with [Ẽ : F̃ ] < [E : F ].
Let p(x) ∈ F [x] be an irreducible factor of f(x) with deg(p) ≥ 2, and let p1(x) = Φ(p(x)) (such p(x) exists.
Because if all irreducible factors of f(x) are of degree 1. Then [E : F ] = 1). Let α ∈ E and α1 ∈ E1 be roots
of p(x) and p1(x) respectively. From theorem 2.2.2, we have an F isomorphism

F (α) ' F [x]/〈p(x)〉, α 7→ x+ 〈p(x)〉

Similarly, there is an F1 isomorphism

F1(α1) ' F1[x]/〈p1(x)〉, α1 7→ x+ 〈p1(x)〉

Now, consider the isomorphism Φ : F [x]→ F1[x] which extends φ. Since p1(x) = Φ(p(x)), there exists a field
isomorphism

Φ̃ : F [x]/〈p(x)〉 → F1[x]/〈p1(x)〉, x+ 〈p(x)〉 7→ x+ 〈p1(x)〉

which extends φ.
It follows there exists a field isomorphism

φ̃ : F (α)→ F1(α1), α 7→ α1

which extends φ.
Since deg(p) ≥ 2, [E : F (α)] < [E : F ], since E (resp. E1) is the splitting field of f(x) ∈ F (α)[x] (resp.
f1(x) ∈ F1(α1)[x]) over F (α) (resp. F1(α1)). By induction, there exists ψ : E → E1 which extends φ. Thus
ψ also extends φ.

Basic idea is:
(found a set where the statements work in a smaller degree. That is, the F, F1 being the F (α),F1(α) resp, and
with E,E1 still being their splitting fields of polynomials in the polynomial rings of those respective fields,
F (α)[x],F1(α)[x] resp. So we apply induction with the setting where the extension is of smaller number.)�

Corollary (3.2.2.):
Any two splitting fields of f(x) ∈ F [x] over F are F−isomorphic. Thus, we can now refer to “the”
splitting field of f(x) over F .

Proof: Let φ : F → F be the identity map. Apply Theorem 3.2.1. �
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Degree of Splitting fields

Theorem (3.3.1):
Let F be a field and let f(x) ∈ F [x] with deg(f) = n ≥ 1. If E/F is the splitting field of f(x), then
[E : F ] | n!

Proof: We prove this theorem by induction on deg(f). If deg(f) = 1, then choose E = F we have [E : F ] | 1!.
Suppose deg(f) > 1, then the statement holds for all g(x) with deg(g) < deg(f) (though g(x) is not
necessarily in F [x].) We have two cases:

1. Case I. If f(x) ∈ F [x] is irreducible and α ∈ E is a root of f(x), then by theorem 2.2.2 :

F (α) ' F [x]/〈f(x)〉, and [F (α) : F ] = deg(f) = n

we write f(x) = (x− α)g(x) ∈ F (α)[x] with g(x) ∈ F (α)[x]. Since E is the splitting field of g(x) over
F (α) and deg(g) = n− 1, by induction, [E : F (α)] | (n− 1)!. Since [E : F ] = [E : F (α)][F (α) : F ], it
follows that [E : F ] | n!.

2. If f(x) is not irreducible, write f(x) = g(x)h(x) with g(x), h(x) ∈ F [x] with deg(g) = m,deg(h) = k,
m + k = n and 1 ≤ m, k < n. Let K be the splitting field of g(x) over F . Since deg(g) = m, by
induction, [K : F ] | m!. Since E is the splitting field of h(x) over K and deg(h) = k, by induction,
[E : K] | k!. This, [E : F ] | m!k!, which is a factor of n! (since n!/m!k! =

(
n
m

)
∈ Z.)

�

More Field Theory

This chapter, we introduce more field theory, our focus is to understand difference between fields of charac-
teristic 0 and of characteristic p.

Prime Fields

Definition (Prime Fields): The prime field of a field F is the intersection of all subfields of F .

Theorem (4.4.1.):
If F is a field, then its prime fields is isomorphic to either Q or Zp for some prime p.

Proof: Let F1 be a subfield of F . Consider the ring map:

χ : Z→ F1, n→ n · 1 where 1 ∈ F1 ⊆ F

Let I = kerχ be the kernel of χ. Since Z/I ' imχ(by the first isomorphism theorem), a subring of F1, it is
an integral domain. Thus I is a prime ideal. Two cases:

• If I = 〈0〉, then Z ⊆ F1. Since F1 is a field

Q = Frac(Z) ⊆ F1
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• If I = 〈p〉, then by first isomorphism theorem

Zp = Z/〈p〉 ∼= imχ ⊆ F1

�

Definition: Given a field F , if its prime field is isomorphic to Q, (respectively Zp), we say F has charac-
teristic 0, (respectively p), denoted by ch(F ) = 0 (resp. ch(F ) = p).

Note that if ch(F ) = p then, for a, b ∈ F ,

(a+ b)p = ap + bp

Proposition (4.1.2):
Let F be a field with ch(F ) = p, and let n ∈ N. Then the map ψ : F → F given by u 7→ up

n

is an
injective Zp homomorphism of fields. If F is finite, then ψ is a Zp isomorphism of F .

Formal Derivatives and Repeated Roots

Definition 2.11: If F is a field, then the monomials {1, x, x2, . . .} form an F basis of F [x]. Define the linear
operator D : F [x]→ F [x] by D(1) = 0 and D(xi) = ixi−1, i ∈ N. Thus, for

f(x) = a0 + a1x+ a2x
2 + . . .+ anx

n, ai ∈ F

we have
D(f)(x) = a1 + 2a2x+ . . .+ nanx

n−1

Note that

• D(f + g) = D(f) +D(g)

• Leibniz Rule: D(fg) = D(f) · g + f ·D(g).

We call D(f) = f ′ the formal derivative of f .

Theorem (4.2.1):
Let F be a field and f(x) ∈ F [x].

1. If ch(F ) = 0, then f ′(x) = 0 if and only if f(x) = c for some c ∈ F.
2. If ch(F ) = p, then f ′(x) = 0 if and only if f(x) = g(xp) for some g(x) ∈ F [x].

Proof:

1. ⇐= Is clear.

=⇒ For f(x) = a0 + a1x + a2x
2 + . . . + anx

n, f ′(x) = a1 + 2a2x + . . . + nanx
n−1 = 0 implies that
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iai = 0 for 1 ≤ i ≤ n. Since ch(F ) = 0, we know i 6= 0. So ai = 0 for i ≥ 1. Thus, f(x) = a0 ∈ F.
2. ⇐= Write g(x) = b0 + b1x+ . . .+ bmx

m ∈ F [x]. Then

f(x) = g(xp) = b0 + b1x
p + b2x

2p + . . .+ bmx
pm

Thus,
f ′(x) = pb1x

p−1 + 2pb2x
2p−1 + . . .+ pmbmx

pm−1

Since Ch(F ) = p we have f ′(x) = 0.

=⇒ For f(x) = a0 + a1x + a2x
2 + . . . + anx

n, f ′(x) = a1 + 2a2x + . . . + nanx
n−1 = 0 implies that

iai = 0 for 1 ≤ i ≤ n. Since ch(F ) = p, iai = 0 implies ai = 0 unless p | i. Therefore

f(x) = a0 + apx
p + a2px

2p + . . .+ ampx
mp = g(xp)

where g(x) = a0apx+ a2px
2 + . . .+ ampx

m ∈ F [x].

�

Definition (Repeated root): Let E/F be a field extension and f(x) ∈ F [x]. We say that α ∈ E is a
repeated root of f(x) if f(x) = (x− α)2g(x) for some g(x) ∈ E[x].

Theorem (4.2.2. ):
Let E/F be a field extension, f(x) ∈ F [x] and α ∈ E. Then α is a repeated root of f(x) if and only
if (x− α) divides both f and f ′, that is, (x− a) | gcd(f, f ′).

Proof:

• =⇒ Suppose that f(x) = (x− α)2g(x), then

f ′(x) = 2(x− α)g(x) + (x− α)2g′(x) = (x− α)(2g(x) + (x− α)g′(x))

• ⇐= Suppose that (x− α) divides both f and f ′. Write f(x) = (x− α)h(x), h(x) ∈ E[x].

Then
f ′(x) = h(x) + (x− α)h′(x)

f ′(α) = 0 imiplies h(α) = 0. Therefore (x − α) is a factor of h(x) and f(x) = (x − α)2g(x) for some
g(x) ∈ E[x].

�

Corollary (4.2.3):
Let F be a field and f(x) ∈ F [x]. Then f(x) has no repeated root in any extension of F if and only
if gcd(f, f ′) = 1.
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Remark: we notice that the condition of repeated roots depend on the extensions of F while the gcd
condition involves only F. That is , gcd(f, f ′) 6= 1 if and only if (x− α) | gcd(f, f ′) for α in some extension
of F . By theorem 4.2.2., this result follows.

Finite Fields.

Notation: Given a field F , let F ∗ = F \ {0} be the multiplicative group of nonzero elements of F .

Proposition (4.3.1.):
If F is a finite field, then ch(F ) = p for some prime p and |F | = pn for some n ∈ N.

Proof: Since F is a finite filed, by theorem 4.1.1. its prime field is Zp. Since F is a finite dimensional vector
space over Zp, we have F ∼= Zp × Zp × . . .× Zp. hence |F | = pn. �

Theorem (4.3.2.):
Let F be a field and G a finite subgroup of F ∗. Then G is a cyclic group. In particular, if F is a
finite field, then F ∗ is a cyclic group.

Proof: WLOG, we can assume that G 6= {1}. Since G is a finite abelian group,

G ∼= Z/n1Z× Z/n2Z× . . .× Z/nrZ

where n1 > 1 and n1 ≤ n2 ≤ . . . nr. Since nr(Z/n1Z × Z/n2Z × . . . × Z/nrZ) = 0, it follows that every
u ∈ G is a root of xnr−x ∈ F [x]. Since the polynomial has at most nr distinct roots in F , we have r = 1 and
G ∼= Z/nrZ. �

Here: a little bit confused.
By taking u to be a generator of the multiplicative group of F ∗, we have

Corollary (4.3.3.):
If F is a finite field, then F is a simple extension of Zp, that is, F = Zp(u) for some u ∈ F.

Theorem (4.3.4.):

1. If F is a finite field with |F | = pn if and only if F is a splitting field of xp
n − x over Zp.

2. Let F be a finite field with |F | = pn. Let m ∈ N with m | n. Then F contains a unique subfield
K with |K| = pm.
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Proof:

1. =⇒ : If |F | = pn, then |F ∗| = pn − 1. Thus every u ∈ F ∗ satisfies up
n−1 = 1, and thus is a root of

x(xp
n−1 − 1) = xp

n − x ∈ Zp[x]. Since 0 ∈ F is also a root of xp
n − x, the polynomial xp

n−x has pn

distinct roots in F . That is it splits over F . Thus F is a splitting field of xp
n − x over Zp.

⇐= Suppose that F is a splitting field of f(x) = xp
n−x over Zp. Since ch(F ) = p, we have f ′(x) = −1.

Since gcd(f, f ′) = 1, by corollary 4.2.3., f(x) has pn distinct roots in F . Let E be the set of all roots of
f(x) in F . Let ϕ : F → F be given by u 7→ up

n

. For u ∈ F , u is a root of f(x) if and only if ϕ(u) = u.
Since the condition is closed under addition, subtraction, multiplication and division, the set E is a
subfield of F of order pn, which contains Zp. (Since all u ∈ Zp satisfy up = p and thus up

n

= u). Since
F is a splitting field, it is generated over Zp by the roots of f(x), that is, the elements of E. Thus
F = Zp(E) = E.

2. We recall
xab − 1 = (xa − 1)(xab−a + xab−2a + . . .+ xa + 1)

If n = mk, then we would have

xp
n

− x = x(xp
n−1 − 1) = x(xp

m−1 − 1)g(x) = (xp
m−x)g(x)

for some g(x) ∈ Zp[x].

Since (xp
n − x) splits over F , so does (xp

m−x). Let

K = {u ∈ F : up
m

− u = 0}

Then |K| = pm since roots of xp
m − x are distinct. Also, by (1),K is a field. Note that if K̃ ⊆ F be

any field with |K̃| = pm, then K̃ ⊆ K Why must this be a subfield. So K̃ = K. Thus we see that a
subfield K of F with |K| = pm is unique.

�

As a direct consequence of theorem 4.3.4. and corollary 3.2.2. we have

Corollary (4.3.5.E.H.Moore):
Let p be a prime and n ∈ N. Then any two finite fields of order pn are isomorphic. We denote it by
Fpn .

Separable Polynomials

Definition (Separable over): Let F be a field and f(x) ∈ F [x]\{0}. If f(x) is irreducible, we say f(x) is
separable over F if it has no repeated root in any extension of F . In general, we say f(x) is separable over
F is each irreducible factor of f(x) is separable over F .

Examples

• f(x) = (x− 4)9 is separable in Q[x].

• Consider the polynomial f(x) = xn − a ∈ F [x] with n ≥ 2.

We recall corollary 4.2.3 which states that if gcd(f, f ′) = 1, then f(x) has no repeated root in any
extension of F , so f(x) is separable.
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If a = 0 the only irreducible factor of f is x. Since gcd(x, x′) = 1, f(x) is separable. Now we assume
a 6= 0. Now f ′(x) = nxn−1. Thus the only irreducible factor of f ′(x) is x, provided that n 6= 0.

1. If ch(F ) = 0, since x - f(x), we have gcd(f, f ′) = 1. Then f(x) is separable.

2. If ch(F ) = p, and gcd(n, p) = 1, since x - f(x), gcd(f, f ′) = 1. hence f(x) is separable.

3. If ch(F ) = p, consider f(x) = xp − a. Since f ′(x) = pxp−1 = 0, we have gcd(f, f ′) 6= 1. However,
it is still possible that all irreducible factors l(x) of f(x) has the property that gcd(l, l′) = 1. To
decide if f(x) is separable, we need to find its irreducible factors first. Define

F p = {bp, b ∈ F} which is a subfield of F

(a) Case I: if a ∈ F p, say a = bp, for some b ∈ F , then

f(x) = xp − bp = (x− b)p ∈ F [x]

which is reducible. Since each irreducible factor of f(x) is linear, it is separable. Thus f(x)
is separable.

(b) Case II: Suppose that a /∈ F p.
Claim: f(x) = xp − a is irreducible in F [x].

Write xp − a = g(x)h(x) where g, h ∈ F [x] are monic polynomials. Let E/F be an extension
where xp − a has a root, say β ∈ E. Note that since a = βp /∈ F p, we have β /∈ F. We have

xp − a = xp − βp = (x− β)p

Thus, g(x) = (x− β)r and h(x) = (x− β)s for some r, s,∈ N ∪ {0}. r + s = p. Write

g(x) = xr − rβxr−1 + . . .

Then rβ ∈ F. Since β /∈ F , as an element of F , we have r = 0. (If r 6= 0, then r−1 ∈ F
and r−1rβ = β ∈ F , a contradiction.) Thus as an integer, r = 0 or r = p, It follows either
g(x) = 1 or h(x) = 1 in F [x]. Therefore f(x) is irreducible.

Since f(x) is irreducible, and f(x) = (x− β)p ∈ E[x], it is not separable. In this case, since
all roots of f(x) are the same, we say f(x) is purely inseparable.

It is good you revisit the proof

Definition (Perfect): A field is perfect if every (irreducible) polynomial r(x) ∈ F [x] is separable over F .
What does the red in the bracket mean

Theorem (4.4.1.):
Let F be a field.

• If ch(F ) = 0 then F is perfect.

• If ch(F ) = p and F p = F then F is perfect.

Proof:
Let r(x) ∈ F [x] be irreducible. Then gcd(r, r′) = 1 if r′ 6= 0, (Why is the first implication true?) and
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gcd(r, r′) 6= 1 if r′ = 0.
Suppose that r(x) is not separable. Then by corollary 4.2.3., gcd(r, r′) 6= 1. Thus r′(x) = 0.

• If ch(F ) = 0, then from theorem 4.2.1.(1), r′(x) = 0 implies r(x) = c ∈ F . This is contradiction since
deg(r) ≥ 1. Thus r(x) is separable and F is perfect.

• If ch(F ) = p, then from theorem 4.2.1.(2), r′(x) = 0 implies that:

r(x) = a0 + a1x
p + a2x

2p + . . .+ amx
mp, ai ∈ F

Since F = F p, we can write ai = bpi for bi ∈ F. Thus

r(x) = bp0 + bp1x
p + b2px

2p + . . .+ bpmx
mp = (b0 + b1x+ b2px

2 + . . .+ bmx
m)p

This is a contradiction since r(x) is irreducible. Thus r(x) is separable and F is perfect.

�

Remark: Let ch(F ) = p and F p 6= F . (e.g.F = Fp(x)). If we take a ∈ F \ F p, then the polynomial xp − a is
purely inseparable. So if ch(F ) = p, F is perfect if and only if F p = F.

Corollary (4.4.2.):
Every finite field is separable.

Proof: Every finite field F = Fpn is the splitting field of xp
n − x over Fp for some prime p and n ∈ N. Thus

for every a ∈ F ,

a = ap
n

= (ap
n−1

)p

Since ap
n−1 ∈ F, F = F p.

�

The Sylow Theorems

Review of Group Actions

In PM347, we saw the complete classifications of finite abelian groups. The Sylow theorems serve as a step
towards understand arbitrary finite groups, not just the abelian ones.

Definition (Action): An action of a group G on a set S is a function G× S → S, (g, x)→ gx, such that
for all x ∈ S, g1, g2 ∈ G, we have ex = x, and g1(g2x) = (g1g2)x.
If G acts on S, we denote the orbit of x as G · x = {gx : g ∈ G}.
We denote the stabilizer of x as: Gx = {g ∈ G : gx = x}. The stabilizer is a subgroup of G, we have
|G · x| = [G : Gx]. Note that in here [H : G] = |H|/|G| is the subgroup index.

Example
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Let G be a group acting on itself by conjugation. (g, x) = gxg−1. Then, for x ∈ G,

CG(x) = Gx = {g ∈ G : g ∈ G : gxg−1 = x}

is the centralizer of x. That is CG(x) depends on the x. They are the group elements that fix x by applying
above.
Let Z(G) be the center of G, that is, Z(G) = {g ∈ G : gxg−1 = x,∀x ∈ G}. The center is in CG(x) for every
single x.
So, for x ∈ G, we have |G · x| = 1 if and only if G · x = {x}, if and only if x ∈ Z(G). (so for y ∈ G, yxy−1 =
x =⇒ xy−1x−1 = y−1, so the orbit only contains one element. So that x is in the center.) Therefore, we
have the following class equations for G:

|G| = |Z(G)|+
m∑
i=1

[G : CG(xi)]

where xi ∈ G \ Z(G), the orbits G · xi = {gxig−1 : g ∈ G} are distinct conjugacy classes of G and
|G · xi| = [G : CG(xi)] > 1 for each i.
The above example is intersting, maybe review?

Lemma (5.1.1.):
Given a prime p, let G be a group of order pn which acts on a finite set S. Let

S0 = {x ∈ S | gx = x, ∀g ∈ G}

Then we have |S| = |S0| (mod p)

Proof: For x ∈ S, |G · x| = 1 if and only if x ∈ S0. Thus S can be written as disjoint union

S = S0 ∪G · x0 ∪ . . . ∪G · xm

with |G · xi| > 1,∀i. Thus
|S| = |S0|+ |G · x1|+ . . .+G · xm

Since |G · xi| > 1, and |G · xi| = [G : Gxi ] divides |G| = pn, so p | |G · xi| for all i. So |S| = |S0| (mod p).

�

Theorem (5.1.2 Cauchy):
Let p be a prime. Let G be a finite group. If p | |G| then G contains an element of order p.

Proof: Define
S = {(a1, a2 . . . , ap) : ai ∈ G and a1a2 . . . ap = e}

Since ap is uniquely determined by a1, a2, . . . , ap−1, if |G| = n, we have |S| = np−1. Since p | n, we have
|S| ≡ 0 (mod p). Let the group Zp act on S by cyclic permutation. That is, for k ∈ Zp,

k(a1, a2, . . . , ap) = (ak+1, ak+1, . . . , ap, a1, . . . , ak)
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One can verify that this action is well defined. Also (a1, a2, . . . , ap) ∈ S0 if and only if a1 = a2 = . . . = ap.
(That is because, all permutations fix them.) Clearly, (e, e, . . . , e) ∈ S0 and hence |S0| ≥ 1. By lemma 5.1.1.,
we have |S0| ≡ |S| ≡ 0 (mod p). Since |S0| ≥ 1, |S0| ≡ 0 (mod p), we have |S0| ≥ p. Thus there exists a 6= e
such that (a, a, . . . , a) ∈ S0. Which implies ap = e. Since p is a prime, the order of a is p.

�

The Sylow Theorems

Definition (P group): Let p be a prime. A group in which every element has order of a non-negative
power of p called p group.

Corollary (5.2.1):
As a corollary of 5.1.2..
A finite group G is a p group if and only if |G| is a power of p.
I dont understand why this follows?
=⇒ : Suppose that G is a p group. This means that every element has order of a nonnegative power
of p. Now suppose towards contradiction that |G| has a factor, prime, q, then by Cauchy’s, there is
an element with order q. Contradiction.
⇐= : If |G| is a power of p, then note that the order of every element is a factor of |G| (consider

the cyclic group generated by the element and by Lagrange’s theorem), so every element has order
of power of p.

Lemma (5.2.2.):
The center Z(G) of a non-trivial finite p group G contains more than one element.

Definition: Since G is a p group, by corollary 5.2.1., |G| is a power of p. We recall the class equation of G:

|G| = |Z(G)|+
m∑
i=1

[G : CG(xi)]

where [G : CG(xi)] > 1. Since |G| is a power of p, [G : CG(xi)] | [G] ans [G : CG(xi)] > 1, we see that
p | [G : CG(xi)]. It follows that p | Z(G). Since |Z(G)| ≥ 1, Z(G) has at least p elements.
We recall that if H is a subgroup of a group G, then

NG(H) = {g ∈ G : gHg−1 = H}

is the normalizer of H in G. Particularly, H / NG(H).

Lemma (Lemma 5.2.3.):
If H is a p− subgroup of a finite group G, then [NG(H) : H] ≡ [G : H] (mod p).
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Proof: Let S be a set of all left cosets of H in G and let H act on S by left multiplication. Then |S| = [G : H].
For x ∈ G, we have

xH ∈ S0 ⇐⇒ hxH = xH,∀h ∈ H
⇐⇒ x−1hxH = H,∀h ∈ H
⇐⇒ x−1Hx = H, this holds since above holds equality for all h ∈ H

the above becomes x−1HxH = H

⇐⇒ x ∈ NG(H)

Thus |S0| is the number of cosets xH with x ∈ NG(H), and hence |S0| = [NG(H) : H].
By lemma 5.1.1.,

[NG(H) : H] = |S0| ≡ |S| = [G : H] (mod p)

�

Corollary (5.2.4):
Let H be a p− subgroup of a finite group G. If p | [G : H], then p | [NG(H) : H] and NG(H) 6= H.

Proof: Since p | [G : H], by Lemma 5.2.3., we have

[NG(H) : H] ≡ [G : H] ≡ 0 (mod p)

Since p | [NG(H) : H] and [NG(H) : H] ≥ 1, we have [NG(H) : H] ≥ p. Thus NG(H) 6= H.

�

Now we recall Cauchy’s Theorem that states that if p | |G|, then G contains an element a of order p. Thus
|〈a〉| = p. The First Sylow Theorem can be viewed as a generalization of Cauchy’s Theorem.

Theorem (5.2.5. First Sylow Theorem):
Let G be a group of order pnm, p is a prime, n ≥ 1, gcd(p,m) = 1. Then G contains a subgroup
of order pi for all 1 ≤ i ≤ n. Moreover, every subgroup of G of order pi (i < n) is normal in some
subgroup of order pi+1.

Proof: We prove this theorem by induction.
Base case: For i = 1, since p | |G|, by Theorem 5.1.2 (Cauchy), G contains an element a order p. So
|〈a〉| = p. (The statement about the normal subgroup holds trivially.)

Inductive step: Suppose that the statement holds for some 1 ≤ i < n, say H is a subgroup of G of order pi.
Then p | [G : H]. (WHY?). We have seen in proof of 5.2.4. that p | [NG(H) : H] and [NG(H) : H] ≥ p. By
Theorem 5.1.2. NG(H)/H contains a subgroup of order p. Such a group is of the form H1/H where H1 is a
subgroup of NG(H) containing H. Since H /NG(H), we have H /H1. Finally, |H1| = |H||H1/H| = pi · p =
pi+1.
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not quite understand, should revisit. �

Definition (Sylow p subgroup): A subgroup P of a group G is said to be a Sylow P subgroup of G if
P is a maximal P group of G. That is if P ⊆ H ⊆ G with H being a p group, then P = H.

Now, as a corollary to theorem 5.2.5., we have the following corollary

Corollary (5.2.6.):
Let G be a group of order pnm, where p is a prime, n ≥ 1, gcd(p,m) = 1. Let H be a p subgroup of
G. Then

• H is a Sylow p subgroup if and only if |H| = pn.

• Every conjugate of a Sylow p subgroup is a sylow p subgroup.

• If there is only one Sylow p subgroup P , then P /G. What would happen if there are two such
subgroups?

Theorem (5.2.7. Second Sylow Theorem):
If H is a p subgroup of a finite group G, and P is any Sylow p subgroup of G, then there exists g ∈ G
such that H ⊆ gPg−1. In particular, any two Sylow p subgroups of G are conjugate.

Proof: Let S be the set of all left cosets of P in G. Let H act on S by left multiplication. By Lemma 5.1.1.,
we have |S0| ≡ |S| = [G : P ] (mod p). Since p - [G : P ], we have |S0| 6= 0. Thus there exists xP ∈ S0 for
some x ∈ G. Note that

xP ∈ S0 ⇐⇒ hxP = xP,∀h ∈ H
⇐⇒ x−1hxP = P,∀h ∈ H
⇐⇒ x−1Hx ⊆ P
⇐⇒ H ⊆ xPx−1

If H is a Sylow p subgroup, then |H| = |P | = |xPx−1|. Thus H = xPx−1. �

Theorem (Third Sylow Theorem):
If G is a finite group and p a prime with p | |G|. Then the number of Sylow p subgroups of G divides
|G| and is of the form kp+ 1 for some k ∈ N ∪ {0}.

Proof: By theorem 5.2.7, the number of Sylow p subgroups in G is the number of conjugates of any one of
them, say P . This number is [G : NG(P )], which is a divisor of |G|.
Let |S| be the set of all Sylow p− subgroups of G and let P act on S by conjugation. Then Q ∈ S0 if and
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only if xQx−1 = Q for all x ∈ P. The latter condition holds if and only if P ⊆ NG(Q). Both P and Q are
Sylow p−subgroups of G and hence of NG(Q).
By Corollary 5.2.6, they are conjugate in NG(Q). Since Q / NG(Q), this can only occur if Q = P. Thus
S0 = {P}. By lemma 5.1.1., |S| ≡ |S0| ≡ 1 (mod p). So |S| = kp+ 1 for some k ∈ N ∪ {0}. �

Remark Suppose that G is a group with |G| = prm and gcd(p,m) = 1. Let np be the number of Sylow
p−subgroups of G. By the third Sylow theorem, we see that np | prm and np ≡ 1 (mod p). Since p - np, we
have np | m.
Example
Claim: every subgroup of order 15 is cyclic.
Proof: Let G be a group of order 15 = 3 · 5. Let np be the number of Sylow p−subgroups of G. By the third
Sylow Theorem, we have n3 | 5, n3 ≡ 1 (mod 3). So n3 = 1. Similarly, n5 | 3, n5 ≡ 1 (mod 5), so n5 = 1. It
follows there is only one Sylow 3 subgroup and one Sylow 5 subgroup in G, say P3, P5, respectively. Thus
P3 /G and P5 /G. Consider |P3 ∩P5|, which divides 3 and 5. So |P3 ∩P5| = 1. Also |P3P5| = 15 = |G|. (Why
is the product 15?) It follows that

G ' P3 × P5 ' Z/〈3〉 × Z/〈5〉 ' Z/〈15〉

Example
Claim: there are two isomorphism classes of groups of order 21.
Let G be a group of order 21 = 7 · 3. Let np be the number of Sylow p subgroups of G. By the third Sylow
theorem, we have n3 | 7 and n3 ≡ 1 (mod 3). Thus n3 = 1 or 7.
Also n7 | 3 and n7 ≡ 1 (mod 7). So n7 = 1. It follows that G has a unique Sylow 7 subgroup say P7. Note
P7 / G and P7 is cyclic, say P7 = 〈x〉 with x7 = 1. Let H be a sylow 3 group. Since |H| = 3, H is cyclic
H = 〈y〉 with y3 = 1. Since P7 / G, we have yxy−1 = xi for some 0 ≤ i ≤ 6. It follows that

x = y3xy−3 = y2xiy−2 = yxi
2

y−1 = xi
3

Since x = xi
3

, x7 = 1, we have i3 − 1 = 0 (mod 7) and since 0 ≤ i ≤ 6, we have i = 1, 2, 4.

1. If i = 1, yxy−1 = x, that is, yx = xy. So G is an abelian group and G ' Z/〈21〉.
2. If i = 2, yxy−1 = x2, G = {xiyi : 0 ≤ i ≤ 6, 0 ≤ j ≤ 2, yxy−1 = x2}
3. If i = 4 then yxy−1 = x4. Note that

y2xy−2 = yx4y−1 = x16 = x2

y2 is also a genearator of H. Thus by replacing y with y2, we get back to case 2. This gives us two
isomorphism classses of groups order 21.

Solvable Groups

Definition: A group G is solvable if there exists a tower

G ⊇ G0 ⊇ G1 ⊇ G2 ⊇ . . . ⊇ Gm = {1}

With Gi+1 / Gi and Gi/Gi+1 abelian for all 0 ≤ i ≤ m− 1. I don’t see why this one holds?

Remark
Gi+1 is not necessarily a normal subgroup of G. If Gi+1 is a normal subgroup of G, we get Gi+1 / Gi for
free.
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Example
Consider the symmetric group S4. (24 elements, the group where elements act on 1, 2, 3, 4 permutation.) Let
A4 be the alternating subgroup of S4 (subgroup of even permutations) and V ∼= Z/〈2〉 × Z/〈2〉 the Klein 4
group. Note that A4 and V are normal subgroups of S4. We have

S4 ⊇ A4 ⊇ V ⊇ {1}
Since S4/A4

∼= Z/〈2〉 and A4/V ∼= Z/〈3〉, S4 is solvable.
Before moving onto solvable groups, we recall theorems about groups

Theorem (Second Isomorphism Theorem):
If H and N are subgroups of a group G with N/G, then H/H∩N ∼= NH/N , which is a set. However,
if either H or N is a normal subgroup of G, then NH = HN and it is a subgroup of G.

Theorem (Third Isomorphism Theorem):
If H and N are normal subgroups of a group G such that N ⊆ H, then H/N is a normal subgroup
of G/N and (G/N)/(H/N) ∼= G/H. (This is an explanation why the above remark holds).

Theorem (6.0.1.):
Let G be a solvable group.

1. If H is a subgroup of G, then H is solvable.

2. Let N be a normal subgroup of G. Then the quotient group G/N is solvable.

Proof: Since G is solvable, there exists a tower

G = G0 ⊇ G1 ⊇ G2 ⊇ . . . ⊇ Gm = {1}

with Gi+1 / Gi with Gi/Gi+1 abelian for all 0 ≤ i ≤ m− 1.

1. Define Hi = H ∩Gi. Since Gi / Gi+1, we have a tower

H = H0 ⊇ H1 ⊇ H2 ⊇ . . . ⊇ Hm = {1}

with Hi+1 /Hi. Note that both Hi and Gi+1 are subgroups of Gi and Hi+1 = H ∩Gi+1 = Hi ∩Gi+1.
Applying the second isomorphism theorem to Gi, we have

Hi/Hi+1 = Hi/Hi ∩Gi+1
∼= HiGi+1/Gi+1 ⊆ Gi/Gi+1

Since Gi/Gi+1 is abelian, so is Hi/Hi+1. It follows that H is solvable.

2. Consider the towers
G = G0N ⊇ G1N ⊇ G2N ⊇ . . . ⊇ GmN = N

and
G/N = G0N/N ⊇ G1N/N ⊇ G2N/N ⊇ . . . ⊇ GmN/N = {1}

Since Gi+1 / Gi and N / G, we have

Gi+1N / GiN, which implies Gi+1N/N / GiN/N
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By the third isomorphism theorem

(GiN/N)/(Gi+1N/N) ∼= GiN/Gi+1N

By the second isomorphism theorem,

GiN/Gi+1N ∼= Gi/(Gi ∩Gi+1N)

Consider the natural quotient map Gi → Gi/(Gi ∩ Gi+1N) which is surjective. Since Gi+1 ⊆ Gi ∩
Gi+1N, it induces a surjective map Gi/Gi+1 → Gi/(Gi ∩Gi+1N).

Remark: the above result comes from the Universal Property of Groups

Universal property of groups: Let G,G′ be groups and let f : G → G′ be a group homomorphism. If
N / G satisfies N ⊆ ker(f), then there exists a unique map f : G/N → G′ such that f = f ◦ π where
π : G → G/N is the natural quotient map. I dont understand this part, why does the above follow
from the universal property? I drew comm diagram but does not seem to match up.

Let us resume back to the proof.

Since Gi/Gi+1 is abelian, so is Gi/(Gi ∩ Gi+1N). Thus (GiN/N)/(Gi+1N/N) is abelian. It follows
that G/N is solvable.

�

The following theorem goes in the opposite direction of 6.0.1.

Theorem (6.0.2.):
Let N be a normal subgroup of a group G. If both N and G/N are solvable, then G is solvable. In
particular, a direct product of finitely many solvable groups is solvable.

Proof: Since N is solvable, we have a tower

N = N0 ⊇ N1 ⊇ N2 ⊇ . . . ⊇ Nm = {1}

With Ni+1 / Ni and Ni/Ni+1 abelian. For a subgroup H ⊆ G with N ⊆ H, we denote H = H/N.
Since G/N is solvable, we have a tower

G/N = G = G0 ⊇ G1 ⊇ . . . ⊇ Gr = N/N = {1}

with Gi+1 / Gi and Gi/Gi+1 abelian. Let SubN (G) denote the subgroups of G that contains N . Consider
the map

σ : SubN (G)→ Sub(G/N) : H 7→ H/N

For all i = 0, 1, . . . , r, define Gi = σ−1(Gi). Since N / G and Gi+1 / Gi, we have

Gi+1 / Gi,

morevoer, by the third isomorphism theorem,

Gi/Gi+1
∼= Gi/Gi+1
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It follows that we have a tower

G = G0 ⊇ G1 ⊇ G2 . . . ⊇ Gr = N = N0 ⊇ N1 ⊇ N2 ⊇ . . . ⊇ Nm = {1}

With Gi+1 / Gi, Ni+1 / Ni and Gi/Gi+1, Ni/Ni+1 are all abelian. Thus G is solvable. �

Example S4 contains subgroups isomorphic to S3 and S2. Since S4 is solvable, by theorem 6.0.1., S3, S2 are
both solvable.

Definition (Simple): A group G is simple if it is not trivial and has no normal subgroups except {1} and
G. (Recall this from Pmath 347.)

Example: One can show that the alternating group A5 is simple. Since A5 ⊇ {1} is the only tower and
A5/{1} is not abelian, A5 is not solvable. Thus by theorem 6.0.1., S5 is also not solvable. Moreover, since
for all Sn with n ≥ 5, it contains a subgroup isomorphic to S5 which is not solvable. By Theorem 6.0.1., Sn
are not solvable for n ≥ 5.

Corollary (6.0.3.):
Let G be a finite solvable group. Then there exists a tower

G = G0 ⊇ G1 ⊇ G2 ⊇ . . . ⊇ Gm = {1}

with Gi+1 / Gi and Gi/Gi+1 a cyclic group.

Proof: If G is solvable, there exists a tower

G = G0 ⊇ G1 ⊇ G2 ⊇ . . . ⊇ Gn = {1}

with Gi+1 / Gi and Gi/Gi+1 abelian for all 0 ≤ i ≤ n− 1. Consider A = Gi/Gi+1, a finite abelian group.
We have

A ∼= Ck1 × Ck2 × . . .× Ckr
where Ck is a cyclic group of order k. Since each Gi/Gi+1 can be written as product of cyclic groups, i dont
think product of cyclic groups is cylic? the result follows. �

Remark
In the above proof, given a finite cyclic group C, by Chinese Remainde Theorem, we have

C ∼= Z/〈pα1
1 〉 × Z/〈pα2

2 〉 × . . .× Z/〈pαrr 〉

where pi are distinct primes. Also, for a cyclic group whose order is a prime power, say Z/〈pα〉, we have a
tower of subgroups

Z/〈pα〉 ⊇ Z/〈pα−1〉 ⊇ . . . ⊇ Z/〈p〉 ⊇ {1}

So we can further require the quotient Gi/Gi+1 in the above corollary to be a cyclic group of prime order.
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Week 7. Autmorphism Groups

In this chapter, we will associate field extensions to groups. We focus on automorphism groups of splitting
fields.

7.1 General Automorphism groups

Definition (F-automorphism): Let E/F be a field extension. If ψ is an automorphism of E, that is
ψ : E → E is an ismomorphism, and ψ |F= 1F , we say ψ is an F−automorphism of E. By maps composition,
the set

{ψ : E → E | ψ is an F automorphism}

is a group. We call it the automorphism group of E/F , denoted by AutF (E).

Lemma (7.1.1):
Let E/F be field extensions, f(x) ∈ F [x], and ψ ∈ AutF (E). If α ∈ E is a root of f(x) then ψ(α) is
also a root of f(x).

Proof: Write f(x) = a0 + a1x+ . . .+ anx
n ∈ F [x]. Then

f(ψ(α)) = a0 + a1ψ(α) + . . .+ anψ(α)n

= ψ(a0) + ψ(a1)ψ(α) + . . .+ ψ(an)ψ(α)n

= ψ(a0 + a1x+ . . .+ anx
n) = ψ(0) = 0

So ψ(α) is a root of f(x). �

Lemma (7.1.2):
Let E = F (α1, α2, . . . , αn) be a field extension of F . For ψ1, ψ2 ∈ AutF (E), if ψ1(αi) = ψ2(αi) for
all αi(1 ≤ i ≤ n), then ψ1 = ψ2.

Proof: Note that for α ∈ E, α is of the form

f(α1, . . . , αn)

g(α1, . . . αn)

f, g ∈ F [x1, . . . , xn] so the lemma follows. That is, everything in the field can be written as a polynomial
with coefficients in F and variables in E with those alphas. So the F−homomorphisms fix them. �

Corollary (7.1.3.):
If E/F is finite extension then AutF (E) is a finite group.
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Proof: Since E/F is a finite extension, by theorem 2.2.4. E = F (α1, α2, . . . αn) such that each αi are algebraic
over F . For ψ ∈ AutF (E), by lemma 7.1.1., ψ(αi), (1 ≤ i ≤ n), is a root of the minimal polynomial of αi.
Thus it has only finitely many choices. By lemma 7.1.2, since ψ ∈ AutF (E) is completely determined by
ψ(αi), there are only finitely many choices for ψ. Hence AutF (E) is finite.

�

Remark
The converse of the above Corollary is false. For example R/Q is an infinite extension, but AutQ(R) = {1}.
Indeed, we will show in Assignment 7 that AutQ(R) = {1}, ψ ∈ Aut(R) with ψ(1) will imply that ψ |Q= 1Q.

7.2 Automorphism Groups with Splitting Fields

Definition (Automorphism group): Let F be a field and f(x) ∈ F [x]. The automorphism group of f(x)
over F is defined to be the group AutF (E) where E is the splitting field of f(x) over F .

We recall theorem 3.2.1. Let φ : F → F1 be an isomorphism of fields and f(x) ∈ F [x]. Let Φ : F [x]→ F1[x]
be the unique ring isomorphism which extends φ, and maps x 7→ x. Let f1(x) = Φ(f(x)) and E/F and
E1/F1 be splitting fields of f(x) and f1(x) respectively. Then there exists an isomorphism ψ : E → E1 that
extends φ.
In A3, we prove that the number of such ψ is ≤ [E : F ]. And equality holds if and only if f(x) is separable
over F . As a direct consequence we have

Theorem (7.2.1.):
Let E/F be the splitting field of a non-zero polynomial f(x) ∈ F [x]. We have |AutF (E)| ≤ [E : F ]
and equality holds if and only if f(x) is separable.

Theorem (7.2.2.):
If f(x) ∈ F [x] has n distinct roots in the splitting field E, then AutF (E) is isomorphic to a subgroup
of the symmetric group Sn. In particular, |AutF (E)| divides n!.

Proof: Let X = {α1, . . . , αn} be distinct roots of f(x) ∈ E. By lemma 7.1.1., if ψ ∈ AutF (E), then
ψ(X) = X. Let ψ |X be the restriction of ψ in X and SX the permutation group of X. The map

AutF (E)→ SX ∼= Sn, ψ 7→ ψ |X

is a group homomorphism. Moreover, by lemma 7.1.2., it is injective. Thus AutF (E) is isomorphic to a
subgroup of Sn. �

Example 1.

Let f(x) = x3 − 2 ∈ Q[x]. And E/Q the splitting field of f(x). Thus E = Q( 3
√

2, ζ3) and [E : F ] = 6. Since
ch(Q) = 0, f(x) is separable. By theorem 7.2.1.

|AutQ(E)| = [E : F ] = 6
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Also, since f(x) has 3 distinct roots in E, by theorem 7.2.2, AutQ(E) is a subgroup of S3. Since the only
subgroup of S3 which is of order 6 is S3 so

AutQ(E) ∼= S3

Example 2.
Let F be a field with ch(F ) = p, F p 6= F. and f(x) = xp − a, a ∈ F \ F p. Let E/F be the splitting field of
f(x). We have seen in section 4.4. that f(x) = (x− β)p for some β ∈ E \ F . Thus, E = F (β). Since β can
only map to β, AutF (E) is trivial. So |AutF (E)| = 1 and [E : F ] = p.
We have |AutF (E)| 6= [E : F ]. The reason why they are unequal is because f(x) is not separable.

7.3. Fixed Fields

Now we introduce the fixed fields of a group.

Definition (Fixed field): Let E/F be a field extension and ψ ∈ AutF (E). Define

Eψ = {a ∈ E,ψ(a) = a}

which is a subfield of E containing F . We call Eψ the fixed field of ψ.
If G ⊆ AutF (E), then the fixed field of G is defined by:

EG =
⋂
ψ∈G

Eψ = {a ∈ E,ψ(a) = a,∀ψ ∈ G}

Theorem (7.3.1.):
Let f(x) ∈ F [x] be a separable polynomial and E/F is its splitting field. If G = AutF (E) then
EG = F.

Proof: Set L = EG. Since F ⊆ L, we have AutL(E) ⊆ AutF (E). (because for every g ∈ AutL(E), it fix all
elements in L = EG, by definition it fix all elements in F .)

On the other hand, if ψ ∈ AutF (E), by the definition of L, for all a ∈ L, we have ψ(a) = a. This implies
that ψ ∈ AutL(E).
Thus

AutF (E) = AutL(E).

Note that since f(x) is separable over F and splits over E, f(x) is also separable over L and has E as its
spliitting field over L. Thus by theorem 7.2.1.

|AutF (E)| = [E : F ], and |AutL(E)| = [E : L]

It follows that [E : F ] = [E : L]. Since [E : F ] = [E : L][L : F ] we have [L : F ] = 1 and L = F. So EG = F.

�
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Week 8. Separable Extensions and Normal Extensions

In this chapter, we will talk about separable extensions and normal extensions. We will talk about Galois
extensions in the next chapter.

8.1 Separable extensions

Definition: Let E/F be an algebraic field extension. For α ∈ E, let p(x) ∈ F [x] be minimal polynomial of
α. We say that α is separable over F if p(x) is separable. If for all α ∈ E, α is separable, then we say that
E/F is separable.

Example:
If ch(F ) = 0, by theoerm 4.4.1., F is perfect and every polynomial f(x) ∈ F (x) is separable. Thus, if
Ch(F ) = 0, then any algebraic extension E/F is separable.

Theorem (8.1.1.):
Let E/F be the splitting field of f(x) ∈ F [x]. If f(x) is separable, then E/F is separable.

Proof: Note that in this case α in E is arbitrary. We will show that the min poly is separable with respect
to all the αs.
Let α ∈ E and p(x) ∈ F [x] be the minimal polynomial of α. Let {α = α1, . . . , αn} be all of the distinct roots
of p(x) in E. Now, define

p̃(x) = (x− α1) . . . (x− αn)

Now we claim that p̃(x) ∈ F [x].
Let G = AutF (E) and ψ ∈ G. Since ψ is an automorphism, ψ(αi) 6= ψ(αj) if i 6= j. By lemma 7.1.1., ψ
permutes α1, . . . , αn. Thus by extending ψ : E → E to ψ : E[x]→ E[x], we have

ψ(p̃(x)) = (x− ψ(α1)) . . . (x− ψ(αn))

= (x− α1) . . . (x− αn) = p̃(x)

It follows that p̃(x) ∈ Eψ[x]. (Recall, this means the fixed field, the field of elements fixed under permutation
of ψ) Since ψ ∈ G is arbitrary, p̃(x) ∈ EG[x]. Since E/F is the splitting field of the separable polynomial
f(x), by theorem 7.3.1., p̃(x) ∈ F [x]. Thus the claim is true.

Therefore, we have p̃(x) ∈ F [x] with p̃(α) = 0. Since p(x) is the minimal polynomial of α over F , so we have
p(x) | p̃(x). Also since α1, . . . , αn are all distinct roots of p(x), we have p̃(x) | p(x). Since both p(x), p̃(x) are
monic, they are equal. Hence p(x) is separable.

�

Corollary (8.1.2.):
Let E/F be a finite extension and E = F (α1, α2 . . . , αn). If each αi is separable over F with
(1 ≤ i ≤ n), then E/F is separable.
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Proof: Let pi(x) ∈ F [x] be the minimal polynomial α1, with (1 ≤ i ≤ n). Let f(x) = p1(x)p2(x) . . . pn(x).
Since each p1(n) is separable, so is f(x). Let L be the splitting field of f(x) over F . By Theorem 8.1.1, L/F
is separable. Since E = F (α1, . . . , αn) is a subfield of L, E is also separable. Here, why does subfield mean
separable? �

Corollary (8.1.3.):
Let E/F be an algebraic extension and L the set of all α ∈ E which are separable over F . Then L
is an intermediate field.

Proof: Let α, β ∈ L. Then α ± β, αβ, α/β, (β 6= 0),∈ F (α, β). By corollary 8.1.2, F (α, β) is separable and
hence it is contained in L. So α± β, αβ, α/β(β 6= 0) ∈ L.

�

In fact, we have seen in theorem 2.2.4, that a finite extension is a composition of simple extensions.

Definition: If E = F (γ), is a simple extension, then γ is a primitive element of E/F.

Theorem (8.1.4. Primitive Element Theorem):
If E/F is a finite separable extension, then E = F (γ) for some γ ∈ E. In particular if ch(F ) = 0,
then any finite extension E/F is a simple extension.

Proof:
If F is a finite field:
We have seen in Cor 4.3.3., that a finite extension of a finite field is always simple.
If F is an infinite field:
Suppose F is an infinite field. Since E = F (α1, α2, . . . , αn) for some α1, . . . , αn ∈ E. So it suffices to consider
when E = F (α, β), and the general case can be proven by inductin. So for now we assume E = F (α, β),
where α, β /∈ F.
We claim that there exists λ ∈ F such that γ = α+ λβ, β ∈ F (γ).
If the claim is true, then we would have α = γ − λβ ∈ F (γ) so F (α, β) ⊆ F (γ). Since γ = α + λβ, we also
have F (γ) ⊆ F (α, β). This means E = F (α, β) = F (γ).

Now let us prove the claim. We let a(x), b(x) be minimal polynomials of α and β over F respectively. Since
β /∈ F , deg(b) > 1. Therefore, there exists another root β̃ of b(x) such that β̃ 6= β. We can pick λ ∈ F such
that λ 6= α̃−α

β−β̃ for all the roots α̃ of a(x) and all roots β̃ of b(x) with β̃ 6= β in some splitting field of a(x)b(x)

over F . The choice is possible since there are infinitely many elements in F , but only finitely many of α̃ and
β̃. Now we let γ = α+ λβ. Now consider the following:

h(x) = a(γ − λx) ∈ F (γ)[x]
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Then
h(β) = a(γ − λβ) = a(α) = 0

However, for any other β̃ 6= β, since by the choice of λ,

γ − λβ̃ = α+ λ(β − β̃) 6= α̃

so h(β̃) = a(γ − λβ̃) 6= 0. Therefore, h(x), b(x) have β as a common root, but no other common root in any
extension of F (γ). Let b1(x) be the minimal polynomial of β over F (γ). So b1(x) divides both h(x) and b(x).
Since E/F is separable and b(x) ∈ F [x] is irreducible, b(x) has distinct roots, so does b1(x).
The roots of b1(x) are also common to h(x) and b(x). Since h(x) and b(x) has only β as a common root, we
have b1(x) = x− β. Since b1(x) ∈ F (γ)[x]. We obtain β ∈ F (γ) as required.

�

8.2 Normal Extensions

Definition (Normal Extension): Let E/F be an algebraic extension. Then E/F is a normal extension
if for any irreducible polynomial p(x) ∈ F [x], either p(x) has no root in E or p(x) has all roots in E. In
other words, if p(x) has a root in E, p(x) splits over E.

Example:

Let α ∈ R with α4 = 5. The roots of x4 − α are ±α,±αi, and Q(α) is real, Q(α)/Q is not normal. If we let
β = (1 + i)α. Then Q(β)/Q is also not normal. Note that

β2 = 2iα2, β4 = −4α4 = −20

Now, since ±β,±iβ all satisfy that x4 = −20, to show that Q(β) is not normal, we suffice to show that
i /∈ Q(β). Since the minimal polynoimal of β over Q is x4 + 20, we have [Q(β) : Q] = 4. Also the roots of
p(x) are ±β,±iβ. Since the minimal polynomial of α is x4 − 5, we have [Q(α) : Q] = 4.
Note that if α ∈ Q(β), since [Q(α) : Q] = 4 = [Q(β) : Q], it implies Q(α) = Q(β) which is impossi-
ble as β = α + iα /∈ Q(α). Therefore we have α /∈ Q(β). So it implies i /∈ Q(β) (if i ∈ Q(β) then
α = β/(1 + i) ∈ Q(β), contradiction.)

It follows that the factorization of p(x) over Q(β) is

(x− β)(x+ β)(x2 + β2)

Since p(x) does not split over Q(β) we have Q(β)/Q is not normal.

Theorem (8.2.1):
A finite extension E/F is normal if and only if it is the splitting field of some f(x) ∈ F [x].

Proof:
=⇒
Suppose that E/F is normal. We write E = F (α1, . . . , αn). Let pi(x) ∈ F [x] be the minimal polynomial of
αi(1 ≤ i ≤ n).
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Define
f(x) = p1(x)p2(x) . . . pn(x).

Since E/F is normal, each pi(x) splits over E. Let αi = αi,1, αi,2 . . . , αi,ri , 1 ≤ i ≤ n be roots of pi(x) in E.
Then

E = F (α1, . . . , αn)

= F (α1,1,α1,2, . . . α1,r1 , α2,1, . . . αn,rn),

Which is the splitting field of f(x) over F .
⇐=
Let E/F be the splitting field of f(x) ∈ F [x]. Let p(x) ∈ F [x] be irreducible and has root α ∈ E. Let K/E
be the splitting field of p(x) over E. Write

p(x) = c(x− α1) . . . (x− αn)

where 0 6= c ∈ F, α = α1 ∈ E,α2, . . . αn ∈ K = E(α1, . . . , αn). Since

F (α) ∼= F [x]/〈p(x)〉 ∼= F (α2)

Why is this isomorphic to F (α2)????
Therefore we have the F−isomorphism

θ : F (α)→ F (α2), θ(α) = α2

Note that p(x) ∈ F [x] ⊆ F (α)[x] and p(x) ∈ F (α2)[x].
So we can view K as the splitting field of p(x) over F (α) and F (α2) respectively. SO by theorem 3.2.1. there
exists an isomorphism

ψ : K → K

that extends θ. In particular, ψ ∈ AutF (K):

Since ψ ∈ AutF (K), ψ permutes the roots of f(x). Since E is generated over F by roots of f(x), lemma
7.1.1. we have ψ(E) = E. It follows that for α ∈ E,α2 = ψ(α) ∈ E. Similarly we can prove that αi ∈ E for
3 ≤ i ≤ n. So K = E and p(x) splits over E. It follows E/F is normal.

�

Example:
Claim: every quadratic extension is normal.
Let E/F be a field extension with [E : F ] = 2. For α ∈ E \F , we have E = F (α). Let p(x) = x2 + ax+ b be
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the minimal polynomial of α over F . If β is another root of p(x) then we would have p(x) = (x−α)(x−β) =
x2 − (α+ β)x+ αβ.
Therefore β = −a− α = b/α, is the other root of p(x) and β ∈ E. This means that E/F is normal.

Example: The extension Q( 4
√

2)/Q is not normal since the irreducible polynomial p(x) = x4 − 2 has a root

in Q( 4
√

2) but p(x) does not split over Q( 4
√

2). Note that this extension is made of two quadratic extensions,
which are Q( 4

√
2)/Q(

√
2) and Q(

√
2)/Q, both of them are normal. So if E/K and K/F are normal extensions,

E/F is not always normal.

Proposition (8.2.2.):
If E/F is a normal extension and K is an intermediate field, then E/K is normal.

Proof: Let p(x) ∈ K[x] be irreducible and has a root α ∈ E. Let f(x) ∈ F [x] ⊆ K[x] be the minimal
polynomial of α over F . Then, p(x) | f(x). Since E/F is normal, f(x) splits over E, so does p(x). So E/K
is a normal extension. �

Remark:
In Prop 8.2.2., K/F is not always normal. For example, if F = Q, K = Q( 4

√
2) and E = Q( 4

√
2, i), then

E/F is the splitting field of x4 − 2 and hence normal. Also, E/K is normal but K/F is not normal.

Proposition 2.9 (8.2.3.):
Let E/F be a finite normal extension and α, β ∈ E. Then the following conditions are equivalent:

1. There exists ψ ∈ AutF (E) such that ψ(α) = β.

2. The minimal polynomials of α and β are the same

In this case, we say that α, β are conjugates over F .

Proof:
1 =⇒ 2
Let p(x) be the minimal polynomial of α over F and ψ ∈ AutF (E) with ψ(α) = β. By Lemma 7.1.1., β is
also a root of p(x). Since p(x) is monic and irreducible, it is the minimal polynomial of β over F . Hence α
and β have the same minimal polynomials.
2 =⇒ 1
Suppose that the minimal polynomial of α and β are the same. Say p(x). Since

F (α) ∼= F [x]/〈p(x)〉 ∼= F (β)

we have F−isomorphism θ : F (α) → F (β) with θ(α) = β. Since E/F is a finite normal extension. By
Theorem 8.2.1., E is the splitting field of some f(x) ∈ F [x] over F . We can also view E as the splitting field
of f(x) over F (α) and F (β) respectively. Thus by theorem 3.2.1, there exists an isomorphism φ : E → E
which extends θ. It follow ψ ∈ AutF (E) and ψ(α) = β. �

Example: The complex numbers 3
√

2, 3
√

2ζ3,
3
√

2ζ23 are all conjugates over Q since they are roots of the irre-

ducible polynomial x3 − 2 ∈ Q[x].
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Note that the normal extensions are “nice” in some aspects. Not all finite extensions are normal. We can
try to construct normal extensions for finite extensions, and we want to do it in the “minimal way” whereas
the associated group AutF (E) is as small as possible.

Definition (Normal Closure): A normal closure of a finite extension E/F is a finite normal extension
N/F satisying the following properties:

1. E is a subfield of N

2. Let L be an intermediate field of N/E. If L is normal over F then L = N.

Example: The normal closure of Q( 3
√

2)/Q is Q( 3
√

2, ζ3)/Q.

Theorem (8.2.4.):
Every finite extension E/F has a normal closure N/F which is unique up to E isomorphism.

Proof:
We first write E = F (α1, α2, . . . , αn).
Existence:
Let pi(x) be the minimal polynomial of αi over F for 1 ≤ i ≤ n. Write f(x) = p1(x)p2(x) . . . pn(x) and let
N/E be the splitting field of f(x) over E. Since α1, . . . , αn are roots of f(x), N is also the splitting field
of f(x) over F . By theorem 8.2.1, N is normal over F . Let L ⊆ N be a subfield containing E. Then L
contains all of αi. If L is normal over F , each pi(x) splits over L. Thus N ⊆ L and it follows L = N.

Uniqueness:
Let N/E be the splitting field of f(x) over E defined as above. Let N1/F be another normal closure of E/F.
Since N1 is normal over F and contains all αi, N1 must contain a splitting field Ñ of f(x) over F , hence over
E. By corollary 3.2.2., N and Ñ are E-isomorphic. Since Ñ is a splitting field of f(x) over F , by theorem
8.2.1, Ñ is also normal over F . By definition of a normal closure, N1 = Ñ . So N,N1 are E-isomorphic.

�

Week 9. Galois Correspondence

9.1 Galois extensions

Recall the two following theorems: Given finite extensions E/F , we have proven the two following theorems

• 8.2.1. E is the splitting field of some f(x) ∈ F [x] ⇐⇒ E/F is normal.

• 8.1.1. E is the splitting field of some separable polynonmial f(x) ∈ F [x] =⇒ E/F is separable.

Now, if E is the splitting field of some polynomial f(x) ∈ F [x], then we have ⇐⇒ in 8.1.1., as the opposite
side holds trivially.

Definition 2.12: An algebraic extension E/F is Galois if it is normal and separable. If E/F is a Galois
extension, the Galois group of E/F , GalF (E), is defined to be the automorphism group of AutF (E).
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Definition 2.13: A Galois extension E/F is called abelian, cyclic, or solvable if GalF (E) has the corre-
sponding properties.

Remark

1. By theorem 8.1.1, 8.2.1, a finite Galois extension E/F is equivalent to the splitting field of a separable
polynomial f(x) ∈ F [x].

2. If E/F is a finite Galois extension, 7.2.1. states that

|GalF (E)| = [E : F ]

3. If E.F is the splitting field of a separabale polynomial f(x) ∈ F [x] with def(f) = n, by theorem 7.2.2,
GalF (E) is a subgroup of Sn.

Example

Let E be the splitting field of (x2 − 2)(x2 − 3)(x2 − 5) ∈ Q[x]. Then E = Q(
√

2,
√

3,
√

5) and [E : Q] = 8.
For ψ ∈ GalQ(E) : we have

ψ(
√

2) ∈ {±
√

2}, ψ(
√

3) ∈ {±
√

3}, ψ(
√

5) ∈ {±
√

5}

since |GalQ(E)| = [E : Q] = 8 we have

GalQ(E) ∼= Z/〈2〉 × Z/〈2〉 × Z/〈2〉

Definition: Let t1, t2, . . . , tn be variables. We define the elementary symmetric function in t1, t2, . . . tn as

• s1 = t1 + . . .+ tn

• s2 =
∑

1≤i<j≤n titj

• . . .

• sn = t1t2 . . . tn

Then it follows that f(x) = (x− t1)(x− t2) . . . (x− tn) = xn − s1xn−1 + s2x
n−2 − . . .+ (−1)nsn.

Theorem (9.1.1. (E. Artin)):
Let E be a field and G a finite group of Aut(E), the automorphism group of E. Let EG = {α ∈
E,ψ(α) = α,∀ψ ∈ G}. (fixed elements under all the automorphisms of the field) Then E/EG is a
finite Galois extension and GalEG(E) = G. In particular,

[E : EG] = |G|

Proof:
Let n = |G| and F = EG. For α ∈ E, consider the G orbit of α

{ψ(α) | ψ ∈ G} = {α = α1, α2, . . . , αm}

where the αis are distinct.
Note that m ≤ n. Let f(x) = (x − α1)(x − α2) . . . (x − αm). For any ψ ∈ G,ψ permutes the roots of
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{α1, . . . , αm}. Since the coefficients of f(x) are symmetric with respect to αi (1 ≤ i ≤ m). They are fixed
by all ψ ∈ G. Thus

f(x) ∈ EG[x] = F [x]

Showing it is minimal polynomial
To show f(x) is actually the minimal polynomial of α, we need to show it is irreducible. Consider a factor
g(x) ∈ F [x] of f(x). WLOG write g(x) = (x− α1)(x− α2) . . . (x− αl)
If l 6= m, since αi(1 ≤ i ≤ m) are in the G orbit of α there exists ψ ∈ G such that

{α1, . . . , αl} 6= {ψ(α1), ψ(α2), . . . , ψ(αl)}

It follows that
ψ(g(x)) = (x− ψ(α1)) . . . (x− ψ(αl)) 6= g(x)

Thus, if l 6= m, g(x) /∈ F [x]. It follows that f(x) is the minimal polynomial of α over F .

Showing it is Galois extension
Since f(x) ∈ F [x] is separable and splits over E, E/F is a Galois extension.

Showing [E : F ] ≤ n
Now suppose for contradiction, [E : F ] > n = |G|, then we can choose β1, β2, . . . , βn+1 ∈ E which are linearly
independent over F .
Consider the system

ψ(β1)v1 + . . .+ ψ(βn+1)vn+1 = 0,∀ψ ∈ G

of n linear equations in n+ 1 variables v1, . . . , vn+1. Thus it has a nonzero solution in E. Let (γ1, . . . , γn+1)
be such a solution which has the minimal number of nonzero coordinates, say we have r coordinates. Clearly
r > 1. WLOG we assume

γ1, . . . , γr 6= 0, γr+1, . . . , γn+1 = 0

This means that
ψ(β1)γ1 + . . .+ ψ(βr)γr = 0 (1)

for all ψ ∈ G.
Assume γr = 1 (by dividing). Also since (β1, . . . , βr) are independent over F and β1γ1 + . . . + βrγr = 0,
there exists at least one γi /∈ F (if all of the γ ∈ F then β1γ1 + . . .+ βrγr = 0 would imply all γ = 0)
Since r ≥ 2,WLOG, we can assume γ1 /∈ F . Pick ψ ∈ G such that ψ(γ1) 6= γ1. Applying ψ into (1), we get∑

i=1n

(φ ◦ ψ)(βi)φ(γi) = 0,∀ψ ∈ G

r∑
i=1

ψ(βi)φ(γi) = 0,∀ψ ∈ G

Subtracting we get
r∑
i=1

ψ(βi)(γi − φ(γi)) = 0

Since γr = 1, we have γr − φ(γr) = 0. Also, since γ1 /∈ F we have γ1 − φ(γ1) 6= 0. This shows all the
γi − φ(γi), 1 ≤ i ≤ r are all zero, but presents a solution to the system

n+1∑
i=1

ψ(βi)φ(γi) = 0,∀ψ ∈ G
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This contradicts that (γ1, . . . , γn+1) having minimal number of nonzero coordinates. So [E : F ] ≤ n.
More observations
We have shown E/F is a finite Galois extension. So E is the splitting field of some separable polynomial
over F . Also since F = EG = {α ∈ E,ψ(α) = α,∀ψ ∈ G}, G is a subgroup of GalF (E). By theorem 7.2.1.

n = |G| ≤ |GalF (E)| = [E : F ] ≤ n

So [E : F ] = n and GalF (E) = G. This completes the proof. �

Remark
Let E be a field and G a finite subgroup of Aut(E). For α ∈ E, let

{α1 = α, α2, . . . , αm}

be the G orbit of α, i.e. the set of all conjugates of α. Then we see from the proof of theorem 9.1.1. that the
minimal polynomial of α over EG is

(x− α1)(x− α2) . . . (x− αm) ∈ EG[x]

Example
Let E = F (t1, t2, . . . , tn) be the function field in n variables t1, t2, . . . , tn over a field F . Consider the
symmetric group Sn as the subgroup of Aut(G) which permutes the variables t1, t2, . . . , tn that fixes the field
F .
We are interested in finding ESn = EG where G = Sn. From the proof of 9.1.1., the coefficients of the
minimal polynomial of t1 lies in EG. By considering the minimal polynomial of t1, we can get some hints
about EG. The G−orbit of t1 is {t1, t2, . . . tn.}
By the above remark, we see that

f(x) = (x− t1) . . . (x− tn)

is the minimal polynomial of t1 over EG. Let s1, . . . , sn be the elementary symmetric functions of t1, . . . , tn.
So we have f(x) = xn − s1xn−1 + s2x

n−1 − . . .+ (−1)nsn ∈ L[x] where L = F (s1, . . . , sn) ⊆ EG.
Claim: L = EG.
We now prove this claim. Since E is the splitting field of f(x) over L, since the def(f) = n, theorem 3.3.1,
we have [E : L] ≤ n!. By theorem 9.1.1., [E : EG] = |G| = |Sn| = n!
since L ⊆ EG, it follows

n! = [E : EG] ≤ [E : L] ≤ n! =⇒ EG = L
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9.2. The Fundamental Theorem

Theorem (9.2.1. The Fundamental Theorem of Galois Theory):
Let E/F be a finite Galois extension and G = GalF (E). There is an order preserving bijection
between the intermediate fields of E/F and the subgroups of G. More precisely, we let Int(E/F )
denote the set of intermediate fields of E/F and Sub(G) the set of subgroups of G, the maps

Int(E/F )→ Sub(G), L 7→ L∗ := GalL(E)

and
Sub(G)→ Int(E/F ), H 7→ H∗ := EH

are inverse of each other and reverse in the inclusion relation. In particular, for L1, L2 ∈ Int(E/F )
with L2 ⊆ L1, H1, H2 ∈ Sub(G) with H2 ⊆ H1, we have

[L1 : l2] = [L∗2 : L∗1], [H1 : H2] = [H∗2 : H∗1 ]

Proof: Let L ∈ Int(E/F ), H ∈ Sub(G). Recall theorem 7.3.1., which states if G1 = GalG1
(E1) then EG1

1 =
F1. So we have

(L∗)∗ = (GalL(E))∗ = EGalL(E) = L

Theorem 9.1.1. states that if G1 ⊆ Aut(E1), then GalEH (E1) = G1, so we have

(H∗)∗ = (EH)∗ = GalEH (E) = H

So
H 7→ H∗ 7→ H∗∗ = H,L 7→ L∗ 7→ L∗∗ = L

Particularly, L 7→ L∗ and H 7→ H∗ are inverse of each other.
Let L1, L2 ∈ Int(E/F ). Since E/F is the splitting field of some separable polynomial f(x) ∈ F [x],
E/L1, E/L2 are also Galois extensions since E is the splitting field of f(x) over L1, and L2 respectively. We
have

L2 ⊆ L1 =⇒ GalL1
(E) ⊆ GalL2

(E) i.e. L∗1 ⊆ L∗2
This is true because L2 ⊆ L1 so any automorphism that fix L1 would automatically also fix L2.
Also,

[L1 : L2] =
[E : L2]

[E : L1]
=
|GalL2

(E)|
|GalL1

(E)|
=
|L∗2|
|L∗1|

= [L∗2 : L∗1]
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For H1, H2 ∈ Sub(G),
H2 ⊆ H1 =⇒ EH1 ⊆ EH2 , i.e. H∗1 ⊆ H∗2

Also

[H1 : H2] =
|H1|
|H2|

=
|GalEH1 (E)|
|GalEH2 (E)|

=
[E : EH1 ]

[E : EH2 ]
= [EH2 : EH1 ] = [H∗2 : H∗1 ]

This completes the proof of the theorem. �

Remark
Though it is unclear how many intermediate fields are between two fields, if we know a f.e. is finite and
Galois, there are only finitely many subgroups of the Galois group and finitely many intermediate fields. So
the theorem essentially allows us to transform a hard question (of infinite fields) into an easy question (of
finite groups).
We have seen before that E/F is a finite Galois extension, and L ∈ Int(E/F ), then L/F is not always
Galois. For example, E = Q( 3

√
2), L = Q( 3

√
2), F = Q, we have L/F is not Galois.

From the above picture, if L/F is Galois, we will see that it corresponds to the group G/L∗, which is well
defined only if L∗ is a normal subgroup of G.

Proposition (9.2.2.):
Let E/F be a finite Galois extension with G = GalF (E). Let L be an intermediate field. For ψ ∈ G,
we have

Galψ(L)(E) = ψGalL(E)ψ−1

Proof: For any α ∈ ψ(L), we have ψ−1(α) ∈ L. If φ ∈ GalL(E), then

φψ−1(α) = ψ−1(α) so ψφψ−1(α) = α

It follows that
ψφψ−1 ∈ Galψ(L)(E),∀φ ∈ GalL(E)

thus
ψGalL(E)ψ−1 ⊆ Galψ(L)(E)

since
|ψGalL(E)ψ−1| = |GalL(E)| = [E : L] = [E : ψ(L)] = |Galψ(L)(E)|

The third inequality can be seen by considering the basis of E over L, it follows

Galψ(L)(E) = ψGalL(E)ψ−1
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�

The following theorem gives a criterion about when L/F is a Galois extension.

Theorem (9.2.3.):
Let E/F,L, L∗ be defined as in theorem 9.2.1. Then L/F is a Galois extension if and only if L∗ is a
normal subgroup of L. In this case

GalF (L) ∼= G/L∗

Proof: Note that

L/F is normal ⇐⇒ ψ(L) = L for all ψ ∈ GalF (E)

⇐⇒ Galψ(L)(E) = GalL(E) for all ψ ∈ GalF (E)

⇐⇒ ψGalL(E)ψ−1 = GalL(E) for all ψ ∈ GalF (E), 9.2.2.

⇐⇒ L∗ = GalL(E) is a normal subgroup of G

If L/F is a Galois extension, the restriction map

G = GalF (E)→ GalF (E), ψ 7→ ψ |L

is well defined. Moreover, it is surjective and its kernel is GalL(E) = L∗. Thus

GalF (L) ∼= G/L∗.

�

Example 1
For a prime p, let q = pn. Consider the finite field Fq of q elements which is an extension of Fp of degree n.
We have seen in Assignment 4 that Frobenius automorphism of Fq is defined by

σp : Fq → Fq, α 7→ αp

For α ∈ Fq, we have

σnp (α) = αp
n

= α

So σnp = 1. For 1 ≤ m < n, we have σmp (α) = ap
m

. Since the polynomial xp
m − x has at most pm roots in

Fq, there exists α ∈ E such that αp
m − α 6= 0. Thus, σmp 6= 1. Hence σp has order n.

Let G = GalFp(Fq). It follows that

n = |〈σp〉| ≤ |G| = [Fq : Fp] = n

Thus,
G = 〈σp〉 = a cyclic group order n

Consider a subgroup H of G of order d, thus

d | n, [G : H] =
n

d
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By theorem 9.2.1, we have

n

d
= [G : H] = [H∗ : G∗] = [FHq : FGq ] = [FHq : Fp]

Thus
H∗ = FHq = F

p
n
d

We have

Example 2

Let E be the splitting field of x5 − 7 over Q in C. Then E = Q(α, ζ5) with α = 5
√

7 and ζ5 = e
2πi
5 . The

minimal polynomials of α and ζ5 over Q are (x5 − 7) and (x4 + x3 + x2 + x1 + 1) respectively. So

Since [Q(α) : Q] = 5 and [Q(ζ5) : Q] = 4, are divisors of [E : Q], it shows that [E : Q] is divisible by 20.
Thus, [E : Q(ζ5)] ≥ 5. Also, E = Q(α, ζ5) = Q(ζ5)(α) and the minimal polynomial of α over Q(ζ5) divides
(x5 − 7). Thus [E : Q(ζ5)] ≤ 5.
It follows that

[E : Q(ζ5)] = 5 =⇒ [E : Q] = 20

It follows that G = GalQ(E) is a group (subgroup of S5 of order 20.)
For each ψ ∈ G, its action is determined by ψ(α) and ψ(ζ5). We write ψ = ψk,s if

ψ(α) = αζk5 , k ∈ Z5 and ψ(ζ5) = ζs5 , s ∈ Z∗5

Define

σ = ψ1,1 =

{
α 7→ αζ5

ζ5 7→ ζ5
τ = ψ0,2 =

{
α 7→ α

ζ5 7→ ζ25

We check τσ = σ2τ , and we have

G = 〈σ, τ | σ5 = 1 = τ4, τσ = σ2τ〉

It follows that
G = {σaτ b, a ∈ {0, 1, 2, 3, 4}, b ∈ {0, 1, 2, 3}}

Since |G| = 20, by Lagranges theorem, the possible subgroups of G are of order 1, 2, 4, 5, 10, 20.
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We have |G| = 20 = 4 · 5, let np be the number of Sylow p subgroups of G. By third sylow theorem, we
have n2 | 5, n2 ≡ 1 mod 2, so n2 = 1 or 5. Also, we have n5 | 4 and n5 ≡ 1 mod 5 so n5 = 1. It follows G
has unique sylow 5 subgroup, say P5 of order 5. Since 〈σ〉 is a subgroup of order 5, we have P5 = 〈σ〉 ∼= Z5.
note that by second sylow theorem, P5 / G. Note that if n2 = 1, then there is only one Sylow 2-group. Say
P4 = 〈γ〉 ∼= Z/〈4〉. Then P4 / G. Since |P4 ∩ P5| = 1, it follows

G ∼= P4 × P5
∼= Z/〈4〉 × Z/〈5〉 ∼= Z/〈20〉

This contradicts the fact that G is not abelian. So there are actually 5 sylow 2 groups.
We have seen τ has order 4, thus the cylic group 〈τ〉 is a Sylow 2 subgroup and all other sylow 2 groups are
its conjugate. Note that since all elements of G are of the form σaτ b, we have

σaτ bττ−bσ−a = σaτσ−a, a = {0, 1, 2, 3, 4}

Using the fact τσ = σ2τ , we have

〈σ4τσ−4〉 = 〈σ−1τσ〉 = 〈στ〉 = 〈φ1,2〉

Using the same arguments we ssee the sylow 2 groups are 〈ψ0,2〉, 〈ψ1,2〉, 〈ψ2,2〉, 〈ψ3,2〉, 〈ψ4,2〉. Moreover since
a subgroup of G of order 2 are contained in a Sylow 2group,

〈ψ2
0,2〉, 〈ψ2

1,2〉, 〈ψ2
2,2〉, 〈ψ2

3,2〉, 〈ψ2
4,2〉

are all subgroups of G of order 2. For a subgroup H of G of order 10, since P5 is the only subgroup of G
of order 5, H ⊇ P5 = 〈σ〉. So σaτ b ∈ H if and only if τ b ∈ H. The only element of the form τ b which is of
order 2 is τ2. So H = 〈σ, τ2〉.
Combining all arguments, we obtain the following diagram

For an intermediate field L of E/Q, we consider L∗ = GalL(E). For example, Q(ζ5), note that ψ1,1(ζ5) = ζ5.
So Q(ζ5)∗ ⊇ 〈ψ1,1〉. Since

|〈ψ1,1〉| = [〈ψ1,1〉 : {1}] = 5

and
5 = [E;Q(ζ5)] = [Q(ζ5)∗ : {1}]

we have
Q(ζ5)∗ = 〈ψ1,1〉

Also,
ψ1,2(αζr5 ) = αζ5ζ

2r
5 = αζ2r+1

5
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If ψ1,2 fixes αζr5 then r = 2r + 1 mod 5 so r ≡ 4 mod 5. So Q(αζ45 )∗ ⊇ 〈ψ1,2〉. Since

|〈ψ1,2〉| = [〈ψ1,2〉 : {1}] = 4, [E : Q(αζ45 ] = 4

thus
Q(αζ45 )∗ = 〈ψ1,2〉

Using the same argument, we can get 〈ψr,2〉∗ for r ∈ {0, 1, 2, 3, 4}. Consider β = ζ5 + ζ−15 ∈ R. We have
β2+β−1 = 0. Since x2+x−1 = 0 has no rational root, we have [Q(β) : Q] = 2. Similarly, [Q(α, β) : Q(α)] = 2.
So

Week 10. Cyclic extensions

Lemma (10.0.1 Dedekind’s lemma):
Let K and L be fields and let ψi : L→ K be distinct nonzero homomorphisms (1 ≤ i ≤ n). If ci ∈ K
and

c1ψ1(α) + c2ψ2(α) + . . .+ cnψn(α) = 0,∀α ∈ L

then c1 = c2 = . . . = cn = 0.

Theorem (10.0.2 ):
Let F be a field, n ∈ N. Suppose ch(F ) = 0 or p with p - n. Assume also that xn − 1 splits over F .

1. If the Galois extension E/F is cyclic of degree n, then E = F (α) for some α ∈ E with αn ∈ F.
Particularly, xn − αn is minimal polynomial of α over F .

2. If E = F (α) with αn ∈ F , then E/F is a cyclic extension of degree d with d | n and αd ∈ F .
In particular, xd − αd is the minimal polynomial of α over F .

Theorem (10.0.3):
Let F be a field with ch(F ) = p, where p is a prime.

1. If xp− x− a ∈ F [x], is irreducible, then its splitting field E/F is a cyclic extension of degree p.

2. If E/F is a cyclic extension of degree p, then E/F is the splitting field of some irreducible
polynomial xp − x− a ∈ F [x].
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Week 11. Solvability by Radicals

11.1 Radical Extension

Definition 2.14: A finite extension E/F is radical if there exists a tower of fields

F = F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆ Fm = E

such that Fi = Fi−1(αi) and αdii ∈ Fi−1 for some di ∈ N, 1 ≤ i ≤ m.

Lemma 2.10 (11.1.1):
If E/F is a finite separable radical extension, then its normal closure N/F is also radical.

Remark
By Theorem 11.1.1., to consider a finite separable radical extension, we could instead consider its normal
closure, which is Galois.

Definition 2.15 (Solvable by radicals): Let F be a field and f(x) ∈ F [x]. We say f(x) is solvable by
radicals if there exists a racial extension E/F such that f(x) splits over E.

Remark It is possible that f(x) ∈ F [x] is solvable by radicals, but its splitting field is not a radical extension.
(A11Q2.)
Remark We recall that an expression involving only +,−,×, /, n√ is a radical. Let F be a field, f(x) ∈ F [x]

is separable. If f(x) is solvable by radicals, by definition of radical extensions, f(x) has a radical root.
COnversely, if f has a radical root, it is inn some radical extension E/F , by the lemma 11.1.1, the normal
closure N/F of E/F is radical. Since f(x) splits over N/F, f is solvable by radicals.

11.2 Radical Solutions

Lemma 2.11 (11.2.1):
Let E/F be a field extension, K,L be intermediate fields of E/F. Suppose K/F is a finite Galois
extension, then KL is a finite Galois extension of L and GalL(KL) is isomorphic to a subgroup of
GalF (K).

Definition 2.16 (Galois group): E/F be splitting field of a separable polynomial f(x) ∈ F [x]. The Galois
group of f(x) is defined to be GalF (E), denoted by Gal(f).

Theorem 2.12 (11.2.2):
Let F be a field with ch(F ) = 0. f(x) ∈ F [x] \ {0}. Then f(x) is solvable by radicals if and only if
its Galois group Gal(f) is solvable,
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Proposition 2.13 (11.2.2):
Let f(x) ∈ Q[x] be an irreducible polynomial of prime degree p. If f(x) contains precisely two nonreal
roots in C then Gal(f) ∼= Sp.

Theorem 2.14 (The Abel Ruffini Theorem):
A general polynomial f(x) with deg(f) ≥ 5 is nor solvable by radicals.

The following is review material

Week 1.

Definitions

• Commutative ring with 1

• Field

• Integral domain

• Ideal

• Principal Ideal Domain

• Quotient ring

• Maximal ideal, prime ideal

Theorems

• Every subring of a field is an integral domain.

• First isomorphism theorem

• Every maximal ideal is prime. In PID, every prime ideal is maximal.

• In Z, 〈n〉 is maximal ⇐⇒ n is prime. In F [x], 〈f(x)〉 is maximal ⇐⇒ f(x) is irreducible.

• I is an ideal of R, R 6= I, then

1. I maximal ⇐⇒ R/I is a field

2. I is prime ⇐⇒ R/I is ID

• Gauss’ lemma for Z[x].

• Eisenstein’s criterion for Z[x].

• Eisenstein’s criterion for PID.

Observations and remarks

• Only ideals of a field F is {0} and F

• Any ring homomorphism whose domain is a field is either injective or zero.

50



Week 2. Field extensions

Definitions

• Field extension

• Degree of a field extension: degree of E/F as a vector space

• Finite/ infinite field extension: refers to the degree

• F [x], F (x) where the former is all polynomials (ring), and latter is all rational functions (field).

• F [a], F (a) given finite extension, the former means smallest subring and latter means smallest subfield.

• α is algebraic/ transcendental over F : algebraic if there is a polynomial, not zero, such that α is a
root. Otherwise transcendental

• Simple extension: E = F (α) for some α ∈ E

• If R,R1 are two rings that contain F , a ring homomorphism ψ : R → R1 is a F homomorphism if its
restriction to F is identity.

• Minimal polynomial over field F : in the sense of 2.2.2.

• Algebraic and transcendental extensions: algebraic if every element in E is algebraic over F , transcen-
dental otherise.

• Algebraic closure: given E/F , the algebraic closure is {α ∈ E : [F (α) : F ] <∞}.

• Algebraically closed: any algebraic extension is the field itself.

Theorems

• 2.1.1. E/K,K/F finite extensions then E/F is finite with

[E : F ] = [E : K][K : F ]

• 2.2.1 Relationships between F [a], F (a), F [x], F (x) for transcendental a.

F [a] ∼= F [x], f(a) ∼= f(x), F [a] 6∼= F (a)

where a ∈ E, with extension E/F

• 2.2.2. If a is algebraic, there exists a unique monic irreducible polynomial f ∈ F [x] such that there
exists F isomorphism

ψ : F [x]/〈p(x)〉 → F [α], ψ(x) = α

and F [α] = F (α).

• 2.2.3. Let E/F be a field extension, α ∈ E. Then:

1. α is transcendental over F ⇐⇒ [F (α) : F ] =∞
2. α is algebraic over F ⇐⇒ [F (α) : F ] <∞
3. If p(x) is the minimal polynomial of α over F , then [F (α) : F ] = deg(p) and {1, α, . . . , αdeg(p)−1}

is a basis for [F (α) : F ]

• 2.2.4 Given a finite extension, we can always write it as a chain of simple extensions. That is, if E/F
is finite, [E : F ] <∞, exists α1, . . . , αn ∈ E such that

F ( F (α1) ( F (α1, α2) ( . . . ( F (α1, . . . , αn) = E
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• 2.2.5. Finite extensions are algebraic.

• 2.2.6. Algebraic closure is an intermediate field.

Observations and remarks

• Converse of 2.2.5 is false. The algebraic extension Q = {α ∈ C, α is algebraic over Q}, we have
[Q : Q] =∞. Since any ζp ∈ Q, we have [Q : Q] > [Q(ζp) : Q] = p− 1.
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Week 3

Definitions

• Given E/F a field extension. f(x) ∈ F [x] splits over E.

• E is a splitting field of f(x) ∈ F [x].

• Extending homomorphism

Theorems

• 3.1.1. Let p(x) ∈ F [x] be irreducible. Then F [x]/〈p(x)〉 is a field containing F and a root of f(x).

• 3.1.2. Let f(x) ∈ F [x]. There exists a field E ⊇ F such that f(x) splits over E.

• 3.1.3. Every f(x) ∈ F [x] has a splitting field, which is a finite extension of F .

• 3.2.1. Given F, F1, an iso φ : F → F1, let Φ be extended homomorphism. Given f(x) ∈ F [x], f1(x) ∈
F1[x], let E/F,E1/F1 be splitting field of f, f1 respectively, then there exists ψ : E → E1 that extends
φ.

• 3.2.2. Any two splitting fields of f(x) ∈ F [x] over F are F−isomorphic.

• 3.3.1. Let F be field and f(x) ∈ F [x], deg(f) = n ≥ 1. If E/F is the splitting field of f then [E : F ] | n!.

• A3Q1: the number of such ψ in 3.2.1. is ≤ [E : F ].

• A3Q2 : C is not the splitting field of some polynomial over Q.
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Week 4

Definitions

• The prime field of a field F : intersection of all its subfields.

• Characteristic of a field

• The formal derivative: D(f) = f ′ as a linear operator.

• Repeated root

• Irreducible polynomial being separable

• General polynomial being separable.

• A field is perfect if every irreducible polynomial is separable.

Theorems

• 4.1.1. The prime field of a field is isomorphic to either Q or Zp, p prime.

• 4.1.2. Let F be a field with ch(F ) = p and let n ∈ N. The map ψ : F → F given by u 7→ up
n

is an
injective Zp homomorphism of fields. If F is finite, then ψ is a Zp isomorphism of F .

• 4.2.1. Let F be a field and f(x) ∈ F [x].

– If ch(F ) = 0, then f ′(x) = 0 if and only if f(x) = c, c ∈ F
– If ch(F ) = p, then f ′(x) = 0 if and only if f(x) = g(xp), g ∈ F [x].

• 4.2.2. Given E/F a field extension, α is a repeated root of f(x) ⇐⇒ (x− α) | gcd(f, f ′).

• 4.2.3. f(x) ∈ F [x] has no repeated roots in any extension if and only if gcd(f, f ′) = 1.

• 4.3.1. If F is a finite field, then ch(F ) = p for some prime p and |F | = pn, n ∈ N.

• 4.3.2. Let F be a field, G a finite subgroup of F ∗. Then G is a cyclic group. If F is finite, then F ∗ is
cyclic.

• 4.3.3. If F is a finite field, then F is a simple extension of Zp.

• 4.3.4. Let p be a prime, n ∈ N.

1. F is a finite field with |F | = pn ⇐⇒ F is a splitting field of xp
n − x over Zp.

2. Let F be a finite field with |F | = pn. Let m ∈ N,m | n, then F contains a subfield K with
|K| = pm.

• 4.3.5. Let p be a prime, n ∈ N. Any two finite fields are pn isomorphic. We denote it by Fpn .

• 4.4.1. Let F is a field

1. If ch(F ) = 0, then F is perfect

2. If ch(F ) = p, and F p = F, F is perfect.

• 4.4.2. Every finite field is perfect.

• A4Q1: Let F be a field with ch(F ) = p. Consider the Frobenius map φ of F , defined by ψ(x) = xp.
Then

– ψ is an injective field homomorphism
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– If F is finite, then ψ is automorphism.

– If F is not finite, then ψ might not be surjective.

• A4Q2: g(x) is irreducible polynomial over Fp, g(x) divides xp
n − x. Prove deg(g(x)) | n.

Observations and remarks

• With Ch(F ) = p, given a, b ∈ F , we always have (a+ b)p = ap + bp

• Consider the polynomial f(x) = xn − a ∈ F [x], n ≥ 2. If a = 0, the only irreducible factor is x. Since
gcd(x, x′) = 1, it is separable. Now assume a 6= 0.f ′(x) = nxn−1 so the only irreducible factor of f ′(x)
is x given n 6= 0.

1. If ch(F ) = 0, gcd(f, f ′) = 1, f is separable

2. If ch(F ) = p, gcd(n, p) = 1, f is separable

3. If ch(F ) = 0,

(a) If a ∈ F p, it is separable

(b) If a /∈ F p, it is not separable. All roots of f are the same and it is purely inseparable.

• Regarding 4.4.1. If ch(F ) = p, F p 6= F , then taking a ∈ F \ F p we have xp − a is purely inseparable.
So if ch(F ) = p, F is perfect if and only if F p = F.
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Week 5 Part 1. Group Actions

Definitions

• Group action

• Stabilizer of a x, denoted Gx. The set of group elements that stabilize teh set element x.

• Centralizer and center are the concepts when the group is acting on itself.

• Centralizer of x, denoted Gx is the set of group elements such that g commutes with x.

• Center of G, denoted Z(G), is the set of group elements that commutes with every group element.

Theorems

• The class equation.

|G| = |Z(G)|+
m∑
i=1

[G : CG(xi)]

where xi ∈ G \ Z(G), the orbits G · xi = {gxig−1 : g ∈ G} are distinct conjugacy classes of G and
|G · xi| = [G : CG(xi)] > 1 for each i.

• 5.1.1. Given prime p, let G be a group of order pn which acts on a finite set S. Let

S0 = {x ∈ S : gx = x,∀g ∈ G}

Then we have |S| ≡ |S0| (mod p).

• 5.1.2. Let p be a prime and G a finite group. If p | |G|, G contains an element of order p.

Week 5 Part 2. Sylow Theorems

Definitions

• p-group: every element has order of a non-negative power of p.

• Given H ≤ G, we have
NG(H) = {g ∈ G : gHg−1 = H}

is normalizer of H in G. particularly, H / NG(H).

• Sylow p−subgroup: P ≤ G is a Sylow p−subgroup of G is P is a maximal p−group of G.

Theorems

• 5.2.1. A finite group G is a p-group if and only if |G| is a power of p.

• 5.2.2. The center Z(G) of a nontrivial finite p-group G contains more than one element.

• 5.2.3. If H is a p-subgroup of a finite group G, then [NG(H) : H] ≡ [G : H] (mod p).

• 5.2.4. H be a p−subgroup of a finite group G. If p | [G : H] then p | [NG(H) : H] and NG(H) 6= H.

• 5.2.5. (First Sylow Theorem)

Let G be a group of order pnm, where p is a prime and n ≥ 1, gcd(p,m) = 1. Then G contains a
subgroup of order pi for all 1 ≤ i ≤ n. Moreover, every subgroup of G of order pi, i < n is normal in
some subgroup of order pi+1.
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• 5.2.6. Let G be a group of order pnm, where p is a prime. n ≥ 1, gcd(n,m) = 1. Let H be a p−subgroup
of G.

1. H is a sylow p−subgroup if and only if |H| = pn

2. Every conjugate of a Sylow p-subgroup is a sylow p−subgroup.

3. If there is only one Sylow p−subgroup P , then P / G.

• 5.2.7. Second Sylow Theorem

If H is a p−subgroup of a finite group G, and P is any Sylow p−subgroup of G, then there exist g ∈ G
such that H ⊆ gPg−1. In particular any two Sylow p−subgroups of G are conjugate.

• 5.2.8. Third Sylow Theorem

If G is a finite group and P a prime, p | |G|, then the number of Sylow p−subgroups of G divides |G|
and is of the form kp+ 1 for some k ∈ N ∪ {0}.

• A5Q1 G be finite group, |G| = pq, primes, p > q. If p 6≡ 1 mod q then g ∼= Z/〈pq〉.

• A5Q2 G be a group |G| = p2, p prime, then G is abelian, either G ∼= Z/〈p2〉 or G ∼= Z/〈p〉 × Z/〈p〉.

• A5Q2. p, q primes, there are no simple groups of order pq.

Observations and remarks

• If |G| = prm, gcd(p,m) = 1 and np the number of Sylow p-subgroups of G, we have by third sylow
theorem np | prm and np ≡ 1 mod p. Since p - np, np | m.
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Week 6

Definitions

• A solvable group: tower of normal subgroup and abelian quotient.

• Simple group

Theorems

• Recall the second and third isomorphism theorems.

• 6.0.1. G is solvable, then

– If H is a subgroup of G, then H is solvable

– N a normal subgroup of G, then G/N is solvable.

• 6.0.2. N / G. If N , G/N are solvable then G is solvable. I.e. direct product of finitely many solvable
groups is solvable.

• 6.0.3. If G is a finite solvable group, we can write the tower such that each quotient is cyclic, and even
each quotient is of prime order.

• A6Q1 If H, K are solvable subgroups of G, K / G, then HK is solvable.

Observations and remarks

• S4 is solvable. For any n ≥ 5, Sn is not solvable.

• A5 is not solvable, by this reasoning, S5 is not solvable. So Sn is not solvable for n ≥ 5.
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Week7
Definitions

• Given E/F , and φ : E → E, φ is an F -automorphism

• The automorphism group of E/F,AutF (E)

• Given F field and f(x) ∈ F [x]. The automorphism group of f(x) over F .

• Given E/F , φ ∈ AutF (E), Then Eφ is the fised field of φ.

• Given G ⊆ AutF (E), what is the fixed field of G.

Theorems

• 7.1.1. Let E/F be field extension, f(x) ∈ F [x], φ ∈ AutF (E). If α ∈ E is a root of f(x), so is φ(α).

• 7.1.2. Let E = F (α1, . . . , αn) be a field extension of F . If ψ1, ψ2 ∈ AutF (E), we have ψ1(αi) =
ψ2(αi),∀1 ≤ i ≤ n. Then ψ1 = ψ2.

• 7.1.3. If E/F is finite extension, so is AutF (E) a finite group.

• 7.2.1. E/F be the splitting field of a nonzero polynomial f(x) ∈ F [x]. We have |AutF (E)| ≤ [E : F ].
Equality holds if and only if f(x) is separable.

• 7.2.2. If f(x) ∈ F [x] has n distinct roots in splitting field of E. Then AutF (E) is isomorphic to a
subgroup of Sn. |AutF (E)| | n!

• 7.3.1. f(x) ∈ F [x] separapble, and E/F be its splitting field. If G = AutF (E), then EG = F.

• A7Q2: relationship between Fp(t) and Fp(tp)

Observations and remarks

• Converse of 7.1.3. is false. That is, R/Q is infinite but AutQ(R) = {1}.
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Week 8

Definitions

• Given an algebraic field extension E/F , we say α ∈ E is separable over F if minimal polynomial is.
We say the extension is separable if all elements in E is separable.

• Primitive element of E/F : γ such that E = F (γ).

• Normal extension

• Normal closure

Theorems

• 8.1.1. Let E/F be splitting field of f(x) ∈ F [x]. If f(x) is separable, E/F is separable. That is,
splitting fields of separable polynomials are separable.

• 8.1.2. Let E/F be a finite extension, E = F (α1, . . . , αn). If each αi is separable over F then so is E/F .

• 8.1.3. Let E/F be an algebraic extension, L the set of all α ∈ E separable over F . Then L is an
intermediate field.

• 8.1.4. Primitive element theorem. Finite separable extensions are of the form F (γ). If ch(F ) = 0, then
any finite extension E/F is a simple extension.

• 8.2.1. A finite extension E/F is normal if and only if it is the splitting field of some f(x) ∈ F [x].

• 8.2.2. If E/F is a normal extension, K intermediate field, then E/K is normal.

• 8.2.3. Let E/F be finite normal extension, α, β ∈ E. TFAE:

– Exists ψ ∈ AutF (E) s.t. ψ(α) = β

– The minimal polynomials of α, β over F are the same.

We say they are conjugates, in this case.

• 8.2.4. Every finite extension E/F has a normal closure N/F which is unique up to E−isomorphism.

• A8Q1: there is a finite extension that is not simple.

• A8Q2: Let E/F be a field extension and K,L two intermediate fields. Let KL be the compositum of
K and L, i.e. the smallest field that contains K and L. Prove that if K/F and L/F are finite normal
extensions, then KL/F is also a finite normal extension.

Observations and remarks

• If ch(F ) = 0, the field is perfect and every polynomial is separable, hence any algebraic extension E/F
is separable.

• Every quadratic extension is normal

• Q( 4
√

2)/Q is not normal.

• Composition of two normal extensions are not always normal.

• In prop 8.2.2., K/F is not always normal.
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Week 9

Definitions

• Galois extension (only for algebraic extensions)

• Galois group

• Abelian, cyclic, solvable extensions

• Elementary symmetric functions

Theorems

• 9.1.1. (E.Artin). Let E be a field and G a finite subgroup of Aut(E). Let EG be E’s elements fixed
by all automorphisms in the group. Then E/EG is a finite Galois extension and GalEG(E) = G.

[E : EG] = |G|

• 9.2.1. Fundamental Theorem of Galois Theory

Let E/F be a finite Galois extension, G = GalF (E). Then there is an order reversing bijection between
intermediate fields of E/F and subgroups of G.

Int(E/F )→ Sub(G), L 7→ L∗ = GalL(E)

Sub(G)→ Int(E/F ), H 7→ H∗ = EH

have: L1, L2 ∈ Int(E/F ), L2 ⊆ L1 H1, H2 ∈ Sub(G) H2 ⊆ H1, we have

[L1 : L2] = [L∗2 : L∗1], [H1 : H2] = [H∗2 : H∗1 ]

• 9.2.2. Let E/F be a finite Galois extension, G = GalF (E), let L bea n intermediate field. Then for
ψ ∈ G,

Galψ(L)(E) = ψGalL(E)ψ−1

• 9.2.3. E/F,L, L∗ defined in 9.2.1. Then L/F is a Galois extension if and only if L∗ is a normal
subgroup of G. In this case, GalF (L) ∼= G/L∗.

• A9: determine if various field extensions are Galois.

Observations and remarks

• Consider 8.1.1. If E is the splitting field of some f(x) ∈ F [x], then we have ⇐⇒ in theorem 8.1.1.

• By 8.1.1.,8.1.2., a finite Galois extension is equivalent to the splitting field of a separable polynomial.

• Given finite Galois extension, 7.2.1. imply |GalF (E)| = [E : F ]

• If E/F is splitting field of a separable polynomial degree n, then 7.2.2. imply GalF (E) is a subgroup
of Sn.

• Let E be a field, G a finite subgroup of Aut(E), for α ∈ E, consider the G orbit of α, {α1, α2, . . . , αm}.
Then the minimal polynomial of α over EG is (x− α1) . . . (x− αm) ∈ EG[x].

• Consider E = F (t1, t2, . . . , tn) be function field in n variable t1, t2, . . . , tn over field F . Then EG =
F (s1, . . . , sn) with degree n!.

• There are corresponding analysis for groups corresponding the Frobenius auromorphism and the split-
ting field of polynomial.

61



Week 10

Theorems

• 10.0.1. (Dedekind’s lemma)

Given K, L, fields. Let ψi : L→ K be distinct nonzero homomorphisms. If ci ∈ K, and
∑
i ciψ(i)(α) =

0 for all α ∈ L, then c1 = . . . = cn = 0.

• 10.0.2. Let F be a field n ∈ N. Suppose ch(F ) = 0, or p, p - n, then assume xn − 1 splits over F .

1. If the Galois extension E/F is cyclic of degree n, then E = F (α) for some α ∈ E,αn ∈ F . In
particular, xn − αn is the minimal polynomial of α over F .

2. If E = F (α) with αn ∈ F , then E/F is a cyclic extension of degree d, d | n, αd ∈ F. In particular,
xd − αd is the minimal polynomial of α over F .

• 10.0.3. Let F be a field, ch(F ) = p, p is a prime.

1. If xp − x− α ∈ F [x] is irreducible, then its splitting field E/F is a cyclic extension of degree p.

2. If E/F is a cyclic extension of degree p, then E/F is the splitting field of some irreducible
polynomial xp − x− a ∈ F [x].

• A10: construct cyclic Galois extension whos degree is k, where 2k + 1 is prime.

• Field lattice and galois group correspondence of a certain Galois extension.
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Week 11

Definitions

• Radical extension: existence of a tower of fields such that the adjacent ones have the form Fi = Fi−1(αi),
αdii ∈ Fi−1 for some di ∈ N.

• Given field F , f(x) ∈ F [x], then f(x) is solvable by radicals if... it splits over a radical extension of F .

• Galois group of a polynomial f(x) where E/F is the splitting field of a separable polynomial f(x).

Theorems

• 11.1.1. If E/F is a finite separable radical extension, then its normal closure N/F is also radical.

• 11.2.1. Let E/F be a field extension, K,L intermediate fields of E/F. Suppose K/F is a finite Galois
extension. Then KL is also a finite Galois extension of L. GalL(KL) is isomorphic to a subgroup of
GalF (K).

• 11.2.2. Let F be a field, ch(F ) = 0, f(x) ∈ F [x] \ {0}. Then f(x) is solvable by radicals if and only if
Gal(f) is solvable.

• 11.2.3. Let f(x) ∈ Q[x] be irreducible polynomial of prime degree p. If f(x) contains precisely two
nonreal roots in C then Gal(f) ∼= Sp.

• 11.2.4. (Abel-Ruffini Theorem)

A general polynomial f(x) with deg(f) ≥ 5 is not solvable by radicals.

• A11Q1: determine if a quintic is solvable by radical

• Note that is is possible that a polynomial is solvable by radicals but its splitting field is not a radical
extension.

Observations and remarks

• To consider a finite separable radical extension, we could instead consider its normal closure, which is
Galois.

• It is possible that a polynomial is solvable by radicals, but its splitting field is not a radical extension.

• An expression involving only +,−, /, ∗,
√
· is a radical.

• Given a separable polynomial, if it is solvable by radicals, then it has a radical root.

• Given a separable polynomial, if it has a radical root, by lemma 11.1.1. , f is solvable by radicals.

•
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