1 Definition and examples of groups and subgroups

Definition 1.1 (Conjugacy class): Let G be a group. For $a, b \in G$, we say they are conjugates if there exists some $x \in G$ so that $xax^{-1} = b$. For $a \in G$, define the conjugacy class to be

$$cl(a) = cl_G(a) = \{b \in G \mid b \sim a\} = \{xax^{-1} \mid x \in G\}$$

Remark 1 Subgroup notation is $H \leq G$.

Theorem 1.1 (Subgroup tests):

- Subgroup test 1: a subset H of G is a subgroup if and only if 1. contains identity, 2. closed under operation, 3. closed under inversion
- Subgroup test 2:a subset H of G is a subgroup if and only if 1. it is nonempty 2. for all $a, b \in H, ab^{-1} \in H$
- Finite subgroup test: G a group, H a finite subset of the group. Then $H \leq G$ iff 1. nonempty, 2. closed under operation.

Definition 1.2 (Dihedral group):

Definition 1.3 (Centre): Let G be a group. The center of it is the following subgroup.

$$Z(G) = \{a \in G \mid ax = xa, \forall x \in G\}$$

The centralizer of an element $a \in G$ is the following subgroup.

$$C_G(a) = \{ x \in G \mid ax = xa \}$$

Center is the subgroup of elements that commutes with everything whereas centralizer (specific to an element) is all the elements that commutes with that particular element.

2 Cyclic groups and Generators

- Know what it's meant by: if G is a group, $S \subseteq G$, then subgroup of G generated by S means..
- Generators
- Finitely generated, cyclic

Remark 2 An interesting result Let G be a group and let $a \in G$. Then if |a| = n, we have $\langle a^k \rangle = \langle a^l \rangle$ iff gcd(n,k) = gcd(n,l). The distinct subgroups of $\langle a \rangle$ are the subgroups of the form

$$\langle a^d \rangle = \{ a^{kd} \mid k \in \mathbb{Z}_{n/d} \} = \{ a^0, a^d, a^{2d}, \dots a^{n-d} \}$$

where $d \mid n$.

So if $a \in G$ with |a| = n, the order of a^k is a positive divisor of n, and for each positive divisor $d \mid n$, the number of elements in $\langle a \rangle$ of order d is $\phi(d)$. So for $n \in \mathbb{Z}^+$ we have $\sum_{d \mid n} \phi(d) = n$.

Definition 2.1 (Free group): Have a set of S. F(S) constructed by having words from S, works by concatenation and cancellation.

Definition 2.2 (Free abelian group): Abelianize free group. Characterized by the set of function that sends $S \to \mathbb{Z}$ with f(a) = 0 for all but finitely many $a \in S$.

3 Chapter 3. The symmetric group

Definition 3.1 (Array notation): Array notation for S_n .

For $n \geq 3$, we can think of D_n as a subgroup of S_n . As an element that permutes roots of unity.

Definition 3.2 (Cycle notation): $\alpha = (a_1, a_2, \dots, a_\ell)$. As a theorem, every element in S_n can be written as a product of disjoint cycles.

Theorem 3.1:

- The order of a permutation: when a permutation is written in disjoint cycle notation, its order is the lcm of the lengths of the cycles.
- Conjugacy class of a Permutation: Let $\alpha, \beta \in S_n$. Then α, β are conjugates in S_n if and only if written in cycle notation, they have same number of cycles in each lenght.
- Even/odd permutations: every element in S_n is a product of 2-cycles. If e can be written as a product of 2-cycles, then the number of 2-cycles that makes e is even. If an element a can be written as product of 2-cycles in two ways, then in both ways, the number of 2-cycles are consistent modulo 2.
- Parity is defined by number of 2-cycles in the 2-cycle notation.

Definition 3.3 (The alternating group A_n):

For $n \geq 2$, we define the alternating group A_n to be

$$A_n = \{ \alpha \in S_n \mid (-1)^{\alpha} = 1 \}$$

Note that $A_n \subseteq S_n$. Also $|A_n| = \frac{1}{2}|S_n| = \frac{n!}{2}$. We have a bijective correspondence between $A_n, S_n \setminus A_n$ by $F(\alpha) = (12)\alpha$.

4 Chapter 4. Homomorphisms and Isomorphisms of groups

Definition 4.1 (Endomorphism, automorphism): An endomorphism is a group homomorphism from a group G to itself. An automorphism is a group isomorphism to itself.

Theorem 4.1: Let $a, b \in \mathbb{Z}^+$, gcd(a, b) = 1. Then • $\mathbb{Z}_{ab} = \mathbb{Z}_a \times \mathbb{Z}_b$ • $U_{ab} = U_a \times U_b$ The U_k is the multiplicative group of elements rel.prime to k.

Definition 4.2 (Conjugation groups):

Given a group, then the map called conjugation by a, where $a \in G$ is given by

$$C_a(x) = axa^{-1}$$

Inner automorphism of G:

 $Inn(G) = \{C_a \mid a \in G\}$

note that $Inn(G) \leq Aut(G)$. Note that when $H \leq G$, we have

$$C_a(H) \cong H$$

The isomorphic groups H and $C_a(H) = aHa^{-1}$ are called conjugate subgroups of G.

Theorem 4.2 (Cayley's Theorem): Let G be a group

- G is isomorphic to a subgroup of perm(G). Consider the left multiplication L_a .
- If |G| = n then G is isomorphic to a subgroup of S_n .

5 Chapter 5. Cosets, Normal subgroups, quotient groups

Definition 5.1 (Cosets):

Given a group G and a subgroup H, given $a \in H$, then left coset of H containing a is: aH. The set of left cosets of H in G is:

 $G/H = \{aH \mid a \in G\}.$

The index of G/H is [G:H] = |G/H|. Note this notation is also used in field extensions. We call these left cosets and right cosets. When G is abelian they are just cosets.

Theorem 5.1 (Properties of cosets): Let $H \leq G, a \in G$. Then

- $\bullet \ b \in aH \iff a^{-1}b \in H \iff aH = bH$
- |H| = |aH|
- Either aH = bH or $aH \cap bH = \emptyset$.

Corollary 5.2 (Lagrange's theorem): |G| = |G/H||H|

Theorem 5.3 (Properties of normal subgroups): Let $H \leq G$. Then TFAE

- The operation $*: G/H \times G/H$ by (aH) * (bH) = (ab)H makes sense
- For any $a \in G$, $aHa^{-1} = H$
- For any $a \in G, aH = Ha$
- $\bullet \ aha^{-1} \in H, \forall h \in H, a \in G$

Definition 5.2 (Normal subgroups): When $H \leq G$ then H a normal subgroup of G, write $H \leq G$. G/H is the quotient group of G by H.

Definition 5.3 (Simple groups): A group G is simple if $H \leq G$ implies that H = G or $H = \{e\}$.

Theorem 5.4 (The first isomorphism theorem):

1. if $\phi: G \to H$ is a homomorphism, then $K = ker(\phi) \trianglelefteq G$. Also $G/K \cong Im(\phi)$. The map

$$\Phi: G/K \to Im(\phi), aK \to \phi(a)$$

is the map that gives the desired isomorphism.

2. If $K \trianglelefteq G$, then the map $\phi: G \to G/K$ given by $\phi(a) = aK$ is the group homomorphism with $ker(\phi) = K$.

Theorem 5.5 (The second isomorphism theorem): Let G be a group and $H \leq G$, $K \trianglelefteq G$. Then $K \cap H \trianglelefteq H$, $KH = \langle K \cup H \rangle$, and $H/(K \cap H) \cong KH/K$. Theorem 5.6 (The third isomorphism theorem): Let G be a group, let $H, K \trianglelefteq G$ with $K \le H$. Then $H/K \trianglelefteq G/K$ and $(G/K)/(H/K) \cong G/H$.

Definition 5.4 (Centralizer, Normalizer): Let $H \leq G$. Then centralizer of H is:

$$C(H) = \{a \in G \mid ah = ha, \forall h \in H\}$$

Let $H \leq G$. Then normalizer of H is:

$$N(H) = \{a \in G \mid aH = Ha\}$$

Theorem 5.7 (The normalizer/centralizer theorem): Let $H \leq G$, then $C(H) \leq N(H)$ and N(H)/C(H) is isomorphic to a subgroup of Aut(H).

Theorem 5.8 (Characterization of internal direct products): Let G be a group. Let $H \trianglelefteq G, K \trianglelefteq G$. Suppose $H \cap G = \{e\}$ and G = HK. Then $G \cong H \times K$

Theorem 5.9 (simple A_n): for $n \ge 5$, A_n is simple.

6 Chapter 6. Group actions on sets

Definition 6.1 (Representation):

Let G be a group. A representation of a G is a group homomorphism $\phi: G \to perm(S)$ for some set S. A representation is called faithful when it is injective.

Definition 6.2 (Group action):

Let G be a group, let S be a set. A group action of G on S is a map from $G \times S \to S$ such that $e \cdot x = x, (ab)x = a(bx), \forall x \in S, a, b \in G$. A group action is faithful if its corresponding representation is also faithful.

Definition 6.3 (Fixed set, orbit, stabilizer):

Let G be a group which acts on a set S. Let $a \in G$. The fixed set of a is

$$Fix(a) = \{x \in S \mid ax = x\} \subseteq S$$

The orbit of an element $x \in S$ is

$$Orb(x) = Gx = \{ax \mid a \in G\} \subseteq S$$

Note that elements in one another's orbits is an equivalence relation. So the notation S/G makes sense.

The stablizer of an element $x \in S$ is

$$Stab(x) = \{a \in G \mid ax = x\} \leq G$$

Theorem 6.1 (Orbit-stabilizer theorem): Let G be a group acting on a set S. Then for $x \in S$, we have

|G| = |Orb(x)||Stab(x)|

Definition 6.4 (Class equation):

$$|G| = \sum |G/C(x_i)|$$

Definition 6.5 (Cauchy's theorem): G is a finite group. Let p be a prime divisor of |G|. Then G contains an element of order p. Indeed

 $|\{a \in G \mid |a| = p\}| = p - 1 \pmod{(p - 1)p}$

Theorem 6.2: G a finite group, $H \leq G$. Suppose |G/H| = p. where p is the smallest prime divisor of |G|. Then H is a normal subgroup of G.

Theorem 6.3 (Burnside lemma): Good for counting vertex coloring.

7 Chapter 7. The classification of Finite abelian groups

Definition 7.1 (Free abelian group): groups isomorphic to \mathbb{Z}^n .

Theorem 7.1 (Subgroups and quotient groups of \mathbb{Z}^n): Let G be a free abelian group of rank n. Let $H \leq G$. Then H is a free abelian group of rank r for some $0 \leq r \leq d$ and $H \cong \mathbb{Z}_{d_1} \times \mathbb{Z}_{d_2} \times \ldots \mathbb{Z}_{d_r} \times \mathbb{Z}^{n-r}$

with $d_1 \mid d_2, d_2 \mid d_3, \dots, d_{r-1} \mid d_r$.

Theorem 7.2: very finite abelian group is isomorphic to a unique group of the form

$$\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \ldots \times \mathbb{Z}_{n_l}$$

for some integer $\ell \ge 0$ and some integers n_i with $2 \le n_1, n_1 \mid n_2, n_2 \mid n_3, \dots, n_{l-1} \mid n_l$. Alternatively, every finite abelian group is isomorphic to a unique group of the form

$$\mathbb{Z}_{p_1^{k_1}} imes \mathbb{Z}_{p_2^{k_2}} imes \ldots imes \mathbb{Z}_{p_m^{k_m}}$$

such that whenever $p_1 \leq p_2 \leq \ldots \leq p_m$. If $p_i = p_{i+1}$ then must have $k_i \leq k_{i+1}$. All the k_i s are positive integers.

Corollary 7.3 (Classification of Finite Abelian groups): Let G, H be finite abelian groups. If G, H have same number of elements of each order, then $G \cong H$.

Corollary 7.4 (number of distinct abelian groups): Let $n = \prod p_i^{k_i}$, distinct notation. Then number of distinct abelian groups of order N is equal to $\prod P(k_i)$ where K is the number of partitions.

8 Chapter 8. Definitions and examples of rings and subrings.

Definition of rings: a set R with two binary operations, addition denoted by +, multiplication by ×, and 0-additive identity. With the following properties:

- \bullet + is associative
- \bullet + is commutative
- 0 is additive identity
- Everything has a inverse under +
- $\bullet~\times$ is associative
- \times distributive over +

Basically, it's an abelian group under + with additional properties: \times is associative and distributive.

- commutative ring
- ring has identity
- a ring element is invertible (if it has a 1)
- division ring: a ring where every element is invertible
- field: commutative division ring
- units in ring: (if R has a 1, and $a \in R$ has multiplicative inverse, then a is a unit of R.)
- $\bullet~$ left inverse

- right inverse
- zero divisors
- integral domain
- characteristic of a ring
- Center of a ring is a subring

Theorem 8.1:

- R is a finite ring. It is a field if and only if it's an ID.
- Let R be a ring with 1 and no zero divisors. Then either char(R) = 0 or char(R) is prime.
- Subring tests and subfield tests

9 Chapter 9 Ring Homomorphisms, Ideals, quotient rings

Definition 9.1:

- ring homomorphism $(+, \times \text{ structures preserved})$
- ideals
- generated ideals by a subset
- finitely generated ideal
- principle ideal

Theorem 9.1:

- Intersection, sum, and products of ideals are ideals
- Given a set $U \subseteq R$, how to generate the ideal corresponding to that set.

Theorem 9.2 (First isomorphism theorem): Let $\phi : R \to S$ be a homomorphism of rings. $K = ker(\phi)$. Then K is an ideal of R and

 $R/K \cong \phi(R)$

Theorem 9.3 (Second isomorphism theorem): A, B are ideals in R. Then A is an ideal of A + B and $A \cap B$ is an ideal in B.

 $(A+B)/A \cong B/(A \cap B)$

Theorem 9.4 (Third isomorphism theorem): A, B are ideals in R with $A \subseteq B \subseteq R$. Then B/A is an ideal fo R/A and

 $(R/A)/(B/A) \cong R/B$

10 Chapter 10. Factorization in commutative rings

Definition 10.1:

- Prime ideal
- maximal ideal
- Divisors and associates in commutative rings
- ring elements that are reducible, irreducible, prime
- Euclidean domain
- Principal ideal domain
- Unique factorization domain
- Noetherian ring

Theorem 10.1:

- An ideal is prime if and only if...
- Let R be a commutative ring with 1. Let P be an ideal in R. Then P is prime if and only if R/P is an integral domain.
- Let R be a commutative ring with 1. Show that every maximal ideal in R is also prime.
- Let R be a commutative ring with 1. Let M be an ideal in R. Then M is maximal if and only if R/M is a field.
- Associates have the same properties in being reducible, irreducible, unit, prime.

