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1.1 Week 1 Day 1

Basic Theory

Example 1.1:
f(x1, . . . , xn) ∈ Z[x1, . . . , xn] and f(x1, . . . xn) = 0. Instead of solutions, you might want to find
congruences. I.e. Take the poly f(x1, . . . xn) modulo p, p2, p3, . . ..
This leads to the study of p−adic numbers, which are example of local fields. Local fields packages
all of these information together.

1.2 Absolute values

Definition 1.1 (Absolute value): Let K be a field, and absolute value |·| on K is a function |·| : K → R≥0

such that

• |x| = 0 ⇐⇒ x = 0

• |xy| = |x||y|

• |x+ y| ≤ |x|+ |y|

Now, compare absolute values to norms and metric. Metrics are more general than norm spaces, and norms
are on vector spaces. So they are different in this sense. norms induce a metric on vector space. Normed
spaces need to be on a vector space, whereas metric spaces can be on anyting.
Example: K = Q,R,C with usual absolute value where |a+ bi| =

√
a2 + b2. We write |·|∞.

Consider the trivial absolute value where

|x| =

{
0 if x = 0

1 if x ̸= 0

If K is a finite field then its absolute value must be trivial. i.e. if xn = 1 then say if x = xn, so |x| = |xn| =
|x|n. This means that absolute values on finite fields are boring and trivial.

Definition 1.2 (The p-adic absolute value):
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for 0 ̸= x ∈ Q, write x = pn a
b where (a, p) = 1, (b, p) = 1. Then the p-adic absolute value is as follows:

|x|p =

{
0 if x = 0

p−n if x = pn a
b

Lemma 1.2 (p-adic absolute value is an absolute value):

1. clear

2. write out the equations

3. write out the equations

Note 3 gives you the ultrametric inequality, which is stronger than the triangle inequality.

Note that an absolute value induces a metric on the field K. Once you get a field, you get a topology.

Definition 1.3 (Equivalent absolute values): Let |·|, |·|′ be non-trivial absolute values on K. They are
equivalent absolute values if they induce the same topology.

Definition 1.4 (Place): Equivalent classes of absolute values.

Proposition 1.3 (Three equivalent conditions for equivalent metric spaces):
TFAE:

1. |·|, |·|′ are equivalent

2. |x| < 1 ⇐⇒ |x|′ < 1,∀x ∈ K
3. There exist s ∈ R≥0 such that ∀x ∈ K,

|x|s = |x|′

Proof :

• 1→ 2:

|x| < 1 ⇐⇒ |x|n → 0

⇐⇒ (|x|)′n → 0 by the metric induced topology

⇐⇒ |x|′ < 0

• 2→ 3

3 being true implies that
s log|x| = log|x|′

so that the ratio
log |x|
log |x|′
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is constant. Going for contradiction. Suppose not. Then let a, x ∈ K be two elements such that

log |x|
log |x|′

<
log |a|
log |a|′

therefore
log |x|
log |a|

<
log |x|′

log |a|′

Then there exists rational m
n such that

log |x|
log |a|

<
m

n
<

log |x|′

log |a|′

then
n log|x| < m log|a|

m log|a|′ < n log|x|′

so
|x|n < |a|m, |a|′m < |x|′n

so

| x
n

am
| < 1, | x

n

am
|′ > 1

contradiction.

• 3→ 1 Open balls form a basis of topology. If there is an open ball it must be open in the other metric.
So they are equivalent.

□

Note that |·|2∞ on C is not an absolute value by our definition.
In this course, we mainly are interested in non-archimedean absolute values.

Definition 1.5 (Non-archimedean): An absolute value is non-archimedean if

|x+ y| ≤ max{|x|, |y|},∀x, y

For example |·|∞ on R is archimedean, and |·|p on Q is non-archimedean.

Example 1.4:
Our geometric intuition breaks down in non-archimedean norms. For example, all triangles are
isosceles. But congruences are easier to study, unlike archimedean cases.

Lemma 1.5 (All triangles are isosceles):
Let (K, |·|) be a non-archimedean value field. Let x, y ∈ K. If |x| < |y| then |x− y| = |y|
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Proof :
|x− y| ≤ max{|x|, |y|} = |y|

|y| ≤ max{|y − x|, |x|} = |y − x|

□

Lemma 1.6 (Weird convergence in non-archimedean sequence):
Let (xn)

∞
n=0 a sequence on K and |xn − xn+1| → 0 then xn is cauchy. In particular, if K is complete

then it converges.

Proof : For ϵ > 0, choose N such that ∀n > N, |xn − xn+1| < ϵ. Then for all m,n such that N < n < m we
have

|xn − xm| = |xn − xn+1 + . . .+ xm−1 − xm| < ϵ

□

Example 1.7:
K = Q, p = 5, |·| = |·|5.
Consider the sequence a1 = 3, a2 = 33, a3 = 333, a4 = 3333, . . .
We have am ≡ an (mod 5n), ∀m ≥ n. So |am − an| ≤ 5−n,∀m ≥ n. This is a cauchy sequence. But
an = 1

3 (10
n − 1) so |an + 1

3 | = 5−n → 0 as n→∞. So an → − 1
3 w.r.t |·|5.

Example 1.8:
We want to construct sequence (an)

∞
n=1 ∈ Q such that the following holds. This is a sequence that is

cauchy in 5−adic norm but also square converges to −1.

a2n + 1 ≡ 0 (mod 5n)

an ≡ an+1 (mod 5n)

Take a1 = 2, suppose that an is already chosen, then write a2n + 1 = 5nc, c ∈ Z, then

(an + b5n)2 + 1 = a2n + 1 + 2 · 5nban + 52nb2 ≡ 5n(c+ 2anb) (mod 5n+1)

So c is picked. an is known. want to figure out b to make it possible. Indeed it is. we pickk b ∈ Z so
c+ 2anb ≡ 0 (mod 5). This is possible since (2an, 5) = 1. So we pick an+1 = an + 5nb.
We know from construction it is cauchy. Now suppose an → L, L ∈ Q. Then

|L2 + 1| ≤ |L2 − a2n|+ |a2n − 1| → 0, n→∞

but this gives you a contradiction as L2 = −1. So L not in Q. So (Q, |·|5) is not complete.

Definition 1.6: The p-adic numbers Qp are defined to be the completion of Q with respect to the p−adic
metric |·|p.
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There’s an analogy: Q’s completion w.r.t. |·|∞ is R. Q’s completion w.r.t. |·|p is Qp.
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1.3 Lecture 2

Terminologies:
Let (K, |·|) be a non-archimedean valued field. For x ∈ K, and r ∈ R≥0, we can denote:

• B(x, r) = {y ∈ K | |x− y| < r}

• B(x, r) = {y ∈ K | |x− y| ≤ r}

Lemma 1.9 (Four funny properties of non-arch-val-fields):

1. If z ∈ B(x, r), then B(z, r) = B(x, r)

2. If z ∈ B(x, r), then B(z, r) = B(x, r)

3. B(x, r) is closed

4. B(x, r) is open

So open and closed balls don’t have centers, and open balls are closed, and closed balls are open.

Proof :

1. Let y ∈ B(x, r) then |z− y| ≤ max{|z−x|, |x− y|} < r so y ∈ B(x, z). So B(x, r) ⊆ B(z, r). The other
direction is done by reversing the roles of x, r.

2. Proven by changing < to ≤ in the above.

3. Want to show that complement is open. We let y /∈ B(x, r). We claim that B(y, r) is an open nbhd
of y that does not intersect B(x, r). Indeed if some z ∈ B(y, r) ∩B(x, r) then y ∈ B(y, r) = B(z, r) =
B(x, r), so contradicting the two balls have empty intersection.

4. Let z ∈ B(x, r), then we will show that the ball B(z, r) is a subset of B(x, r).

z ∈ B(x, r) ⊆ B(z, r) = B(x, r)

□

2 Valuation Rings

Remark 1: With a field with non-archimedean absolute value, you will get a very rich algebraic
structure.

Definition 2.1 (Valuation): Let K be a field. A valuation on K is a function V : K× → R such that

1. V (xy) = V (x) + V (y)

2. V (x+ y) ≥ min{V (x), V (y)}
We fix 0 < α < 1, if V is valuation on K, then we get absolute value

|x| =

{
αV (x) x ̸= 0

0 x = 0

This determines a non-arch abs.val on K.
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Conversely, a non-arch abs value on K determines a valuation V (x) = logα|x|. Note there is no negative sign
here!

Remark 2: Note that valuations and absolute-values are quite-equivalent. But a valuation is just
more flexible and easier to use.

We also ignore trivial valuation V (x) = 0, ∀x ∈ K̂. Say V1, V2 are equivalent if there exists c ∈ R≥0

such that V1(X) = cV2(X), ∀x ∈ K×.

For example, K = Q, define vp(x) = − logp|x|p to be the P−adic valuation. SO the integer p has
valuation 1.

Think about the t−adic valuation. (Note that something-adic, the something can be a prime p or an
ideal I or the ideal (t).

Example 2.1 (t-adic):
Let k be a field. K = k(t) = Frac(k[t]) (rational functional field).

Then V
(
tn f(t)

g(t)

)
= n where f, g are polynomials such that f(0) ̸= 0 ̸= g(0). This is called the t−adic

valuation.

Example 2.2 (Laurent Series):

K = k((t)) = Frac(K[[x]]) =

{ ∞∑
i=1

ait
i | ai ∈ K,n ∈ Z

}

be the formal Laurent series over K.
Then, we get the valuation

v

(∑
i

ait
i

)
= min{i | ai ̸= 0}

is the t−adic valuation K. Completion of rational fractional field.

Definition 2.2 (Valuation ring): Let (K, |·|) be non-archemedean valuation field, define the valuation ring
of K, to be

OK = {x ∈ K | |x| ≤ 1}
= B(0, 1)

= {x ∈ K× | V (x) ≥ 0} ∪ {0}
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Proposition 2.3:

1. OK is an open subring of K

2. the subsets
{x ∈ K | |x| ≤ r}

and
{x ∈ K | |x| < r}

for r ≤ 1, are open ideals in OK .

3.

O×
K = {x ∈ K | |x| = 1}

Proof :

1. It is open because it’s a closed ball. It’s a subring, to check that |0| = 0.|1| = 1 so 0, 1 ∈ OK .
Check closed under additive inverse:

x ∈ OK =⇒ |−x| = |−1||x| = |x| ≤ 1, so − x ∈ OK

Check closed under addition

x, y ∈ OK , |x+ y| ≤ max{|x|, |y|} ≤ 1 =⇒ x+ y ∈ OK

Check closed under multiplication

x, y ∈ OK , |xy| = |x||y| ≤ 1 =⇒ xy ∈ OK

2. They are open, yes. Them being ideals in OK is a similar check than 1.

3. Note that for any x, |x||x−1| = 1. So

|x| = 1 ⇐⇒ |x−1| = 1 ⇐⇒ x, x−1 ∈ OK ⇐⇒ x ∈ O×
K

The third iff is that if x, x−1 ∈ OK , both them need to have abs values ≤ 1, but they reciprocals.
(quick reminder R× is the multiplicative subgroup.)

□

Proposition 2.4 (The maximal ideal of the valuation ring):
Denote the following

m = {x ∈ OK | |x| < 1}

a max ideal in OK . Then
K = OK/m

is the residue field.
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Proof : If it were any bigger, then we have x with |x| = 1 ∈ m, then x−1 ∈ m, then 1 ∈ m, then we get the
whole thing. □

Corollary 2.5 (OK being a local ring with unique max ideal):
Note that OK is a local ring (ring with a unique maximal ideal) with unique max ideal m.

Example 2.6 (Example of a valuation ring):
Let K = Q with |·|p,OK = Zp =

{
a
b ∈ Q | p ∤ b

}
this is a valuation ring with m = pZp,K = Fp.

Definition 2.3 (discrete valuation): Let V : K× → R be a valuation. Then V (K×) ∼= Z. We say V is a
discrete valuation, and K is said to be discretely valued.

Definition 2.4 (Uniformizer): An element in OK is said to be uniformizer is V (π) > 0 and V (π) generates
V (K×). For example

• K = Q with p−adic valuation

• K = k(t) with t−adic valuation.

Both of which are discrete valued fields.

Remark 3: If V is a discrete valuation, one can replace with equivalent one such that V (K×) = Z.
All such V normalize valuation, then V (π) = 1 ⇐⇒ π is a unit.

Lemma 2.7:
Let V be a valuation ring on K. TFAE:

1. V is discrete

2. OK is PID (consider this the strongest argument)

3. OK is Noethertian

4. m is principal

Proof :

• 1 =⇒ 2: Suppose that V is discrete. Want to show that OK is a pid. Need to show that it’s an ID
and it’s principal.

– It is an ID because K is a field and OK ⊆ K. So it must be an ID.

– Now show it’s principal. Let I be an ideal in OK . Then let x ∈ I be an element that v(x) =
min{v(a) | a ∈ I}. The element x ∈ I exists since V is discrete.
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We claim that xOk = I. Note that xOK = {a ∈ OK | v(a) ≥ x} is equal to I.
∗ xOK ⊆ I: LHS is a smaller ideal than RHS. I is an ideal. So we are done

∗ xOK ⊇ I: Let y ∈ I, then v(x−1y) ≥ 0, so 0 ̸= x−1y ∈ Ok, so y = x(x−1y) ∈ xOK . Note
here we use the valuation ring definition: V (x−1y) ≥ 0 ⇐⇒ |x−1y| < 1.

• 2 =⇒ 3 Clear, every ideal is finitely generated hence OK have to be noetherian.

• 3 =⇒ 4 since OK is Noetherian, then it is finitely generated.

m = x1OK + . . .+ xnOK

WLOG V (x1) ≤ . . . ≤ V (xn).Then, x2, . . . , xn ∈ x1OK . But similarly to previous argument, each
xi, i > 1 we have x−1

1 xi ∈ OK , so xi ∈ OK so m = x1Ok.

• 4 =⇒ 1

Let m = πOK for some π ∈ OK .

We will show that v(K×) = v(π)Z.

Let c = v(π). then, for all x s.t. v(x) > 0, we would have x ∈ m, then v(x) ≥ c. (because v(xy) ≥
v(x)+ v(y)) Then, V (K×)∩ (0, c) = ∅. That is, the valuations of other items in the ideal m is either 0
or greater than c. But it’ generated by c. Since V (K×) is a subgroup of (R,+), we have v(K×) = cZ.
hence it is discrete.

□
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2.1 Week 1 lecture 3

Let (K, |·|) be a non-archimedean value field. Then OK

[
1
x

]
= K, ∀x ∈ m. i.e. by taking the adjoint of the

inverse of any element in the maximal ideal, you get back your original field. In particular, K = Frac(OK)

Definition 2.5 (DVR): A ring R is called a dicrete valuation ring if it is a PID and it has exactly one
non-zero prime ideal. (necessarily maximal)

Compare this definition to the above TFAE conditions. This one is exactly the TFAE ones.

Lemma 2.8:

1. Let v be a discrete valuation on a field K. Then OK is a DVR.

2. Let R be a DVR, then there exists a valuation v on K = Frac(R) such that R = OK .

Proof :

1. To show that OK is a DVR, it suffices to show that it is a PID and that it has exactly one non-zero
prime ideal.

(a) It is a PID by the previous lemma. i.e. V being discrete implies OK is PID.

(b) Remember in the inclusions of rings, PID is where prime ideals and maximal ideals coincide. It
suffices to show it has exactly one non-zero max ideal. But by previous theory, we know OK has
a unique max ideal. Therefore, the proof is done.

2. Elements in R can be written uniquely

Let R be a DVR with maximal ideal m. Since it’s a PID let m = (π). Since PIDs are also UFDs we
can write x ∈ R \ {0} uniquely as

πmu, u ∈ R×,m ≥ 0

For any y ∈ K \ {0}, we can write it uniquely as πnu, u ∈ R×,m ∈ Z (up to multiplication by units?)

Now define the valuation
We define v(πmu) = m. It is easy to check that v defines a valuation and OK = R.

□

Question: inside PIDs, max ideals and prime ideals coincide. How about outside of PIDs? Can you define
similar notions for rings outside of PIDs?
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Remark 4: Before, we are going from a field K, we made an absolute value on that field |·|p on
that field. With that absolute value, we also had an equivalent notion, which are negative-log, called
valuations. Then, from that valuation, we made a ring called the p−adic integers. For this ring, we
found a maximal ideal and a residue field. Also, the valuation is discrete.

Now, forgetting about the field, forgetting about the absolute value and the valuation, we now only
have a ring that has two properties: being a PID and have exactly one non-zero prime ideal. Now, we
are going to construct the field K = Frac(R) and the valuation v, such that the similar construction,
i.e. the valuation ring of K, OK is equal to R.
This is quite interesting as we can go from

Field + Valuation→ Ring = OK

and we can go back from

Ring→ (Field + Valuation) such that OK = R

Example 2.9:
Z(p),K[|t|] are DVRs (R is a field)

2.2 p-adic numbers

Recall that Qp is a completion of Q w.r.t. |·|p. In Example sheet 1,we will show that Qp is a field. |·|p
extends to Qp and the associated valuation is discreet.

Definition 2.6 (Ring of p-adic integers): The ring of p-adic integers is valuation ring Zp = {x ∈ Qp |
|x|p ≤ 1}.

Note that for a fact, Zp is a DVR, maximal ideal pZp and non-zero ideals are given by pnZp, n ≥ 0.

Proposition 2.10:
Zp is the closure of Z inside Qp. In particular, Zp is the completion of Z w.r.t. |·|p.

Remark 5:

1. Qp: The p−adic numbers. The completion of Q with respect to |·|p. This is quite mysterious
because we haven’t learnt any thing about it. (Imagine only knowing Q and defining R based
on limits in Q.) Many of them dont live in Q.

2. Zp : The p−adic integers, Zp = {x ∈ Qp | |x|p ≤ 1}. Many of them dont live in Z.
3. Z(p): Zp ∩Q, which is {x ∈ Q | |x|p ≤ 1}. We know this is concrete because it lives in Q.
4. Q : we know it’s concrete

5. Z : we know it’s concrete
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Proof : We need to show that Z is dense in Zp.

We just need to show the following inclusions

Z ⊆
dense

Z(p) = Q ∩ Zp ⊆
dense

Zp

• The right dense: We know Q is dense in Qp. (By definition, Qp is the completion of Q w.r.t. p−adic).
Since Zp ⊆ Qp is open (i.e. the close ball with absolute value ≤ 1), we know Zp ∩Q is dense in Zp.

• The left dense: What is Z(p)? it is

Z(p) = Q ∩ Zp =

{
a

b
|
∣∣∣a
b

∣∣∣
p
≤ 1

}
=
{a
b
| p ∤ b

}
Now we want to show that we can create a sequence for any a

b ∈ Z(p), where a, b ∈ Z, p ∤ b. We can
indeed make this sequence. For any n ∈ N, we can pick yn ∈ Z such that byn ≡ a (mod p)n. So
yn → a

b as n→∞.

In particular, we know that Zp is complete because it’s intersection of a closed ball and Qp. So Z ⊆ Zp, is
dense, so it is Zs completion within Qp. □

Question: We know that Z(p) = Q ∩ Zp. But what are some elements that are in Zp but not in Q?

Here is an answer:
https://math.stackexchange.com/questions/1583418/finding-an-example-of-a-non-rational-p-adic-number

Note that the p−adic numbers encode information about higher dimensional power of p.

Definition 2.7 (Inverse limits): Let (An)
∞
n=1 be a sequence of sets/groups/rings. Together with homo-

morphisms φn : An+1 → An, the transition maps.
Then the inverse limit of (An)

∞
n=1 is the set/groups/rings:

lim←−
n

An = {(an) ∈ An | φn(an+1) = an} ⊆ Π∞
n=1An.

Fact: if An is a group/ring, then lim←−n
An is a group/ring. Define group/ring operations components.

Let Θm : lim←−n
An → Am denote the natural projection. Then the inverse limit satisfies the following universal

property:
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Proposition 2.11:
For any set/group/rings B together with homomorphism ψn : B → An such that the following
commutes ∀n,

Then there exists a unique homomorphism

ψ : B → lim←−
n

An

such that Θm ◦ ψ = ψm.

Proof : Define ψ : B →
∏∞

n=1An by b 7→
∏∞

n=1 ψn(b).
Then ψn = φn ◦ ψn+1 =⇒ ψ(b) ∈ lim←−n

An.

The map is clearly unique, (determine by Θm ◦ ψ = ψm) and is a homomorphism (of sets/ groups/ rings).□

Definition 2.8 (I-adic completion, I-adic complete): Let I ⊆ R be an ideal in a ring. Then we define
the I−adic completion of R with respect to I to be the ring

R̂ = lim←−
n

R/In

where R/In+1 → R/In is the natural projection.
Note that there exists a natural map R → R̂ by universal property (∃ maps R → R/In). We say R is a
I-adically complete if i is an isomorphism.

Fact: ker(i : R→ R̂) =
⋂∞

n=1 I
n
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Proposition 2.12:
Now, let (K, |·|) be a non-archimedean valued field and let π ∈ OK such that |π| < 1. Assume that
K is complete w.r.t. |·|.

• OK
∼= lim←−n

OK/π
nOK (OK is π−adically complete)

• every x ∈ OK can be written uniquely as x =
∑∞

i=0 aiπ
i, ai ∈ A ⊆ OK is a set of cosets

representation for OK/πOK .

Moreover, any such power series
∑∞

i=0 aiπ
i, ai ∈ A converges.

Proof : OK is closed, and K is complete, this implies that OK is complete.

• Show injectivity.
Let x ∈ the kernel. So x ∈

⋂∞
n=0 π

nOK implies that ∀n, v(x) ≥ nv(π). This implies that x = 0.
Is it because v(x) = − logα(x)? Because valuation is only defined for nonzero x.
Hence OK → lim←−n

OK/π
n is injective.

• Show surjectivity.
Let (xn)

∞
n=1 ∈ lim←−n

OK/(π
nOK) and for each n, let yn ∈ OK be a lift of xn ∈ OK/π

nOK .

Then, yn − yn+1 ∈ πnOK so that v(yn − yn+1) ≥ nv(π).
Thus (yn)

∞
n=0 is a cauchy sequence in OK . We let yn → y ∈ OK . Then y maps to (yn)

∞
n=0 in

lim←−n
OK/(π

nOK).

Then OK → lim←−OK/π
nOK is surjective.

The proof for the second part is on example sheet, and it is quite similar. □

warning: if (K, |·|) is not discretely valued, then OK is not necessarily m-adically complete.

Corollary 2.13:
K is as in part ii of the above proposition. Then every x ∈ K can be written uniquely as∑∞

i=−n aiπ
i, ai ∈ A. Conversely, any such expression

∑∞
i=1 aiπ

i converges, defines an element in
K.

Proof : Apply the second part of the previous theorem to π−nx, n ∈ Z, such that π−nx ∈ OK .
Not quite get why this works? □

3 Local Fields notes- Jane Shi

3.1 Week 2 lecture 1

.
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Corollary 3.1 (3.7):

1. Zp
∼= lim←−Z/pnZ (Encoding congruences)

2. Every element x ∈ Qp can be written uniquely as
∑∞

i=n aip
i where ai ∈ {0, 1, . . . , p− 1}

Proof :

1. Since we already know by the previous proposition, that Zp
∼= lim←−Zp/p

nZp, it just suffices to show
that Z/pnZ ∼= Zp/p

nZp.

Let fn : Z→ Zp/p
nZp be the natural map. We will show that f is indeed the homomorphism that we

use such that we have domain mod kernel equals the image.

We have ker(fn) = {x ∈ Z | |x|p ≤ p−n} = pnZ.
We now let c̄ ∈ Zp/p

nZp and c ∈ Zp be a lift. Since Z is dense in Zp, ∃x ∈ Z such that x ∈ c+ pnZp,
which is a (closed but) open ball in Zp. Namely the ball B(c, p−n). Then fn(x) = c. This means that
fn is surjective.

2. It follows form the previous proposition (every x can be written uniquely...) using Zp/pZp
∼= Fp. (Zp

playing the role of Ok and pZp playing the role of πOK).

For example, consider 1
1−p = 1 + p+ p2 + . . . ∈ Qp.

□

The above concludes the first part of the course, which is basic theory.
Now we go into complete valued fields.

4 Complete Valued Fields

4.1 Hensel’s Lemma

Theorem 4.1 (Hensel’s Lemma 4.1):
Let (K, |·|) be a complete, discretely valued field. Let f(x) ∈ OK [x] and assume that there exists
a ∈ OK such that

|f(a)| < |f ′(a)|2

where the prime is the formal derivative. Then there exists unique x ∈ OK such that f(x) = 0 and
that |x− a| < |f ′(a)|.
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Remark 6 (A few ways to think of valuation and absolute values):

• Recall v(x) = − logp|x|p

• How to think of π? we have v(π) = 1 so 1 = − logp|π|p, so |π|p = 1
p . So exactly one power of p

divides π. So think of it as the integer p.

• Now, what is πv(x)? Note that if |x|p = p−n then

πv(x) = π− logp|x|p = π− logp p−n

= πn

where n is the biggest power of p dividing x.

• i.e. v(x) is the biggest power of p dividing x.

• Intuition for the following proof: r = v(f ′(a)) so working in πr+1 guarantees that f ′(a) is
nonzero in this modulo.

The remark is that polynomials are quite likely to have solutions.

Proof : Let π ∈ OK be a uniformizer. Let r = v(f ′(a)), where v is normalized valuation, where v(π) = 1.
We construct sequence (xn)

∞
n=1 in OK such that

1. f(xn) ≡ 0 (mod πn+2r) (getting closer and closer to the solution)

2. xn ≡ xn+1 (mod πn+r) (guarantees the cauchiness)

The specific construction
Base Construction We take x1 = a, then f(x1) = f(a). But

|f(a)| < |f ′(a)|2

log|f(a)| < 2 log|f ′(a)|
2v(f ′(a)) < v(f(a))

2r + 1 = 2v(f ′(a)) + 1 ≤ v(f(a))
π2r+1 | πn

Now if we raise π to their powers, we get π2r+1 is a factor of πv(f(a)). But by our remark, that means it is
πn where n is the biggest power of p dividing x. Therefore, we have f(a) ≡ 0 (mod π2r+1). This proves the
claim f(a) ≡ 0 (mod π2r+1).

Inductive construction
We make this sequence by using induction. Suppose that we have constructed x1, . . . , xn satisfying the two

above. We define xn+1 = xn − f(xn)
f ′(xn)

.

Now we need to show that this construction works.

1. Show property 2 holds.

2. Since xn ≡ x1 (mod πr+1) then v(f ′(xn)) = r. The reason is as follows:

Since xn ≡ x1 (mod πr+1), we have f ′(xn) ≡ f ′(x1) (mod πr+1). But we know v(f ′(x1)) = v(f ′(a)) =
r. So r is the biggest power that divides f ′(a). Note that f ′(a), f ′(xn) are equivalent π

r+1, so we know
πr divides f ′(xn) as well but π

r+1 cannot divide it. Hence v(f ′(xn)) = r.

3. Then, f(xn)
f ′(xn)

≡ 0 (mod πn+r). This is because the biggest power dividing f(xn) is at least n+2r, and
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the biggest power dividing f ′(xn) is at most r. Therefore, the quotient is at least divisible by n+ r.

4. So, property 2 holds.

xn+1 = xn −
f(xn)

f ′(xn)

It’s because both f(xn)
f ′(xn)

= xn+1 − xn = 0 modulo πn+r.

5. Now show property 1 holds.

6. Consider a fact for general polynomials in general rings, this identity is like Taylor expansions.

7. Note that for X,Y inderterminants, you can write the following style

f(X + Y ) = f0(X) + f1(X)Y + f2(X)Y 2 + . . .

where each fi(x) ∈ OK [x].

Then we have f0(x) = f(x) and f1(x) = f ′(x). (not quite sure why latter equality holds)

8. Thus that we can write

f(xn+1) = f

(
xn +

−f(xn)
f ′(xn)

)
= f(xn) + f ′(xn)c+ f2(xn)c

2 + . . .︸ ︷︷ ︸
∈πn+2r+1OK

where c = −f(xn)
f ′(xn)

. Note that the bracketed part is in πn+2r+1OK as c ≡ 0 (mod πn+r) and that

v(fi(xn)) ≥ 0, (they all lie in valuation ring OK), so we know they wont’ make the power of each term
any less.

9. Now we can reduce (mod πn+2r+1).

We have f(xn+1) ≡ f(xn) + f ′(xn)c ≡ 0 (mod πn+2r+1). So that 1 holds.

This proves the existence of the sequences with respect to property 1 and 2.
Note that the second property shows that (xn) is Cauchy. Note that x ∈ OK , OK is complete, so that
xn → x. Then by continuity, f(x) = limn→∞ f(xn) = 0 by (i). Moreover, ii implies that

a ≡ x1 ≡ xn (mod πr+1),∀n

=⇒ a ≡ x (mod πr+1)

So πr+1 divides x− a. But |f ′(a)| = r. So p to the power of x− a will be less than p to the power of f ′(a).
This completes that construction:

|x− a| < |f ′(a)|

Now we will show the uniqueness
Suppose that x′ also satisfies f(x′) = 0 where |x′ − a| < |f ′(a)|. We set δ = x′ − x ̸= 0.
So we get |x′ − a| < |f ′(a)|, and |x− a| < |f(a)|. Then by ultrametric inequality |δ| = |x− x′| < |f ′(a)|.
But on the other hand 0 = f(x′) = f(x + δ) = f(x)=0 + f ′(x)δ + δ2 + . . .︸ ︷︷ ︸

|·|≤|δ|2

Hence |f ′(x)δ| ≤ |δ2| (again by

ultrametric), so |f ′(x)| < |δ|.
But x ≡ a (mod π1+r).so f ′(x) ≡ f ′(a) (mod π1+r). But these residues are nonzero, as v(f ′(a)) = r, so they
have same absolute values. This means |f ′(x)| = |f ′(a)|. So |f ′(a)| = |f ′(x)| < |δ|. This gives contradiction
and proves uniqueness. □
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Definition 4.1 (Simple root): Simple root of a polynomial is a root with degree 1.

Corollary 4.2:
Let (K, |·|) be complete, discretely valued field. Let f(x) ∈ OK [x] and c̄ ∈ k := OK/m (the residue
field). A simple root is a root of f̄(x) = f(x) (mod m) in k[x].
Then there exists a unique x ∈ OK such that f(x) = 0 and x = c̄ (mod m).

Another way to say this is roots in the residue field lift to roots in the big field.

Proof : Let c ∈ Ok be any lift of c̄. We will show that this c acts as the role of a in Hensel’s lemma. Since
c is a simple root, we know |f(c)| < |f ′(c)|2 < 1, as m is πOk and f(c) is zero mod π but f ′(c) is nonzero
mod π due to the non-simpleness. This gives us a unique solution x ∈ OK ..

□

Example 4.3:
Note that f(x) = x2 − 2 has a simple root modulo 7, which is

√
2 ∈ Z7.

Corollary 4.4 (Multiplicative structure of p-adic integers):
Consider units of the p-adic numbers:

Q×/(Q×)2 ∼=

{
(Z/2Z)2 if p > 2

(Z/2Z)3 if p = 2

Proof :

• Case p > 2

Let b ∈ Z×
p , apply the previous corollary to f(x) = x2 − b, then we know that

b ∈ (Z×
p )

2 ⇐⇒ b̄ ∈ (F×
p )

2

thus
Z×
p /(Z×

p )
2 ∼= F×

p /(F×
p )

2 = Z/2Z

The LHS equality is given by, consider the natural homomorphism, it works and is surjective. But
roots in the RHS also lifts uniquely to roots in the LHS. The second equality is the multiplicative
group of size p− 1 vs the squares, which are ones of (p− 1)/2.

We have an isomorphism between
Z×
p × Z ∼= Q×

p

given by
(u, n) 7→ upn
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Therefore,
Q×/(Q×)2 ∼= Z/2Z× Z/2Z

Not quite understanding the inequality here. If i expand it out, not sure about the quotient ring
correspondence

• Case p = 2

Let b ∈ Z×
2 . Consider f(x) = x2 − b.

Why are these groups different? Because f ′(x) = 2x ≡ 0 (mod 2). So, this polynomial, modulo 2, you
won’t find a simple root. Then we need the full strength of Hensel’s lemma instead of just needing a
corollary.

Let b ≡ 1 (mod 8). Recall f(x) = x2 − b. Then

|f(1)|2 = |12 − b|2 ≤ 2−3 < |f ′(1)|22 = |2 · 1|22 = 2−2

Then Hensel’s lemma implies that f(x) has a root in Z2.

This tells us that b ∈ (Z×
p )

2 iff b ≡ 1 (mod 8). I know b 1 mod 8 implies in the Zp2, but why does it
in Zp2 imply it is 1 mod 8?

Thus
Z×
2 /(Z

×
2 )

2 ∼= (Z/Z8)
× ∼= Z/2Z× Z/2Z

I dont get both of the equivalences Again using

Q×
2
∼= Z×

2 × Z

we find that
Q×

2 /(Q
×
2 )

2 ∼= (Z/2Z)3

□

Remark 7 (having solutions and reducing it modulo higher powers of uniformizer):
Consider question 7 in local fields example sheet 1
Usually two cases:

• Exists a simple root downstairs, then u lift it to a root upstairs using Hensel’s lemma

• In the case that no roots exists, then think of

Zp/π
nZp
∼= Z/pnZ

especially use n = 1. If there is a solution x downstairs, you can try to lift it by using x + k
where k ∈ πnZp. Then try to get a contradiction in the upper ring Zp using the fact that Zp is
an integral domain. (so can divide by powers of p.) Another method is to show that in hensel’s
lemma, you can write such solution in as a cauchy sequence in Ok where f(xi) = 0 (mod πn+2r)
and xi ≡ xi+1 (mod πn+2r). So this means we can examine solutions modulo πk for k > 1.
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Remark 8: Note that the proof uses xn+1 = xn − f(xn)
f ′(xn)

is the non-archimedean analogue of the

Newton Rapsen method.

Theorem 4.5 (Hensel’s lemma version 2):
Let (K, |·|) be a complete and discretely valued field. Let f(x) ∈ OK [x]. Suppose f̄(x) = f(x)
mod m in k[x] (polynomial with coefficients in the residue field) can be factored as

f̄(x) = ḡ(x)h̄(x), in k[x]

with ḡ, h̄ coprime, then there is a factorization (or a lift) f(x) = g(x)h(x) in Ok[x] with ḡ(x) ≡ g(x)
mod m and h̄(x) ≡ h(x) mod m and deg g = deg ḡ.

Proof : See example sheet. □
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4.2 Week 2 lecture 2

Corollary 4.6 (A cor of the second ver Hensel’s lemma):
Let f(x) = anx

n + . . .+ a0 ∈ K[x].
Note that (K, |·|) is a complete, discretely valued field. With a0, an ̸= 0. If f(x) is irreducible, then

|ai| ≤ max{|a0|, |an|},∀i

Proof : Upon scaling, we can say f(x) ∈ Ok with max|ai| = 1. So we wish to show that either it’s a0 or an
that satisfies that max absolute value. If not, let r be a minimal value such that |ar| = 1. Then 0 < r < n.
We then have modulo the maximal ideal m (recall maximal ideal are elements in Ok with |x| < 1 so the
terms below r disappear.)
Thus we have

f̄(x) = xr(ar + . . .+ anx
n−r) mod m

note that ar ̸= 0 because we are taking mod m.This is reducible, with two polynomial factors coprime. Then
the theorem 4.4 (second version of Hensel) implies that this lifts to a solution f(x) = g(x)h(x) in OK [x],
with 0 < deg g < n. This is a contradiction as f is irred. □

5 Teichmüller Lifts

Intuition behind Teichmüller lifts: earlier we see that we can write integers in Qp as a laurent series, where
each of the coefficients is a lift, by taking a representative of cosets OK/(π

nOk), i.e. the 0, 1, 2, . . . p−1. They
are the natural lift. But they are actually not natural? they don’t preserve the additive and multiplicative
structure. So we want a lift that does that.

Definition 5.1 (Perfect ring): A ring R of characteristic p > 0 (p prime) is a perfect ring if the Frobenius
x 7→ xp is a bijection. A field of char p is a perfect field if it is a perfect as a ring.

Remark 9: Since charR = p, we have (x + y)p = xp + yp so that the Frobenius map is a ring
homomorphism.

Example 5.1:

1. Fpn , F̄p are perfect fields

2. Fp[t] is not perfect because t /∈ Im(frob)

3. Fp(t) is not perfect but

Fp(t
1/p∞

) = Fp(t, t
1/p, t1/p

2

, . . .)

is perfect. It is the perfection of Fp(t).

A fact: a field K of char p > 0 is perfect if and only if any finite extension is separable. (separable: if min
poly for any element in field is separable).
Think of perfection as: given non-perfect field, we throw in all possible separable field extensions.
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Theorem 5.2:
(K, |·|) be complete, discrete valued field. such that its residue field k : OK/m is perfect of char p.
then there exists unique map

[−] : k 7→ Ok

such that

1. a ≡ [a] mod m,∀a ∈ K
2. [ab] = [a][b],∀a, b ∈ K

So we say it preserves algbraic structure. If charK = p, then [−] is a ring homomorphism. i.e. in
generally, addition is NOT reserved. But in the special case, when the char of big field K is p, you
get your addition preserved.

Lemma 5.3:
Let (K, |·|) be as in the theorem. Fix π ∈ OK be a uniformizer. Let x, y ∈ OK . Suppose that

x ≡ y mod πk(k ≥ 1)

we get
xp ≡ yp mod πk+1

Proof : Let x = y + uπk with u ∈ Ok. Then

xp = (y + uπk)p =

p∑
i=0

(
p

p− i

)
yp−i(uπk)i = yp +

p∑
i=1

(
p

p− i

)
yp−i(uπk)i

Since OK/πOK has characteristic p, we have p ∈ πOK . Thus
(

p
p−i

)
yp−i(uπk)i ∈ πk+1OK ,∀i ≥ 1. Hence

xp ≡ yp mod πk+1. □

Proof (Now proof of the theorem): The proof idea is to take roots downstairs, lift it upstairs, and then power
it back. Then you claim this sequence converges to the lift you want. Note that this lift is not natural and
really troublesome, but what’s good about it is that it preserves algebraic structure.
Let a ∈ K. For each i ≥ 0, we pick a lift yi ∈ Ok of a1/p

i

. Note that a1/p
i

exists because the field is perfect.
(not familiar w perfect fields)

We define xi = yp
i

i . We claim that (xi)
∞
i=0 is a cauchy sequence and its limit xi → x is independent of the

choice of yi.
By the construction, we have yi ≡ ypi+1 mod π. (taking both to power pi gives a ≡ a? not sure why they
are equal.)
By previous lemma and induction on r we have

yp
r

i ≡ y
pr+1

i+1 mod πr+1

and hence xi ≡ xi+1 mod πi+1, take (r = i).
This implies (xn) is cauchy so xi → x ∈ OK as OK is complete.
Now show that it is independent of choice of yis.

Suppose that (x′i)
∞
i=1 arises from another choice of y′i lifting a1/p

i

, then get (x′i) is also cauchy and
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x′i → x′ ∈ OK .

Now we consider a third sequence

x′′ =

{
xi i even

x′i i odd

then x′′i arise from lifting y′′i :

{
yi i even

y′i i odd

then apply the previous argument of cauchiness again, we show that x′′ is cauchy as x′′ → x, x′′ → x′, this
implies x = x′. hence x is independent of the yis. We denote [a] = x.
(That is, if you have another converging sequence, you can build an alternating sequence, which also satisfies
cauchyness, so it converges to both limits, so both limits are same.)
Then we get

xi = yp
i

≡ (a1/p
i

)p
i

≡ a mod π

so x ≡ a mod π hence 1 is satisfied.

Now we show 2 We let b ∈ k and we choose ui ∈ Ok, a lift of b1/p
i

, let zi = up
i

i . Then limi→∞ zi = [b].

Now uiyi is a lift of (ab)1/p
i

, hence

[ab] = lim
i→∞

xizi = lim
i→∞

xi lim
i→∞

zi = [a][b]

(I think the reason why you’re allowed to distribute limit is due to something on example sheet.) This
means 2 is satisfied.

Big field char p, get a ring hom:
Now we will show the addition is satisfied in charK = p where K is the big field.
If charK = p, yi + ui is a lift of a1/p

i

+ b1/p
i

= (a+ b)1/p
i

. Then

[a+ b] = lim(yi + ui)
pi

= lim yp
i

i + up
i

i

= limxi + zi

= [a] + [b]

It is easy to check [0] = 0, [1] = 1 so [−] gives you a ring homomorphism.
uniqueness of the [−]
We still need to check uniqueness. Say we have another lifting satisfying the multiplicative property. Let
ϕ : k → OK be another such map. Then for a ∈ k, ϕ(a1/pi

) is a lift of a1/p
i

. It follows that

[a] = limϕ(a1/p
i

)p
i

= limϕ(ai) = ϕ(a)

The LHS equality comes from that we know it’s a lift (so by previous argument we know it must converge
to [a]). The second equality is the multiplicative property of ϕ. □

Example 5.4:
If K = Qp, [−] : Fp → Zp, a ∈ F×

p , [a]
p−1 = [ap−1] = [1] = 1. So [a] is a p− 1 root of unity.
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Lemma 5.5:
(K, |·|) a complete discretely valued field. Then if k : OK/m ⊆ Fp, then [a] ∈ OK is a root of unity.

Proof : a ∈ K implies that a ∈ Fpn for some n (is it because the closure of Fp is Fpn for some n). Then

[a]p
n−1 = [ap

n−1] = [1] = 1

□

Theorem 5.6:
Let (K, |·|) be a complete, discretely valued field. with charK = p > 0. Assume k is perfect, then
K ∼= k((t)). (the field of formal laurent series)

Proof : Since K = FracOK , it suffices to show OK
∼= K[[t]]. This is formal power series as rings.

For π ∈ OK be uniformizer, let
[−] : k → Ok

be the Teichmüller lift.
Define

ϕ : k[[t]]→ Ok

by

ϕ(

∞∑
i=0

ait
i) =

∞∑
i=0

[ai]π
i

ϕ if a ring homomorphism beacuse Teichmüller is, and it is a bijection by prop 2.2. □

5.1 Week 2 lecture 3

6 Extensions of complete valued fields

The following is a big theorem that would take 1-2 lectures

Theorem 6.1 (Extension of complete valued field theorem):
Given a (K, |·|), complete, discretely valued field and L/K a finite extension of degree n then

• |·| extends uniquely to an absolute value on L |·|L defined by

|y|L = |NL/K(y)|1/n,∀y ∈ L

• L is complete w.r.t.|·|L
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Remark 10: Some basic facts:

• L/K finite, and NL/K : L→ L defined by

NL/K(y) = det
k
(mult y)

where mult y : L→ L is the k linear map of multiplication by y.

• NL/K(xy) = NL/K(x)NL/K(y)

• NL/K(x) = 0 ⇐⇒ x = 0

This proof is mainly two parts, the first is uniqueness and the second is completeness.

Definition 6.1 (Norm on a (K, |·|), equivalent norms): Same old norm with a ultrametric △ ineq.
Same old definitioin on equivalent norms. Also note that equivalent norms induce the same topology.

Proposition 6.2 (Vec spaces are complete via sup norm):
Let (K, |·|) be complete and non-arch. Then let V be a finite dimensional vector space over K. Then
V is complete w.r.t. ∥·∥∞.

Proof : Idea is if a sequence is cauchy over V then each position converges in K and V is complete w.r.t.
sup norm. □

Theorem 6.3:
(K, |·|) complete, non-arch. V be a f.d.v.s. over K. then any two norms on V is equivalent. In
particular V is complete w.r.t. any norm.

Proof : Proof idea is to show that any norm is equivalent to ∥·∥∞.
For D, i.e. ∥x∥ ≤ D∥x∥∞, D = maxi∥ei∥ suffices.

For C, we need induction. The C∥x∥∞ < ∥x∥. For n = 1 we get ∥ei∥. For n > 1, use the construction
Vi = Span{e1, . . . , êi, . . . , en}. Take S =

⋃n
i=1 ei + Vi. Pick some interesting c such that B(0, C) does not

intersect S.

□

Lemma 6.4:
Let (K, |·|) be nonarchimedean valued field, then OK is integrally closed in K. (proof is just some
expansion of monic poly.)
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Lemma 6.5:
OL is the integral closure of OK over L.

Now we are ready to prove the big theorem 6

Proof : First two axioms are just quick expansions.
But for the third axiom (ultrametric), we had to define what it means for a super ring to be integral over
subring. Show that R ⊆ S are rings then R

∫
(S) is integrally closed in S.

We need the two lemmas above, and then we could use the fact that OL is a ring. fill in the proof later.

□

7 Local Fields notes- Jane Shi

7.1 Week 3 lecture 1

.

Lemma 7.1:
OL is the integral closure of OK in L.

Proof : Proof not quite 100 % understand, should revisit. Requires quite a lot of previous theorems/lemmas.□

(K, |·|) is complete, non-archimedean, and discretely valued. We get a family of corollaries.

Corollary 7.2:
Let L/K be a finite extension. Then

• L is discretely valued w.r.t. |·|L

• OL is the integral closure of OK in L.

Proof : Fill it in. One follows from a lemma and another is just using the definition of the extension of
norm. □

Corollary 7.3:
Let K/K be the algebraic closure. Then |·| extends uniquely to an absolute value |·|K on K.

Proof : Just requires the uniqueness coming from the big theorem. Also requires to check that the axioms
are met. □
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Remark 11: Warning: |·|K is actually never discrete as it joins roots of the uniformizers. Note that
it is actually also not complete. i.e. Qp is not complete with respect to |Qp|. But Cp is the completion

of Qp and Cp is algebraically closed.

Proposition 7.4:
Let L/K be a finite extension of complete, discretely valued fields. Assume that

• Ok is compact

• the extension kL/K of residue is finite and separable.

Then there exists α ∈ OL such that OL = OK [α].

Proof : review separability
The proof scheme is as follows:

• Separable implies ∃, α ∈ kL such that KL = k(α)

• pick α ∈ L a lift of α

• fix a uniformizer πl ∈ OL

• Show that the valuation VL(g(α)) = 1 by taking a lift. How to take a lift? pick any lift α. Uniformizers
are those who can be divided by at most one copy of πL. If it is 0 in π2

L, then we can do g(α+ πL) so
it is no longer in 0 modulo π2

L.

• use a polynomial argument to show that Ok[α] is compact, hence closed

• Get coset representatives, and give y ∈ OL arbitrary, using the closed-ness to show y ∈ Ok[α].

Not quite understanding the proof! □

7.2 Week 3 lecture 2

8 III. Local Fields

Definition 8.1 (Local field): Let (K, |·|) be a valued field. K is a local field if it is complete and locally
compact. Locally compact at point x implies that there exists an open neighbourhood U of x such that U
sits inside some compact subset.

Proposition 8.1:
Let (K, |·|) be a non-arch complete valued field. TFAE:

• K is locally compact

• OK is compact

• V is discretely valued. and that the residue field k := OK/m is finite.
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Example 8.2 (Two examples of local fields):
Heard that there’re only two nontrivial examples?

• Qp is a local field

• Fp((t)) is a local field

Definition 8.2 (Profinite topology): Assume An are finite. Then the profinite topology on A : lim←−n
An

is the weakest topology on A such that A → An is cnotinuous ∀n, where An is equipped with the discrete
topology.

Fact: that A := lim←−n
An with profinite topology is compact, totally disconnected, and Hausdorff.

Proposition 8.3:
Let K be a non-archimedean local field under isomorphism

Ok
∼= lim←−

n

Ok/π
nOk

where π is a uniformizer. Then the topology on OK coincides with the profinite topology.

Proof : One checks that the sets

B = {a+ πnOk | n ∈ Z≥1, a ∈ Ok}

is a basis of open sets in both topologies. In |·|, they are clear. In profinite top, consider the projection,
which is continuous.

□

Lemma 8.4:
Let K be a non-archimedean local field. L/K is a finite extension, then L/K is also a local field.

Proof : Idea: show that it is finitely generated module over the residue field in K □

Definition 8.3 (Characteristics of local fields): A non-archimedean valued field (K, |·|) has equal char-
acteristic if char(K) = char(k). Otherwise it has mixed characteristic. i.e. Qp has mixed characteristic while
Fp((t)) has equal characteristic.
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Theorem 8.5 (Non-archimedean local fields of equal char):
K be a non-arch local field of equal char p > 0, then

K ∼= Fpn((t))

Proof : Main idea is from k = Fpn being finite hence perfect. Then you use the Teichmuller lift. fill in □

Lemma 8.6 (non-archimedean abs value):
An absolute value on a field K is non-archimedian iff |n| is bounded ∀n ∈ Z.

9 Week 3 lecture 3

Theorem 9.1 (Ostrowski’s lemma):
Any nontrivial abs value on Q is either equivalent to either the absolute value |·|∞ or the p−adic
absolute value |·|p for some prime p.

Proof :

• When |·| is archimedean. In this case, fix an integer b > 1 such that |b| > 1. Let a be another integer
> 1, and write bn in base a. Then using some bounds and some logarithms, you are able to to get a λ
as a ratio of logs. Then switch logs you get that they are equivalent to |·|∞.

• When |·| is non-archimedean. Pick n such that |n| < 1, and decompose n into prime factors. Claim
exactly one of those primes have abs < 1. If for contradiction, another prime also does, then use
relatively prime to obtain contradiction

□

Theorem 9.2 (Non-arch, local field of mixed char):
Let (K, |·|) be a non-arch, local field of mixed char, then K is a finite extension of Qp. (For some
prime p.)

Proof :

• Since by earlier defns and theorems, we know it’s an extension, we just need to show finite extension

• Ok/pOk is finite. it’s a fin diml v.s. over Fp. Then pick coset representatives and build something

• Then let y ∈ Ok, can write as an infinite sum, but rearranging shows the elements of sum in Zp. So
Ok is finite over Zp.

□
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In summary, if K is a local field, then there are only three options

1. archimedean: K ∼= R,C.
2. non-arch, equal char: K ∼= Fpn((t)).

3. non-arch, mixed char: K is a finite extension Qp.

9.1 Global Fields

Definition 9.1 (Global field): A global field is either

• an algebraic number field

• a global function field i.e. a finite extension of Fp(t).

Lemma 9.3:
Let (K, |·|) be complete, discrete value field. L/K a finite Galois extension with |·|L extending |·|.
Then for x ∈ L, σ ∈ Gal(L/K), we have |σ(x)|L = |x|L.

Proof : one-liner □

Lemma 9.4 (Krasner’s Lemma):
Let (K, |·|) be a complete discretely valued field. Let f(x) ∈ K[x] be a separable, irreducible, poly
with α1, . . . , αn ∈ K. Then suppose β ∈ K with |β − α1| < |β − αi| for i = 2, 3, . . . , n. Then
K(α1) ⊆ K(β).

Proof : not complicated but requires some galois extension properties. □

Proposition 9.5 (Nearby polynomials define same extensions):
(K, |·|) a complete, discretely valued field. f(x) ∈ Ok[x] separable, monic, and irreducible. Fix x ∈ K,
a root of f , pick ϵ > 0 such that for any g(x) ∈ Ok[x] monic, with |ai − bi| < ϵ same degree, there
exists a root β of g(x) such that K(α) = K(β).

Proof : more complicated, uses Hensel’s and Krasner’s. □

10 Week 4 Lecture 1

Theorem 10.1 (8.5):
Let K be a local field. Then, K is the completion of a global field.
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11 Dedekind domains

The idea of dedkind domain is that it’s the global setting of a DVR.

Definition 11.1 (Dedekind domain): It’s a ring R such that

• R is a Noetherian integral domain

• R is integrally closed in Frac(R)

• Every nonzero prime ideal is maximal

FOr example, any PID hence DVR is a dedekind domain. THe ring of integers in a number field is also one.

Theorem 11.1 (9.2. Main theorem of this lecture):
A ring R is a DVR ⇐⇒ R is a Dedekind domain with exactly one nonzero prime ideal.

Lemma 11.2 (9.3):
Let R be Noetherian, and I ⊆ R nonzero ideal. Then there exists nonzero prime ideal p1, . . . , pr ⊆ R
such that p1p2 . . . pr ⊆ I.

Lemma 11.3 (9.4):
Let R be an ID which is integrally closed in K = Frac(R). Let I ⊆ R be a non-zero finitely generated
ideal and x ∈ K. Then if xI ⊆ I, we have x ∈ R.

Definition 11.2 (Multiplicative sets and localization): Two faces:

• R noetherian implies S−1R noetherian

• there exists bijection between prime ideals in S−1R and prime ideals p ∈ R such that p ∩ S = ∅.

Corollary 11.4:
Let R be a dedekind domain. P ⊆ R is a prime ideal. Then R(p) is a DVR.
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11.1 Week 4 lecture 2

Definition 11.3 (9.6): If R is a dedekind domain, P ⊆ R, a nonzero prime ideal, write vp for normalized
valuation on Frac(R) = Frac(R(p)) corresponding to the DVR R(p).

Proposition 11.5 (Factorization property for ideals):
Let R be a dedkind domain. Then every nonzero ideal I ⊆ R can be written uniquely as a product
of prime ideals. I = pe11 . . . perr . with the ps distinct.

12 Dedekind domains and extensions

If L/K is separable of degree n and σ1, . . . , σn : L → K denote the set of embeddings of L into algebrac
closure of R. Then TrL/K(x) =

∑n
i=1 σi(x).

Lemma 12.1 (10.1. Big theorem of the lecture):
Let L/K be a finite separable extension of fields. Then the symmetric bilinear pairing

(•, •) : L× L→ R

(x, y) 7→ TrL/K(xy)

is non-degenerate.

Lemma 12.2 (10.2):
Let Ok be a dedekind domain and L a finite separable extension of k := FracOk. Then the integral
closure OL of Ok in L is a dedekind domain.

Proof : a relatively long proof. related to example sheets □

Corollary 12.3 (10.3):
The ring of integers of number field is a Dedekind domain.

12.1 Week4 lecture 3

Some background info: Let Ok be a dedekind domain with k = Frac(Ok). L/K a finite separable extension.
OL ⊆ L integral over OK in L, be as in theorem 10.2.
Then
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Lemma 12.4 (10.4.):
let 0 ̸= x ∈ Ok. Then

(x) =
∏

p ̸=0,p prime

℘Vp(x)

Remark 12 (Notation): If P ⊆ OL, ℘ ⊆ OK are prime ideals, then

P | ℘

if ℘OL = Pe1
1 . . .Per

r and P ∈ {P1, . . . ,Pr}, er > 0.

Theorem 12.5 (10.5.):
Let OK ,OL,K, L as above, for ℘ a nonzero prime ideal of OK . If we can write

℘OL = Pe1
1 . . .Per

r , ei > 0

then the absolute value on L extending |·|℘ up to equivalence are precisely |·|P1
, . . . , |·|Pr

Corollary 12.6 (Classification of abs value on number fields):
Let K be a number field with ring of integers OK . Then any absolute value on K is equivalent to

• |·|℘ for some non-zero prime ideal ℘ ⊆ OK

• |·|γ for some γ : K → R or C.

13 Completions (of Dedekind domains)

Let OK be a dedekind domain, L/K a finite separable extension. Let ℘ ⊆ Ok,P ⊆ OL ̸= 0 be prime ideals.
Say P | ℘. We write K℘ and LP for the completion of K,L w.r.t. abs value of |·|℘, |·|P respectively.

Lemma 13.1 (10.9):

1. the natural map
πP : L⊗K K℘ → LP

is surjective

2.

[Lp : K℘] ≤ [L : K]

Lemma 13.2 (10.8 CRT):

34



Theorem 13.3 (10.9):
The natural map L⊗K K℘ →

∏
P|℘ LP is an isomorphism

Note that K℘ means the completion of K w.r.t. ℘.

14 Week 5 Lecture 1

Corollary 14.1 (10.10):
For x ∈ L,

NL/K(x) =
∏
P|℘

NLP/k℘(x)

these subscripts mean the completion with respect to |·|℘. NOT localization.

15 Decomposition groups

Let 0 ̸= ℘ be a prime ideal of OK . then write ℘OL = Pe1
1 . . .Per

r for distinct products of prime ideals in
OL, ei > 0.
Note that for any i, ℘ ⊆ Ok ∩ Pi ⊊ Ok. Since ℘ is maximal, ℘ = Ok ∩ Pi.

Definition 15.1 (11.1. Ramification):

1. ei is the ramification index of Pi over ℘.

2. we say K ramifies in L if some ei > 1.

Definition 15.2 (11.2 Residue class degree):

fi := [OL/Pi : Ok/℘]

is the residue class degree of Pi over ℘.

Theorem 15.1 (11.3):

r∑
i=1

eifi = [L : K]

This theory is more interesting when [L : K] is Galois. Note that Gal(L/K) acts on {P1, . . . ,Pr}.

Proposition 15.2 (11.4):
The action of Gal(L/K) on {P1, . . . ,Pr} is transitive.
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Corollary 15.3 (11.5):
Suppose L/K is Galois, then e := e1 = . . . = er, f1 = . . . = fr := f . Then we have n = efr.

If L/K is extension of complete, discrete valued fields, normalized valuation VL, VK , with valuation πL, πK ,
then the ramification index

e := eL/K = VL(πk)

and
f := fL/K = [kL : k]

where the ks are residue fields.

Corollary 15.4 (11.6):
L/K is a finite separable extension, then [L : K] = ef. Note that corollary holds without the
assumption of separability.

Definition 15.3 (11.7. decomposition grouup):
OL a ddk domain, L/K finite Galois extension. Then decomposition group at prime P of OL is the susbgroup
of Gal(L/K) defined by

GP = {σ ∈ Gal(L/K) | σ(P) = P}

15.1 Week 5 lecture 2

Proposition 15.5 (11.8):
Suppose that L/K is Galois, the P/℘ prime ideal of OL. Then

• LP/k℘ is Galois

• There is a natural map
res : Gal(LP/k℘)→ Gal(L/K)

which is injective and has image GP . (recall this is the decomposition group, the Gal of L/K
that fixes P.)

16 Ramification theory

16.1 Different and discriminant

Let L/K be an extension of algebraic number fields, [L : K] = n.
Let x1, . . . , xn ∈ L, set

∆(x1, . . . , xn) = det
(
TrL/K xixj

)
∈ K = det(σi(xj))

2 ∈ K

where σi : L→ K̄ are distinct embeddings.
Note: with x1, . . . , xn, you first make matrix xixj . Then you replace each entry of the matrix with det(xixj).
Now you obtain a matrix, and then you compute its determinant.
If yi = (aij)xj where the (aij) is the matrix form, then

∆(y1, . . . , yn) = det
(
A2
)
∆(x1, . . . , xn), A = (aij)
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This is how you perform change of coordinate w.r.t. the ∆. if all elements are in OL then the ∆ is in OK ,
https://en.wikipedia.org/wiki/Perfect_field

Lemma 16.1 (12.1):
Let K be a perfect field. R is a k−algebra, finite dimensional as a k−vector space. then the trace
form

(, ) : R×R→ K

(x, y)→ Tr(xy) := TrR(mult(xy))

is nondegenerate iff R ∼= R1 × . . .×Rn where ki/k are finite hence separable extensions.
This is more of a linear algebra result. This holds for general rings.

Theorem 16.2 (12.2):
Let 0 ̸= ℘ ⊆ Ok be prime ideals.
If ℘ ramifies in L, then for every x1, . . . , xn ∈ OL, ℘ | ∆(x1, . . . xn).
If ℘ is unfamified in L, then ∃x1, . . . , xn ∈ OL such that p ∤ ∆(x1, . . . , xn).

Definition 16.1 (12.3): The discriminant is the ideal dL/K ⊆ OK generated by ∆(x1, . . . xn) for all choices
of x1, . . . , xk ∈ OL.

Corollary 16.3 (12.4):
℘ ramifies in L ⇐⇒ ℘ | dL/K . In particular, only finitely many primes ramify.

Definition 16.2 (12.5): The inverse different is D−1
L/K = {y ∈ L : TrL/K(xy) ∈ OK ,∀x ∈ OL} is an OL

submodule of L containing OL. The inverse of the inverse different ideal is the different ideal.

Lemma 16.4 (12.6):
D−1

L/K is a fractional ideal.

16.2 Week 5 lecture 3

Remark 13 (Commute): Note that there is a commutative diagram of L×,K×, IL, IK where the
Is are groups of fractional ideals.

Theorem 16.5 (12.7):

NL/K(DL/K) = dL/K
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Theorem 16.6 (12.8):
If OL = OK [α] and α has monic minimal polynomial g(x) ∈ Ok[x] then DL/K = (g′(α)).

Theorem 16.7 (12.9):

DL/K =
∏
P
DLP/k℘

Corollary 16.8 (12.10):

dL/K =
∏
P|℘

dLP/k℘

16.3 Unramified and totally ramified extensions of local fields

Lemma 16.9 (13.1):
Tower law for the e indices and the f indices.

Definition 16.3 (Unramified, ramified, and totally ramified):

16.4 Week 6 lecture 1

L/K a finite separable extension of local fields.
In this lecture, we will show that unram and ram extensions are the building blocks of those extensions.

Theorem 16.10 (13.3):
There exists a field K0 K ⊆ K0 ⊆ L such that

• K0/K is unramified

• L/K0 is totally ramified

Moreover [K0 : K] = fL/K and [L : K0] = eL/K and K0/K is Galois.

Theorem 16.11 (13.4):
Unramified extensions are easy to understand. You just look at the residue fields!
Let k = Fq. for each n ≥ 1, there exists a unique unramified extension L/K of degree n. Moreover,
L/K is Galois and the natural map Gal(L/K) → Gal(kL/k) is an isomorphism. Gal(L/K) =
⟨FrobL/K⟩ is cyclic, where FrobL/K(x) ≡ xq mod mL,∀x ∈ OL.
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Corollary 16.12 (13.5):
L/K finite Galois. Then the map

res : Gal(L/K)→ Gal(kL/k)

is surjective.

Definition 16.4 (13.6. Intertial subgroup): L/K be finite and Galois. The inertia subgroup is

IL/K = ker(Gal(L/K)→ Gal(kL/k))

we have |IL/K | = eL/K . Also IL/K = Gal(L/K0).

The totally ramified polynomials are controlled by Eisenstein polynomials.

Definition 16.5 (13.7): A polynomial in Ok[x] is eisenstein if Vk(ai) ≥ 1,∀i, Vk(a0) = 1. i.e. all other
coefficient has valuation at least 1 while constant coefficient exactly 1.

Theorem 16.13 (13.8):

1. Let L/K be finite and totally ramified. πL ∈ OL uniformizer. Then the min poly of πL is
Eisenstein and OL = OK [πL]. and L = K(πL).

2. Conversely, if f(x) ∈ Ok[x] is Eisenstein, and α is a root of f , then L = K(α)/K is totally
ramified and α is a unif in L.

16.5 Structure of units

Let [K : Qp] <∞. e := eL/Qp
be the absolute ram index. Let π be unit in k.

Proposition 16.14 (14.1):
If r > e

p−1 , exp(x) =
∑∞

i=0
xn

n! converges in πrOk and induces an isomorphism between

(πrOk,+) ∼= (1 + πrOk,×)

17 Week 6 Lec 2

Definition 17.1 (13.10): Filtration: for s ∈ Z≥1, the sth unit group U
(s)
k is defined by

U
(s)
K = (1 + πsOk,×)

set U
(0)
k = Uk. Then we have filtration

. . . ⊆ U (s)
K ⊆ . . . ⊆ U (1)

K ⊆ U (0)
K = UK
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Proposition 17.1 (13.11):

• U
(0)
K /U

(1)
K
∼= (k×,×), k := Ok/π

• U
(s)
K /U

(s+1)
k

∼= (k×,+), s ≥ 1

Corollary 17.2 (5.2.4.):
Let [K : Qp] <∞. Then O×

K has a subgroup of finite index isomorphic to (Ok,+).
Note that this is not true for K of equal char, where exp is not well defined.

17.1 Higher Ramification groups

Let L/K be a finite Galois extension of local fields. We define an analogous filtration of Gal(L/K).

Definition 17.2 (14.1): vL be the normalized valuation on L. For s ∈ R≥1 we define the sth ramification
group

Gs(L/R) = {σ ∈ Gal(L/K) | vL(σ(x)− x) ≥ s+ 1,∀x ∈ OL.}

Note that G−1(L/K) = Gal(L/K) and G0(L/K) = IL/K .
For s ∈ Z≥0,

Gs(L/K) = ker(Gal(L/K)→ Aut(OL/π
s+1
L OL))

so Gs(L/K) is a normal subgroup of Gal(L/K).

Gs ⊆ Gs−1 ⊆ . . . ⊆ G−1 = Gal(L/K)

Note that Gs only change at integers.

Theorem 17.3 (14.2. three big theorems about higher rami groups):

1. for s ≥ 1, Gs = {σ ∈ G0 | vL(σ(πL)− πL) ≥ s+ 1}
2.
⋂∞

s=0Gs = {1}.
3. let s ∈ Z≥0. Then there exists injective group hom

Gs/Gs+1 ↪→ U
(s)
L /U

(s+1)
L

induced by σ 7→ σ(πL)
πL

. This map independent in choice of πL.

17.2 Week 6 lecture 3

Corollary 17.4 (14.3):
Given a finite Galois extension of local fields, Gal(L/K) is solvable.

G1 is the unique (since normal) Sylow-p subgroup of GL = IL/K .
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Definition 17.3 (14.4):
The group G is the wild inertia group. and G0/G1 is the tame quotient. If L/K is finite seprable extension
of local fields, we say L/K is tamely ramified if char k ∤ eL/K ( ⇐⇒ G1 = {1} if L/K is Galois) otherwise
it is wildly ramified.

Theorem 17.5 (14.5):
[K : Qp] < ∞, L/K finite, DL/K = (πL)

δ(L/K) therefore δ(L/K) ≥ eL/K − 1 with equality iff L/K
is tamely ramified.

Corollary 17.6 (14.6):
L/K is an extension of number fields. P ⊆ OL,P ∩ OK = ℘, then e(P/℘) > 1 ⇐⇒ P | DL/K

Remark 14: Explicitly what the group Gi looks like.

18 Local class field theory

Infinite Galois theory. Let L/K be an algebraic extension of any field.

Definition 18.1 (5.2.): definition of

• separable

• normal

• Galois: separable and normal

• the Galois correspondence

• Let (I,≤) a partially ordered set. It is a directed set if for all i, j ∈ I, ∃k ∈ I, such that i ≤ k, j ≤ k

• profinite topology on an inverse limit is the weakest topology such that the projection maps are
continuous.
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Proposition 18.1 (16.2):
Let (I,≤) be direct set, and (Gi)i∈I a collection of groups together with maps ϕij : Gj → Gi such
that

• ϕij = ϕij ◦ ϕjk,∀i ≤ j ≤ b

• ϕii = id.

We say ((Gi)i∈I , ϕij) is an inverse system.
Inverse limit of ((Gi)i∈I , ϕij)

lim←−
i∈I

Gi =

{
(gi)i∈I ∈

∏
i∈I

Gi | ϕij(gj) = gi

}

Proposition 18.2 (16.3):
Let L/K be Galois. then

• the set I = {F/K is finite Galois, F ⊆ L} is directed under ⊆ .

• for F, F ′ ∈ I, such that F ⊆ F ′, there is a restriction map resF,F

Gal(F ′/K)→ Gal(F/K)

and the natural map Gal(L/K)→ lim←−F∈I
Gal(F/K) is an isomorphism.

18.1 Week 7 lecture 1

Theorem 18.3 (16.4):
This is practically the fundamental theorem of Galois theory extended to infintie extensions. Endow
Gal(L/K) with profinite topology and then we get the usual bijection between F/K, subextensions
of L/K to the closed subgroups of Gal(L/K). F/K is finite iff Gal(L/K) is open. F/K is Galois iff
Gal(L/F ) is normal in Gal(L/K).

18.2 The Weil group

Let K be a local field and let L/K be separable algebraic extension. then

Definition 18.2 (16.5):

• L/K is unram if F/K is unram for all F/K finite ext

• L/K is totally ram if F/K is totally ram for all F/K finite ext.
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Proposition 18.4 (16.6):
Let L/K be unram. Then L/K is Galois and

Gal(L/K) ∼= Gal(kL/k)

Remark 15: For any Galois extension L/K we can find a max unram subextension of K0/K.

We then move onto the Weil group

Definition 18.3 (16.7 The Weil group): Let L/K be Galois, the Weil group W (L/K) ⊆ Gal(L/K) is
res⟨FrKl/K⟩
The Weil group for finite extension if equal to the Gal group but for infinite one it’s strict containment.

Definition 18.4 (The topology of W (L/K)): It is the weakest topology such that W (L/K) is a topo-
logical subgroup and that IL/K = Gal(L/K0) is equipped with profinite topology. Note that the subspace
topology inherited on Gal is not fine enough for IL/K to be open.

Proposition 18.5 (16.8):
Let L/K be Galois. The ideal is that from Gal to W we dont lose information.

• W (L/K) is dense in Gal(L/K).

• If F/K is finite extension of L/K then

W (L/F ) =W (L/K) ∩Gal(L/F )

• If F/K is finite Galois then
W (L/K)

W (L/F )
∼= Gal(F/K)

18.3 Week 7 Lecture 2

19 Statements of Local Class Field Theory

Definition 19.1 (17.1): An extension L/K is Abelian if it’s Galois and Gal(L/K) is abelian.
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Remark 16 (Facts): If L1/K,K2/K are abelian then

• L1L2/K is abelian

• If L1 ∩ L2 = K then there exists canonical isomorphism Gal(L1L2/K) ∼= Gal(L1/K) ×
Gal(L2/K).

Definition 19.2:

• Kab is the maximal abelian extension of K inside Ksep

• Ksep is the separable closure of K.

• KW is the maximum unramified extension of K inside Ksep

There exists an exact sequence.

< FrKW /k >

0 IKab/K W (Kab/K) Z 0

=

Theorem 19.1 (17.2):
Local Artin reciprocity, ArtK induces an isomorphism, Existence Theorem, Norm functoriality,

Proposition 19.2 (17.3):
L/K finite abelian of degree n, then eL/K = [O×

K : NL/K(O×
L )]

Corollary 19.3 (17.4):
Let L/K be finite abelian. Then L/K is unramified iff NL/K(O×

L ) = O
×
K .

Theorem 19.4 (17.5. Local Kronecker - Weber):

Qab
p = Qun

p Qp(ζp∞)

19.1 Week 7 lec 3

Now we are in a place to construct ArtK . Let K be a local field, and π a uniformizer of K. For n ≥ 1, we
can construct Kπ,n totally ramified Galois extension such that
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(Picture fetched from David
Kurniadi Angdinata)
The existence of the map ψ will help you construct the Artin map. The rest of the course focuses on this.

20 Lubin- Tate theory

Definition 20.1 (Ring for formal power series):

R[|x1, . . . , xn|]

Definition 20.2 (18.1):A 1−dimensional commutative formal group law overR is a power series F (X,Y ) ⊆
R[[X,Y ]] satisfying

• F (X,Y ) ≡ X + Y mod degree 2

• F (X,F (X,Y )) = F (F (X,Y ), Z), associativity

• F (X,Y ) = F (Y,X) commutativity

Moreover,

1. Ĝα(X;Y ) = X + Y is the formal additive group

2. Ĝm(X,Y ) = X + Y +XY is the formal multiplicative group.

Lemma 20.1 (18.2):
F a formal group law over R.

1. F (X, 0) = X,F (0, Y ) = Y

2. ∃ a unique i(X) ∈ XR[[X]] such that F (X, i(X)) = 0.

Definition 20.3 (Homomorphism between formal group laws): Let F,G be formal group laws over
R. A homomorphism f : F → G is an element f(x) ∈ XR[[X]] such that

f(F (X,Y )) = G(f(X), f(X))

a homomorphism f : F → G is an iso if there is an g : G → F such that f(g(X)) = g(f(X)). Define
EndR(F ) be the set of homomorphisms f : F → F.
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Proposition 20.2 (18.4):
R be a Q algebra. There is an isomorphism of formal group laws

exp : Ĝa → Ĝm

exp(x) =

n∑
i=0

xn

n!

Proposition 20.3 (18.4):
EndR(F ) is a ring (in general, non-commutative) with addition f +F g(x) = F (f(x), g(x)) and
multiplication given by composition.

Now let K be a local field. Let |k| = q.
Then

Definition 20.4 (19.1): A formal OK module of OK is a formal group law F (X,Y ) ∈ OK [[X,Y ]] together
with a ring hom

[·]F : OK → EndOK
F

such that ∀a ∈ OK , [a]F (x) ≡ aX mod X2.
An hom or iso is a hom/iso of group laws f ◦ [a]F = [a]G ◦ f, ∀a ∈ OK .

Definition 20.5 (19.2): Let π ∈ Ok be a uniformizer. Then a Lubin-Tate series for π is a power series
f(x) ∈ Ok[[x]] such that

• f(X) ≡ πX mod X2

• f(X) ≡ Xq (mod π)

20.1 Week 8 Lec 1

Let K be a local field π a unif, and |k| = q.

Theorem 20.4 (19.3):
Let f(X) be a Lubin-tate series for π. Then

1. ∃ a unique formal group law Ff over Ok such that f ∈ EndOK
(Ff )

2. ∃ a ring hom
[·]f : Ok → EndOK

(Ff )

which implies Fg is a formal Ok-module over Ok.

3. if g(x) is another formal Lubin-tate series for π, then Ff
∼= Fg as formal Ok modules. Ff is the

Lubin-Tate formal group law for π. (only depends on π up to isomorphism.)

46



Lemma 20.5 (19.4. Key Lemma):
Let f(x), g(x) be Lubin-tate series for π. Let L(x1, . . . , xn) =

∑n
i=1 aixi, ai ∈ Ok. There ∃ a unique

power series F (x1, . . . , xn) ∈ Ok[[x1, . . . , xn]] such that

• F (x1 . . . xn) ≡ L(x1, . . . , xn) mod deg 2

• f(F (x1, . . . , xn)) = F (g(x1), . . . , g(xn)).

20.2 Week 8 Lec 2

20.3 Lubin- Tate Extensions

K non-arch local fields. |K| = q and π a uniformizer. Let K be the algebraic closure of K and m ⊆ OK .

Lemma 20.6 (20.1):
Let F be a formal OK-module over OK . Then m becomes a genuine OK module with

x+F y = F (x, y), x, y ∈ m

aFx = [a]F (x), x ∈ m, a ∈ OK

Definition 20.6 (20.2. πn Torsion group):
Let f(X) be Lubin Tate series for m. Let Ff be Lubin Tate formal group law. The πn− torsion group is

µf,n = {x ∈ m | πn ·Ff
x = 0}

= {x ∈ m | fn(x) = f ◦ f ◦ . . . f︸ ︷︷ ︸
ntimes

= 0}

Note that µf,n is an Ok−module and that µf,n ⊆ µf,n+1.

Proposition 20.7 (20.3):

Set hn(X) = fn(X)
fn−1(X) = π + fn−1(x)

q−1 and f0(x) = x. hn(X) is a separable Eisenstein polynomial

of degree qn−1(q − 1).

Proposition 20.8 (20.4):

• µf,n is a free module of rank 1 over Ok/π
nOk.

• If g is another Lubin-Tate series for π then µf,n
∼= µg,n as OKmodules and K(µf,n) = K(µg,n)

Definition 20.7 (20.5): Kπ,n = K(µf,n) is called the Lubin-tate extensions.
Note that it does not depend on f and that Kπ,n ⊆ Kπ,n+1.
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Proposition 20.9 (20.6):
Note that Kπ,n are totall ramfiied and Galois extensoins of degree qn−1(q − 1).

20.4 Week 8 Lec 3

Setup: Let K be local field. |K| = q, π a uniformizer, and f− a Lubin-Tate series πx+ xq.

Theorem 20.10 (20.7. ):
There are isomorphisms

ψn : Gal(Kπ,n/K) ∼= (Ok/π
nOk)

×

determined by
ϕn(σ) ·Ff

x = σ(x),∀x ∈ µf,n, σ ∈ Gal(Kπ,n/K)

note that ψn does not depend on f .

Note that we set Kπ,∞ :=
⋃∞

n=1Kπ,n,

ψ : Gal(Kπ,∞/K) ∼= lim←−
n

(Θk/π
n)⊗ ∼= Okk

×

Theorem 20.11 (20.8 Generalized Local Kronecker-Weber):
We have

Kab = Kπ,∞K
un

the proof is omitted.

THen we can define the Artin map:

K× ∼= Z×O×
k → Gal(Kun/K)×Gal(Kπ,∞/K) ∼= Gal(Kab/K)

where
(n, µ)←[ πnµ 7→ (FrnKur/K , ψ

−1(u))

The image is W (Kab/K). This is independent of choice of π.

21 Non-examinable materials

• Upper numbering of ramification groups.

• ϕ(s) as an integral of piecewise linear functions.

• upper numbering system

• example of the upper numbering of the Cyclotomic extension, after computation
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