
1 LF

1.1 Basic Theory

Lecture 1

• Def: Absolute values, p−adic absolute value

• Lem: p−adic abs value is an abs value

• Def: equivalent absolute values, place

• Prop: 3 equivalent conditions for equivalent absolute values

• Def: non-archimedean absolute value

• Lem: all triangles are isosceles

• Lem: a sequence’s condition to be cauchy in nonarch absolute value

• Def: p−adic numbers

Lecture 2

• Lem: 4 funny properties for non-archimedean valued fields

1.2 Valuation Rings

• Def: valuation, the p−adic valuation, switching from valuation to absolute value

• Def: the t−adic valuation on Formal Laurent series

• Def: the valuation ring w.r.t. to a valuation

• Prop: three properties of Ok (open subring, unit, its open ideals)

• Prop: m is a max ideal of Ok, and def of the residue field

• Cor: m is the unique max ideal hence Ok is a local ring.

• Def: discrete valuation

• Def: Uniformizer

• Lem: 4 equivalent conditions for v to be discrete. (a condition on v, two conditions on
Ok, one on m)

Lecture 3

• Def: DVR

• Lem: (K + discrete valuation) → DVR. DVR → K → Ok

• Def: Ring of p−adic integers. What is its residue field? max ideal? and all ideals?

• Prop: Relationship between Z,Zp,Qp

• Def: Inverse limits

• Def: Projective map Θn in the inverse limits
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• Prop: Universal property from a S/G/R to an inverse limit

• Def: I−adic completion, I−adic complete

• Prop: When is OK π-adically complete? Also, every x ∈ OK can be written as a
∑

.

• Cor: Every x ∈ K can be written as as a
∑

. Conversely,
∑

gives K.

Lecture 4

• Cor: Zp is isomorphic to... All x ∈ Qp can be written as...

1.3 Complete Valued Fields

• Thm: Hensel’s Lemma

• Cor: lifting root consequence of Hensel’s lemma

• Cor: Structure of (Q×
p )/(Q×

p )
2

• Thm: Hensel’s Lemma version 2

Lecture 5

• Cor: of 2nd version of Hensel’s lemma on bounds of coefficients of polynomial.

• Defn: perfect rings, perfect fields

• Thm: Teichmuller lift theorem. When is [−] a homomorphism?

• Lem: x, y ∈ Ok, k ≥ 1, what does x ≡ y mod πk imply?

• Lem: In CDVF, if residue fields ⊆ Fp, then what are some roots of unity? unfamiliar

• Thm: A CDVF with charK = p and k perfect, what is K? unfamiliar

Lecture 6

• Thm (big): Given a CDVF F , and L/F finite extension of degree n. Then |·| extends
uniquely to an absolute value on L, |·|L, defined by |y|L = |NL/K(y)|1/n.
In addition, L is complete w.r.t. |L|.

• Def: NL/K(y)

• Def: If (K, |·|) is an non-archimedean field. Then you can use it to define a norm on a v.s. of K

• Def: equivalent norms

• Def: Sup norm on a vector space that arises from abs value on its field.

• Prop: Any finite dimensional vector space over non-arch complete fields can only have one equivalence
class of norm.

given (K, |·|), complete, non-arch, and V a f.d.v.s. over K. Then, any two norms on V are equivalent.
Also,, V is complete w.r.t. any norm.

• Def: R ⊆ S be rings. Then define integral, integral closure, and integrally closed

• Prop: Rint(S) is a subring of S and it is integrally closed.
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• Lem: Let (K, |·|) be non-arch valued field. Then OK is integrally closed in K.

Lecture 7

• Lem: Oint(L)
k = OL

• Thm: the big theorem proof

• Prop: Uniqueness of extension |·|L

• Cor: (K, |·|) a CDVF, non-arch, discretely valued. Then

– L is discrete w.r.t. |·|L
– OL is integral closure of OK in L.

• Cor: Let K̄/K be the algebraic closure of K. then |·| extends uniquely to an absolute value on K.

• Prop: downstairs is simple extension implies upstairs is simple extension.

Conditions: fields are CDVR, finite extension. Then OK compact and kL/k is finite and separable,
implies OK [α] = OL.

Lecture 8

• Def: Let (K, |·|) be a valued field. Then K is local if it’s ...

• Prop: If (K, |·|) is an non-archimedean complete valued field. Then you have 3 equivalent
conditions. (i.e. K locally compact, Ok compact, Ok/m is finite.)

• Def: Profinite topology

• Prop: Let K be a non-archimedean local field. Recall that OK ≃ lim←−n
Ok/π

k is an isomorphism. It’s
actually an isomorphism of topological spaces.

• Lem: if K is a non-archimedean local field, if L/K is finite, then L is also local.

• Def: non-arch valued field (K, |·|) has equal char if... has mixed char if...

• Thm: If K is a non-arch local field of equal char, then K ∼= ...

• Lem: Absolute value on K is non-archimedean ⇐⇒ |n| is bounded ∀n ∈ Z.

Lecture 9

• Ostrowski’s theorem

• Thm: Non-arch local field of mixed character, then is finite extension of Qp for some p.

• Classification of local fields

1.4 Global fields

• Defn: Global field

• Lemma: Let L/K be finite Galois. Then elements in L has the same image as its image under galois
elements

• Lem: Krasner’s lemma

• Prop: nearby polynomials define same extensions

Lecture 10

• Thm: Classification of local fields
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1.5 Dedekind domains

• Defn: dedekind domain

• Thm: A ring is DVR ⇐⇒ it’s DDK and has exactly one nonzero prime ideal

• Lem: in an Noetherian ring R, let I be an ideal. Then there exists nonzero prime ideals such that
p1 . . . pn ⊆ I.

• Lem: Let R be an ID. Let R be integrally closed. let I ⊆ R be f.g. ideal. If x ∈ K,xI ⊆ I then x ∈ R.

• Def: Localisation

• Cor: DDK domains localized is DVR

Lecture 11

• Thm: In DDK, ideals factors

• Prop: Two properties of localisation

1.6 Dedkind domains and extensions: Now study L/K finite separable field
extension and how they relate.

• Given a field extension L/K and a linear map ·x, what is the trace? What can you write it as?

• Defn: trace form

• Lemma: Trace form is non-degenerate

• Lemma: Integral closure of DDK is DDK. Given a DDK Ok. Let K = Frac(OK). Let L/K be a finite
separable extension. Then let OL be OK ’s int closure in L. Then OL is DDK. Proof skipped.

• Cor: Ring of integers in a number field is DDK.

• Def: p-adic absolute value on a number field

Lecture 12

Setting: L/K finite separable. K = Frac(OK). OL is the integral closure of OK in L. OK be DDK.

• Defn: Vp

• Lem: 0 ̸= x ∈ OK then (x) =
∏

p p
vp(x)

• Thm: Absolute values of L extending |·|p

• Cor: generalisation of Ostrowski: Apply Ostrowski on number fields

1.7 Completion of dedekind domains

• Lem: πP : L⊗K Kp → LP , (l, k) 7→ lk is subjective. [LP : Kp] ≤ [L : K]

• Thm: L⊗K Kp →
∏

P|p LP is an iso

Lecture 13

• Cor: x ∈ L, then NL/K(x) =
∏

P|p NLP/Kp
(x)

• Defn: Ramification index and ramifies. Residue class degree
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• Thm:
∑

i eifi = [L : K]

• Prop: L/K Gal then Gal(L/K) on {P1, . . . ,Pk} is transitive

• Cor: L/K gal then n = efr

• Cor: some constants for extensions of DVF

• Defn: Decomposition group

• Prop: any P,P ′ are conjugates.

Lecture 14

• Prop: If L/K is Galois, P | p is prime ideal of OL

– Then LP/Kp is galois

– The map res : Gal(LP/Kp) → Gal(L/K) is injective and has image the decomposition
group.

1.8 Different and the discriminant

• Defn: ∆ : Ln → K

• Lemma: trace form nondegenerate ⇐⇒ R can be written as a product of finite extensions of K.

• Thm: 0 ̸= p ⊆ OK a prime ideal. Then p is ramified ⇐⇒ . . . , and unramified ⇐⇒ . . . .

• Defn: The discriminant ideal: dL/K

• Cor: p ramifies in L ⇐⇒ p | dL/K

• Defn: the inverse different: D−1
L/K

• Lem: the inverse different is a fractional ideal. Proof skipped but dont plan on seeing it anyways

• Defn: the different ideal

• Defn: NL/K : IL → IK ,P 7→ pf is a group homomorphism. IK , IL denotes the fractional ideals in the
respective fields

Lecture 15

• Prop: L×,K×, IL, IK commutes with two different definitions of NL/K

• Thm: NL/K(DL/K) = dL/K Proof gladly omitted

• Thm: DL/K = (g′(α)) Proof gladly omitted

• Thm: DL/K =
∏

P DLP/Kp
Proof very happily omitted

• Cor: dL/K =
∏

P dLP/Kp
Proof very happily omitted

1.9 Unramified and totally ramified extensions of local fields

• Cor: [L : K] = eL/KfL/K

• Lemma: Tower law for e, f

• Defn: unramified, ramified, and totally ramified extensions

Lecture 16
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1.10 Unramified and Totally Ramified extensions of local fields

• Cor: [L : K] = eL/KfL/K

• Lemma: Tower law for non-archimedean extensions M/L/K

• Def: Unramified/ramified/totally ramified extension.

• Thm: Finite separable extension of local fields L/K splits into an unramified one and a
totally ramified one.

• Thm: Unramified extensions of non-archimedean local fields are easy to understand! What can you say
about the map Gal(K0/K)→ Gal(k0/k)? Not sure about the Frobenius generator part. FrobL/K(x) =
xq mod mL

• Cor: L/K finite separable ext of LF, then res : Gal(L/K)→ Gal(kL/k) is surjective.

• Def: Inertia subgroup. What is its order?

• Def: Eisenstein polynomial

• Fact: What can you say about Eisenstein polynomials?

• Thm: Relationship between totally ramified and eisenstein polynomial

• Unramified parts controlled by extension by roots of a cyclotomic polynomial. Ramified parts controlled
by Eisenstein Polynomials

1.11 Structure of Units

Lecture 17

• Defn: Absolute Ramification Index

• Now switch to work in [K : Qp] <∞. Following must work in mixed char otherwise factorial breaks!!!

• Prop: Under some circumstances, exp converges and induces isomorphism between the additive and
multiplicative structures of units. What is the special r?

Two important lemmas in this proof:

– vp(n!) =
n−Sp(n)

p−1 where Sp(n) is the sum of p-adic digits of n.

– log(1 + x) =
∑∞

n=1
(−1)n−1

n xn

• Defn: The sth unit group U
(s)
K

• Remark: The unit group filtration

• Prop: What are the quotients of filtration for unit groups?

• Thm: [K : Qp] has a finite index subgroup of O×
K that is isomorphic to (OK ,+)

• Example of unit groups, in Zp or Z2
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1.12 Higher ramification group

• Defn: Higher ramification groups Gs, write Gs as a normal subgroup

• Example: of higher ramificaiton groups

• Thm: Three properties about higher ramification group

1. For s ≥ 1, Gs can be defined equivalently with...

2.
⋂
Gs

3. Gi+1/Gi

Lecture 18

• Cor: For a finite Galois extension of local fields L/K, have Gal(L/K) is solvable.

• Def: Wild Inertia group, then tame quotient.

• Def: Tamely ramified vs wildly ramified. Tamely ramified if the wild inertia group is trivial. Wildly
ramified otherwise.

• So, all three G−1, G0, G1 all have names. The Gal, the inertia, the wild inertia

• Thm: A theory relating DL/K with whether the extension is tamely ramified. Skipped because this
seem not as essential and kinda hard

• Cor: L/K extension of number fields. If P | p, then e(P | p) > 1 ⇐⇒ P | DL/K . Skipped because
this seem not as essential and kinda hard

• Example: computing higher ram groups

2 Local Class Field Theory

2.1 Infinite Galois Theory

• Note: Familiarity with basic Galois theory: separable, normal, Galois extension, Galois correspondence

• To generalize the above on infinite galois extension, need some theory on inverse limits

• Defn: Directed set. What are two examples?

• Defn: Inverse system of groups, translation homomorphism, inverse limits.

• Prop: Putting inverse system on the Galois group

• Question: what is Gal(L/K) written in terms of the inverse system? When L/K Galois is not neces-
sarily finite. Proof: Skipped

Lecture 19

• Defn: Profinite topology defined on an inverse system of directed set of groups

• Example: inverse system of Galois group on Gal(Fp/Fp) and a commutative diagram explaining it.

• Thm: Fundamental Thm of Galois Theory (infinite galois extension). Closed subgroup vs open sub-
group?
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2.2 Weil Group

Let K be local fields and L/K a separable algebraic extension

• Defn: (In the case of infinite extension) unramified extension and totally ramified extension

• Thm: Let L/K be unramified. Then L/K is Galois and what can you say about Gal(L/K)? (Proof
includes a comm diag)

• Notation: FrkL/k

• Defn: The weil group

• Example: a commutative diagram involving the Weil group

• Def: Topology on the Weil group

Lecture 20

• Prop: Relationship between W (L/K) and Gal(L/K). Three statements saying that we
don’t lose information by just looking at W (L/K).

• Example: Commutative diagram of exact rows showing Gal and W .

• Question: under what condition is W (L/K) = Gal(L/K)?

• IL/K = Gal(K0/K)

2.3 Statements of local class field theory

• Defn: Abelian extension, facts about them

• Defn: Kur and Kab

• Thm: Local artin reciprocity: Exists map K× ∼= W (Kab/K)

• Section: Properties of artin map and relationship between eL/K and NL/K : This whole part gladly
skipped.

• Thm: Local Kronecker Weber Qab
p = Qur

p Qp(ζp∞)

Lecture 21

• Construction of Art K, motivation of it, etc

• Commutative diagram: the commutative diagram with Kπ,n/K, how the construction of Kπ,n need
Lubin tate theory. If we set Kπ,∞ then Kab = KunKπ,∞, commutative diagrams comparing Qab

p and

Kab
p

2.4 Lubin Tate Theory

• Defn: 1−dimensional formal group law

• Lem: two properties of formal group law: F (0, X) = X and exists inverse

• Prop: in non-archimedean valued field, it converges in resdieu field

• Prop: in residue field, formal group law gives you a group

• Def: homomorphisms and isomorphisms of formal group laws

• Prop: exp, log are isomorphism of formal group laws

• Lemma: EndR(F ) is a ring with addition f +F g(x) = F (f(x), g(x)) and multiplication given by
composition
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2.5 Lubin Tate formal group

• Defn: Formal OK module.

• Defn: hom or iso of formal OK module

• Defn: Lubin tate series

Lecture 22

• Thm: Big theorem in Lubin tate module

Let f(x) be a lubin tate series for π.

Then there are three properties for f(x):

– exists unique group law Ff over OK so that f ∈ End(Ff )

– Exists ringhomomorphism
[−]f : OK → End(Ff )

that is, Ff is a formal ok module over ok

– If g(x) is another formal lubin tate series for π then Ff ≃ Fg as formal OK modules

• Defn: Lubin tate formal group law

• Lemma: Key lemma to prove the big theorem

• Proof: of big theorem

Lecture 23

• Lemma: Let F be a formal OK module. Then m, the max ideal of algebraic closure of K
is a OK module

• Defn: πn torsion group

• Defn: f(x), fn(x), hn(x) in the context of the πn torsion group

• Prop: hn(x) is a seprable eisenstein of degree qn−1(q − 1) Proof happily omitted

• Prop: µf,n is a free module of rank 1. If g is another lubin tate series for π then µf,n ≃ µg,nProof
happily omitted

• Def: Lubin tate extension Kπ,n

• Prop: Kπ,n totally ramified and Galois extensiono f degree qn−1(q − 1)

Lecture 24

• Thm: Φn : Gal(Kπ,n/K → (Ok/π
nOK)× is an isomorphism

• Generalized kronercker weber: Kab = Kπ,∞Kur
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