
1 Definition and examples of groups and subgroups

Definition 1.1 (Conjugacy class): Let G be a group. For a, b ∈ G, we say they are conjugates if there
exists some x ∈ G so that xax−1 = b. For a ∈ G, define the conjugacy class to be

cl(a) = clG(a) = {b ∈ G | b ∼ a} = {xax−1 | x ∈ G}

Remark 1 Subgroup notation is H ≤ G. 2

Theorem 1.1 (Subgroup tests):

• Subgroup test 1: a subset H of G is a subgroup if and only if 1. contains identity, 2. closed
under operation, 3. closed under inversion

• Subgroup test 2:a subset H of G is a subgroup if and only if 1. it is nonempty 2. for all
a, b ∈ H, ab−1 ∈ H

• Finite subgroup test: G a group, H a finite subset of the group. Then H ≤ G iff 1. nonempty,
2. closed under operation.

Definition 1.2 (Dihedral group):

Definition 1.3 (Centre): Let G be a group. The center of it is the following subgroup.

Z(G) = {a ∈ G | ax = xa,∀x ∈ G}

The centralizer of an element a ∈ G is the following subgroup.

CG(a) = {x ∈ G | ax = xa}

Center is the subgroup of elements that commutes with everything whereas centralizer (specific to an element)
is all the elements that commutes with that particular element.

2 Cyclic groups and Generators

• Know what it’s meant by: if G is a group, S ⊆ G, then subgroup of G generated by S means..

• Generators

• Finitely generated, cyclic

Remark 2 An interesting result Let G be a group and let a ∈ G. Then if |a| = n, we have ⟨ak⟩ = ⟨al⟩ iff
gcd(n, k) = gcd(n, l). The distinct subgroups of ⟨a⟩ are the subgroups of the form

⟨ad⟩ = {akd | k ∈ Zn/d} = {a0, ad, a2d, . . . an−d}

where d | n.
So if a ∈ G with |a| = n, the order of ak is a positive divisor of n, and for each positive divisor d | n, the
number of elements in ⟨a⟩ of order d is ϕ(d). So for n ∈ Z+ we have

∑
d|n ϕ(d) = n. 2
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Definition 2.1 (Free group): Have a set of S. F (S) constructed by having words from S, works by
concatenation and cancellation.

Definition 2.2 (Free abelian group): Abelianize free group. Characterized by the set of function that
sends S → Z with f(a) = 0 for all but finitely many a ∈ S.

3 Chapter 3. The symmetric group

Definition 3.1 (Array notation): Array notation for Sn.

For n ≥ 3, we can think of Dn as a subgroup of Sn. As an element that permutes roots of unity.

Definition 3.2 (Cycle notation): α = (a1, a2, . . . , aℓ). As a theorem, every element in Sn can be written
as a product of disjoint cycles.

Theorem 3.1:

• The order of a permutation: when a permutation is written in disjoint cycle notation, its order
is the lcm of the lengths of the cycles.

• Conjugacy class of a Permutation: Let α, β ∈ Sn. Then α, β are conjugates in Sn if and only if
written in cycle notation, they have same number of cycles in each lenght.

• Even/odd permutations: every element in Sn is a product of 2−cycles. If e can be written as
a product of 2-cycles, then the number of 2-cycles that makes e is even. If an element a can
be written as product of 2-cycles in two ways, then in both ways, the number of 2-cycles are
consistent modulo 2.

• Parity is defined by number of 2-cycles in the 2-cycle notation.

Definition 3.3 (The alternating group An):
For n ≥ 2, we define the alternating group An to be

An = {α ∈ Sn | (−1)α = 1}

Note that An ⊆ Sn. Also |An| = 1
2 |Sn| = n!

2 . We have a bijective correspondence between An, Sn \ An by
F (α) = (12)α.
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4 Chapter 4. Homomorphisms and Isomorphisms of groups

Definition 4.1 (Endomorphism, automorphism): An endomorphism is a group homomorphism from a
group G to itself. An automorphism is a group isomorphism to itself.

Theorem 4.1:
Let a, b ∈ Z+, gcd(a, b) = 1. Then

• Zab = Za × Zb

• Uab = Ua × Ub

The Uk is the multiplicative group of elements rel.prime to k.

Definition 4.2 (Conjugation groups):
Given a group, then the map called conjugation by a, where a ∈ G is given by

Ca(x) = axa−1

Inner automorphism of G:
Inn(G) = {Ca | a ∈ G}

note that Inn(G) ≤ Aut(G).
Note that when H ≤ G, we have

Ca(H) ∼= H

The isomorphic groups H and Ca(H) = aHa−1 are called conjugate subgroups of G.

Theorem 4.2 (Cayley’s Theorem):
Let G be a group

• G is isomorphic to a subgroup of perm(G). Consider the left multiplication La.

• If |G| = n then G is isomorphic to a subgroup of Sn.

5 Chapter 5. Cosets, Normal subgroups, quotient groups

Definition 5.1 (Cosets):
Given a group G and a subgroup H, given a ∈ H, then left coset of H containing a is: aH.
The set of left cosets of H in G is:

G/H = {aH | a ∈ G}.

The index of G/H is [G : H] = |G/H|. Note this notation is also used in field extensions. We call these left
cosets and right cosets. When G is abelian they are just cosets.
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Theorem 5.1 (Properties of cosets):
Let H ≤ G, a ∈ G. Then

• b ∈ aH ⇐⇒ a−1b ∈ H ⇐⇒ aH = bH

• |H| = |aH|

• Either aH = bH or aH ∩ bH = ∅.

Corollary 5.2 (Lagrange’s theorem):
|G| = |G/H||H|

Theorem 5.3 (Properties of normal subgroups):
Let H ≤ G. Then TFAE

• The operation ∗ : G/H ×G/H by (aH) ∗ (bH) = (ab)H makes sense

• For any a ∈ G, aHa−1 = H

• For any a ∈ G, aH = Ha

• aha−1 ∈ H,∀h ∈ H, a ∈ G

Definition 5.2 (Normal subgroups): When H ≤ G then H a normal subgroup of G, write H ⊴ G. G/H
is the quotient group of G by H.

Definition 5.3 (Simple groups): A group G is simple if H ⊴ G implies that H = G or H = {e}.

Theorem 5.4 (The first isomorphism theorem):

1. if ϕ : G → H is a homomorphism, then K = ker(ϕ) ⊴ G. Also G/K ∼= Im(ϕ).

The map
Φ : G/K → Im(ϕ), aK → ϕ(a)

is the map that gives the desired isomorphism.

2. If K ⊴ G, then the map ϕ : G → G/K given by ϕ(a) = aK is the group homomorphism with
ker(ϕ) = K.

Theorem 5.5 (The second isomorphism theorem):
Let G be a group and H ≤ G, K ⊴ G. Then K ∩H ⊴ H,KH = ⟨K ∪H⟩, and H/(K ∩H) ∼= KH/K.
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Theorem 5.6 (The third isomorphism theorem):
Let G be a group, let H,K ⊴ G with K ≤ H. Then H/K ⊴ G/K and (G/K)/(H/K) ∼= G/H.

Definition 5.4 (Centralizer, Normalizer): Let H ≤ G. Then centralizer of H is:

C(H) = {a ∈ G | ah = ha,∀h ∈ H}

Let H ≤ G. Then normalizer of H is:

N(H) = {a ∈ G | aH = Ha}

Theorem 5.7 (The normalizer/centralizer theorem):
Let H ≤ G, then C(H) ⊴ N(H) and N(H)/C(H) is isomorphic to a subgroup of Aut(H).

Theorem 5.8 (Characterization of internal direct products):
Let G be a group. Let H ⊴ G,K ⊴ G. Suppose H ∩G = {e} and G = HK. Then G ∼= H ×K

Theorem 5.9 (simple An):
for n ≥ 5, An is simple.

6 Chapter 6. Group actions on sets

Definition 6.1 (Representation):
Let G be a group. A representation of a G is a group homomorphism ϕ : G → perm(S) for some set S. A
representation is called faithful when it is injective.

Definition 6.2 (Group action):
Let G be a group, let S be a set. A group action of G on S is a map from G × S → S such that
e ·x = x, (ab)x = a(bx),∀x ∈ S, a, b ∈ G. A group action is faithful if its corresponding representation is also
faithful.

Definition 6.3 (Fixed set, orbit, stabilizer):
Let G be a group which acts on a set S. Let a ∈ G.
The fixed set of a is

Fix(a) = {x ∈ S | ax = x} ⊆ S

The orbit of an element x ∈ S is
Orb(x) = Gx = {ax | a ∈ G} ⊆ S

Note that elements in one another’s orbits is an equivalence relation. So the notation S/G makes sense.
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The stablizer of an element x ∈ S is

Stab(x) = {a ∈ G | ax = x} ≤ G

Theorem 6.1 (Orbit-stabilizer theorem):
Let G be a group acting on a set S. Then for x ∈ S, we have

|G| = |Orb(x)||Stab(x)|

Definition 6.4 (Class equation):

|G| =
∑

|G/C(xi)|

Definition 6.5 (Cauchy’s theorem): G is a finite group. Let p be a prime divisor of |G|. Then G contains
an element of order p. Indeed

|{a ∈ G | |a| = p}| = p− 1 (mod (p− 1)p)

Theorem 6.2:
G a finite group, H ≤ G. Suppose |G/H| = p. where p is the smallest prime divisor of |G|. Then H
is a normal subgroup of G.

Theorem 6.3 (Burnside lemma):
Good for counting vertex coloring.

7 Chapter 7. The classification of Finite abelian groups

Definition 7.1 (Free abelian group): groups isomorphic to Zn.

Theorem 7.1 (Subgroups and quotient groups of Zn):
Let G be a free abelian group of rank n. Let H ≤ G. Then H is a free abelian group of rank r for
some 0 ≤ r ≤ d and

H ∼= Zd1
× Zd2

× . . .Zdr
× Zn−r

with d1 | d2, d2 | d3, . . . , dr−1 | dr.
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Theorem 7.2:
very finite abelian group is isomorphic to a unique group of the form

Zn1 × Zn2 × . . .× Znl

for some integer ℓ ≥ 0 and some integers ni with 2 ≤ n1, n1 | n2, n2 | n3, . . . , nl−1 | nl.
Alternatively, every finite abelian group is isomorphic to a unique group of the form

Z
p
k1
1

× Z
p
k2
2

× . . .× Zpkm
m

such that whenever p1 ≤ p2 ≤ . . . ≤ pm. If pi = pi+1 then must have ki ≤ ki+1. All the kis are
positive integers.

Corollary 7.3 (Classification of Finite Abelian groups):
Let G,H be finite abelian groups. If G,H have same number of elements of each order, then G ∼= H.

Corollary 7.4 (number of distinct abelian groups):
Let n =

∏
pki
i , distinct notation. Then number of distinct abelian groups of order N is equal to∏

P (ki) where K is the number of partitions.

8 Chapter 8. Definitions and examples of rings and subrings.

Definition of rings: a set R with two binary operations, addition denoted by +, multiplication by ×, and
0-additive identity. With the following properties:

• + is associative

• + is commutative

• 0 is additive identity

• Everything has a inverse under +

• × is associative

• × distributive over +

Basically, it’s an abelian group under + with additional properties: × is associative and distributive.

• commutative ring

• ring has identity

• a ring element is invertible (if it has a 1)

• division ring: a ring where every element is invertible

• field: commutative division ring

• units in ring: (if R has a 1, and a ∈ R has multiplicative inverse, then a is a unit of R.)

• left inverse
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• right inverse

• zero divisors

• integral domain

• characteristic of a ring

• Center of a ring is a subring

Theorem 8.1:

• R is a finite ring. It is a field if and only if it’s an ID.

• Let R be a ring with 1 and no zero divisors. THen either char(R) = 0 or char(R) is prime.

• Subring tests and subfield tests

•

9 Chapter 9 Ring Homomorphisms, Ideals, quotient rings

Definition 9.1:

• ring homomorphism (+,× structures preserved)

• ideals

• generated ideals by a subset

• finitely generated ideal

• principle ideal

Theorem 9.1:

• Intersection, sum, and products of ideals are ideals

• Given a set U ⊆ R, how to generate the ideal corresponding to that set.

Theorem 9.2 (First isomorphism theorem):
Let ϕ : R → S be a homomorphism of rings. K = ker(ϕ). Then K is an ideal of R and

R/K ∼= ϕ(R)

Theorem 9.3 (Second isomorphism theorem):
A,B are ideals in R. Then A is an ideal of A+B and A ∩B is an ideal in B.

(A+B)/A ∼= B/(A ∩B)
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Theorem 9.4 (Third isomorphism theorem):
A,B are ideals in R with A ⊆ B ⊆ R. Then B/A is an ideal fo R/A and

(R/A)/(B/A) ∼= R/B

10 Chapter 10. Factorization in commutative rings

Definition 10.1:

• Prime ideal

• maximal ideal

• Divisors and associates in commutative rings

• ring elements that are reducible, irreducible, prime

• Euclidean domain

• Principal ideal domain

• Unique factorization domain

• Noetherian ring

Theorem 10.1:

• An ideal is prime if and only if...

• Let R be a commutative ring with 1. Let P be an ideal in R. Then P is prime if and only if
R/P is an integral domain.

• Let R be a commutative ring with 1. Show that every maximal ideal in R is also prime.

• Let R be a commutative ring with 1. Let M be an ideal in R. Then M is maximal if and only
if R/M is a field.

• Associates have the same properties in being reducible, irreducible, unit, prime.
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