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1 Introduction

In this essay, we will present some remarkable work about finding integer solutions to the following dio-
phantine equation (the generalised Fermat equation):

AXp +BY q + CZr = 0, gcd(X,Y, Z) = 1, XY Z ̸= 0 (1)

where p, q, r, A,B,C ∈ Z, p, q, r ≥ 2 are fixed and X,Y, Z ∈ Z are the unknowns.
Based on the exponents p, q, r, there are three cases:

• 1
p + 1

q + 1
r = 1: The Euclidean case. The only possibilities of p, q, r, up to permutation, are

{(3, 3, 3), (2, 3, 6), (2, 4, 4)}. This case is well-studied and relates to the problem of finding rational
points on elliptic curves.

• 1
p + 1

q + 1
r > 1: The spherical case.

The only possibilities of (p, q, r), up to permutation, are {(2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5)} where
n ≥ 2 is an integer. The rest of the essay focuses on the spherical case. One property that makes the
spherical case special is that parameterised families of solutions exist in the spherical case. Soon in
the Subsection 1.2, we will talk about what parametrised solutions are.

• 1
p + 1

q + 1
r < 1: The hyperbolic case.

Fermat’s Last Theorem falls under this case. It was proven by Darmon and Granville in [4] that in
this case, (1) has finitely many solutions.

It is also notable that when setting A = 1, B = 1, C = −1, the equation obtained with the constraint
that 1

p + 1
q + 1

r < 1:
Xp + Y q − Zr = 0

only has ten solutions (that have have been found up to now), if we count 1k + 23 = 32 for all k as
one single solution. Some of the larger ones include 438+962223 = 300429072 and 14143+22134592 =
657.

In this essay, we are only interested in solving the equation for the spherical case.

1.1 Why is this problem important?

• The famous Fermat’s Last Theorem, proven by Sir Andrew Wiles in 1995, is a famous special case of
the hyperbolic case of the generalised Fermat Equations. Lots of new mathematics were generated in
order to study of Fermat’s Last Theorem.

• The studies of this problem under different settings give unexpected connection to other mathemati-
cal theory. Later we will see how it relates to the group actions that permute vertices of the platonic
solids. Another example is that work by Hellegouarch, Frey, Serre and Ribet shows connections be-
tween the Fermat equation to elliptic curves, modular forms, and Galois representation. This is men-
tioned in [2].

• For number theorists with computational interests, there is a computational aspect to produce the
solutions to the generalised Fermat equation. More specifically, later in this essay, we will present an
algorithm to compute parametrised solutions in the spherical case. It will be the focus of Section 5.

Another example is that, of the ten known solutions to the hyperbolic case, the larger ones

– 338 + 1, 549, 0342 = 15, 6133

– 438 + 96, 2223 = 30, 042, 9072

– 9, 2623 + 15, 312, 2832 = 1137

are resulted from Beukers’s and Zagier’s work using computational methods, as mentioned in [3].
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1.2 Main goals and contributions for this essay

The main goal of the paper is to explore how the group of rotations on a platonic solid can be used to
generate parametrised solutions to (1) in the spherical case. The main contribution is an implementation
of the algorithm in [6]’s work in Python. In addition to the implementation, we will also include technical
details of the implementation and a demonstration of how to obtain solutions to the diophantine equation
from the outputs.

1.3 Motivations and Background of this Essay

Beukers’s theorem states that there exists a finite set of parametrised solutions, such that every solution to
(1) is a specialisation of one of the parametrised solutions. We will present and prove Beukers’s theorem in
a special case.
Since one of the main idea of the essay revolves around the finiteness of families of parametrised solutions,
we first introduce the concept parametrised solutions.

Definition 1.1 (Parameterised Solution): A parametrised solution to (1) is a triple of polynomials
PX , PY , PZ ∈ Z[x1, x2] such that gcd(PX , PY , PZ) = 1 and it satisfies

APX(x1, x2)
p +BPY (x1, x2)

q + CPZ(x1, x2)
r = 0 (2)

The equality here means the equality of polynomials.
By families of parametrised solutions, we identify two parametrised solutions as the same if they integer
specialises to the same set of solutions to the diophantine equation. Later in Section 2, we will see that we
can relate two elements in the family of parametrised solution by SL2(Z) action.

Definition 1.2 (Integer Specialisations of Parametrised Solution): Given a parametrised solution
PX , PY , PZ ∈ Z[x1, x2], specifying the value of x1, x2 ∈ Z results in a solution (X,Y, Z), X, Y, Z ∈ Z, of (1).
This is called an integer specialisation of the parametrised solution.

As shown in [3], an example of parametrised solution can look like this:
The equation is

X2 + 27Y 2 = 4Z3 (3)

A parametrised solution is given by

• PX(x1, x2) = (x1 − x2)(2x
2
1 + 5x1x2 + 2x2

2)

• PY (x1, x2) = x1x2(x1 + x2)

• PZ(x1, x2) = x2
1 + x1x2 + x2

2

We can specialize (x1, x2) to any pairs of integers. For example, specializing (x1, x2) to (2, 1) yields (X,Y, Z) =
(20, 6, 7) which is indeed a solution to (3). Setting (x1, x2) to any integers would yield infinitely many so-
lutions to (3).
One might ask, how many parametrised solutions exist for an equation with fixed, A,B,C, p, q, r in a spher-
ical case? And how to generate them? This essay will answer these questions.
Both Beukers and Edwards studied the solutions of (1) in the spherical case in the forms of parametrised
solutions, yet their approaches are slightly different.
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1.3.1 Beukers’s work

In Beukers’s work [3], he proved the following theorem

Theorem 1.3 (Beukesr’s Theorem): Given (1) in spherical case,

• There exists a finite number of families of parameterised solutions S. Furthermore, if (x, y, z) is a
solution to (1), then we must be able to find a parameterised solution in S such that (x, y, z) is an
inter specialisation of it.

• If we can find one solution to (1), then we can find infinitely many.

Beukers’s work involves mathematics that could require more technical background to understand. For
example, it includes the Hilbert’s 90 theorem and complex reflection polynomials. In this essay, we will
not talk about Beukers’s theorem in detail, but we will present some ideas briefly and how it relates to
Edwards’s work in Section 6.

1.3.2 Edwards’s work

As a student of Beukers’s, Edwards also worked on solving the generalized Fermat equation in the spher-
ical case following Beukers’s work in 1998. In the work that Edwards published 2004, Edwards presented
a complete solution to a subset of equations of the form (1). In his work, he studied the equations of the
form

X2 + Y 3 + dZr = 0, r ∈ {3, 4, 5} (4)

with d ̸= 0 an integer. He used a different approach compared to Beukers: his approach is algorithmic.
Using invariant theory and Hermite reduction theory, he presented a bound on the coefficients of binary
forms such that all the parametrised families of solutions can result from looping through all possibilities
within that bound. Since the bound is finite, there are finitely many families of parametrised solutions to
(4). Following the proof of the correctness of the bound, he presented an algorithm to explicitly list all the
parametrised families of solutions with proof. We will study Edwards’s approach in detail.

1.3.3 Comparison of Beukers’s work to Edwards’s work

• Beukers’s approach works for the generalised Fermat equations whereas Edwards’s algorithm only
proves the Beukers’s theorem for a subset of the spherical cases, but not all.

• Edwards’s work presents an algorithm to compute all the parametrised solutions, whereas Beukers’s
work does not present an explicit method to generate solutions.

1.4 Roadmap of the essay

We will first present the background on invariant theory in Section 2, then the background of the geome-
try of numbers in Section 3. Next, we will present Edwards’s approach in Section 4 and how Edwards uses
his approach in Section 4 to produce the algorithm in Section 5. Finally, we will briefly talk about Beuk-
ers’s theorem in 6. 1

1All the main ideas in this essay are understood from the references, with some examples and calculations I produced. I
will mention it explicitly when I present examples and calculations that I came up with.
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2 Basic Invariant Theory

In this section, we will provide necessary background for understanding how the platonic solids relate to
parametrisations of the Fermat equation. In Subsection 2.1, we will give a geometric perspective on the
action of PGL2(C) on the Riemann Sphere. In Subsection 2.2, we will introduce terminologies associated
to binary forms. In Subsection 2.3, we will see the connection.

2.1 The Projective Linear Group, a famous theorem by Klein, and the Pla-
tonic Solids

In this subsection, we will introduce the Riemann sphere, the Möbius transformations on it, and a famous
result by Klein about rotations on the Riemann sphere.
We first recall Riemann Sphere and its automorphism group. The following definitions and proposition are
retrieved from article by [8] and notes by [1].

Definition 2.1 (The Riemann Sphere): The Riemann Sphere C∞ is the extended complex plane C ∪
{∞}.

There is a bijection between C∞ = C ∪ {∞} to the unit sphere of radius 1 in R3 centered in the origin by
the stereographic projection.
The bijection is defined as follows: We embed C in R3, by identifying it with the xy−plane, mapping a +
bi ∈ C, a, b ∈ R to (a, b, 0) in R3. We also identify (0, 0, 1) ∈ R3 as the north pole N . Given a point P on
the unit sphere, if it is N , then it is mapped to ∞ on the Riemann Sphere. Otherwise, it is mapped to the
point where the line (NP ) intersects with the xy-plane.

Definition 2.2 (Möbius Transformations of the Riemann Sphere): A Möbius Transformation is a
map of the form f : C ∪ {∞} → C ∪ {∞}, z 7→ az+b

cz+d , with a, b, c, d ∈ C and ad− bc ̸= 0.

It is worth noting that f(∞) = a
c , f

(
−d

c

)
= ∞ and that when ad − bc = 0, f maps C ∪ {∞} to one single

point a/c, making it not an invertible map.
A rotation on the Riemann Sphere can be viewed as a Möbius transformation. I.e. identify points on C∞
with the unit sphere in R3 by reverse stereographic projection, rotate the sphere, then apply stereographic
projection again.
We next introduce the projective linear group PGL2(C) and its construction.

Definition 2.3 (PGL2(C)): PGL2(C) is the group GL2(C)/ ∼, where M1 ∼ M2,M1,M2 ∈ GL2(C) if
M1 = cI2M2 for some c ∈ C.

This group is important as it acts on the Riemann Sphere and can help us to generate invariant polynomi-
als that will be useful later in our constructions.
Given a Möbius transformation f : C∞ → C∞, z 7→ az+b

cz+d , we notice that az+b
cz+d = (λa)z+(λb)

(λc)z+(λd) for any

λ ̸= 0, λ ∈ C.
We have the following statements:
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Proposition 2.4:

• The Möbius functions f : C∞ → C∞ form a group under function compositions.

• The map ϕ : PGL2(C) → {the group of Möbius transformations} given by(
a b
c d

)
7→

(
z 7→ az + b

cz + d

)

is a group homomorphism, where

(
a b
c d

)
is any representative of an element in PGL2(C).

Therefore, we can view PGL2(C) as a group of Möbius transformations on the Riemann Sphere.
We quote a famous theorem by Klein in [7]:

Theorem 2.5 (Klein): All finite subgroups of PGL2(C) are isomorphic to one of the following:

• Cn, a cyclic group of order n

• Dn, a dihedral group of order 2n where n ≥ 2

• A4, the tetrahedral group of order 12. This is the group of rotational symmetry (orientation preserv-
ing symmetry) of a regular tetrahedron.

• S4, the octahedral group of order 24. This is the group of rotational symmetry of a regular octahe-
dron.

• A5, the icosahedral group of order 60. This is the group of rotational symmetry of a regular icosahe-
dron.

We will focus on how the rotations of three platonic solids (the tetrahedron, the octahedron, and the icosa-
hedron) relate to invariant binary forms (which will be defined later), and how these forms will help us
generate parametrised solutions.

2.2 Binary forms, Actions on Polynomials and Covariants

In this subsection, we will introduce binary forms, actions on binary forms, and covariants of forms. The
ideas are important for the next subsection, where we introduce a special kind of binary forms.

Definition 2.6 (Binary form): A binary form of degree n in variables x1, x2, is a homogenous polyno-
mial of degree n in x1, x2, written as

n∑
k=0

(
n

k

)
akx

k
1x

n−k
2

in the context of this section, ak ∈ C.

Definition 2.7 (G-Invariant polynomials): Let G ⊂ GL2(C) be a subgroup.
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Let g =

(
a11 a12
a21 a22

)
∈ G, then g acts on C2 by sending (x1, x2) to (a11x1 + a12x2, a21x1 + a22x2).

g also acts on f(x1, x2) ∈ C[x1, x2] by sending f(x1, x2) to g · f = f(g−1(x1, x2)).
Then C[x1, x2]

G, the set of G−invariant polynomials is set to be the subring of polynomials that are in-
variant under the action of G.

We associate the symmetry groups acting on the Riemann Sphere with the elements of G = PGL2(C)
acting on C∞ via the stereographic projection.
When G acts on binary forms, we have the following definition:

Definition 2.8 (Covariants): Given f =
∑n

k=0

(
n
k

)
akx

k
1x

n−k
2 ∈ C[x1, x2], a binary form C(f) ∈

C[a0, . . . , ak, x1, x2], depending on f , is called a covariant binary form if it is a homogenous polynomial
and there exists a positive integer p, called the weight of the covariant, such that for all g ∈ GL2(C), we
have

g · C(f) = det(g)
p
C(g · f)

This is an equivalence of polynomials where the left hand side is an element in GL2(C) acting on the bi-
nary form C(f). The right hand side is a binary form that depends on the form g · f , multiplied by a con-
stant.

Note that a covariant depends on the form f , but it has not been explicitly stated in what way.
One example of a covariant is C(f) = f with weight 0. Covariants are important because they are the
building blocks to the parametrised families of solutions to (4). We will soon see other examples of covari-
ants.

2.3 Binary Forms Introduced by Klein

In this subsection, we will link the platonic solids (introduced in Subsection 2.1) and covariants (intro-
duced in Subsection 2.2) together. These ideas are introduced by Klein in [7]. We will introduce the bi-
nary forms that are used to represent vertices on the platonic solids and some examples of covariants. We
will also start to see how to generate parametrised solutions to (1) based on these binary forms and covari-
ants.
We only consider three platonic solids in this essay: the tetrahedron, the octahedron, and the icosahedron.
For each platonic solid, we consider it inscribed within C∞, the Riemann Sphere. That is, the platonic
solids intersects the sphere only at its vertices.
To start, we find a homogeneous polynomial f ∈ C[x1, x2] such that its roots corresponds of the point of
intersections of the platonic solid and C∞.
The polynomials f are presented by Klein:

Platonic Solid f

Tetrahedron x4
2 − 2

√
3x2

1x
2
2 − x4

1

Octahedron x1x2(x
4
1 − x4

2)
Icosahedron x1x2(x

10
1 + 11x5

1x
5
2 − x10

2 )

Table 1: Platonic Solids and the Polynomial whose Roots are their Vertices

Here is a brief remark about how these polynomials are obtained. The octahedron case is the easiest to
see: after the steregraphic projection, its six vertices corresponds to 0,∞,±1,±i ∈ C∞. Consider the poly-
nomial x1(x1 +1)(x1 − 1)(x1 + i)(x1 − i), whose roots are precisely these vertices other than ∞. We obtain
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the root ∞ after homogenizing this polynomial, hence we arrive at x1x2(x
4
1 − x4

2). For the tetrahedron
case, the equation is established via observing the intersection of the coordinate axes and the sphere, then
multiplying out the linear factors and homogenizing. See [7] Part I. Chap II. Section 2 for details. For the
Icosahedron case, the derivation is similar except it requires more details in [7] Part I. Chap II. Section 6.
Note that the set of vertices are invariant under the corresponding rotation groups specified in Subsection
2.1.
These polynomials are invariant polynomials under the actions. Each invariant polynomial above rep-
resents a set of points on the platonic solid that remains the same set after rotating with respect to the
group actions. For example, the six vertices on the Octahedron remains the same with elements under the
group action of S4. However, the set of points under invariant polynomials need not to be the vertices of
the solids, they can also be the mid-edge points or the points in the center of the faces.
Klein also presented the concept of special ground forms, which are three invariants forms associated to
each of the three platonic solids. Not only do the roots of these three invariants forms form a group of
points on the platonic solid, if we raise each special ground form to a suitable power, then their linear
combination is 0.
For example, the Icosahedron’s three associated special ground forms are as follows:

I12 : x1x2(x
10
1 + 11x5

1x
5
2 − x10

2 )

I20 : −(x20
1 + x20

2 ) + 228(x15
1 x5

2 − x5
1x

15
2 )− 494x10

1 x10
2

I30 : (x30
1 + x30

2 ) + 522(x25
1 x5

2 − x5
1x

25
2 )− 10005(x20

1 x10
2 + x10

1 x20
2 )

• The first polynomial comes from Table 1. It is the first special ground form corresponding to the
vertices of the icosahedron (I12).

• The roots of the second polynomial corresponds to the twenty center of each faces, denoted by I20. It
is worthy to point out that the icosahedron and the dodecahedron are duals to each other, hence I20
also corresponds to the vertices of the dodecahedron.

• The roots of the third polynomial corresponds to the thirty mid-points of the edegs of the icosahe-
dron, usually denoted by I30.

The above is the special ground forms for the icosahedron. One may ask, we know where I12 came from,
but how about the polynomials corresponding to I20 and I30? Now we will present the special ground
forms more generally.

Definition 2.9 (Hessian and the functional determinant): Given f as Table 1, and k the degree of
f , the Hessian of f , denoted H(f) is given by

H(f) =

(
1

k(k − 1)

) ∣∣∣∣(fx1x1
fx1x2

fx2x1
fx2x2

)∣∣∣∣
and the functional determinant, t(f) is given by

t(f) =

(
1

k(k − 2)

) ∣∣∣∣( fx1
fx2

Hx1
Hx2

)∣∣∣∣

Theorem 2.10: H(f) is a covariant of weight 2 and t(f) is a covariant of weight 3.
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Proof : For the proof, please see Section 2.2 in [6]. □

For each of the three platonic solids, f , the Hessian of f , and the functional determinant of f are the three
special ground forms. Each of them is also an invariant form. In Classical Invariant theory([7]), it was
shown that for the tetrahedron case, the Hessian and the functional determinant are the only two inde-
pendent covariants.
Here is what f,H(f), t(f) are for each platonic solid:
Tetrahedron2: 

f = x4
1 − 2

√
3x2

1x
2
2 − x4

2

H(f) · 3 = −
√
3x4

1 − 6x2
1x

2
2 +

√
3x4

2

t(f) = −4(x5
1x2 + x1x

5
2)

Octahedron3: 
f = x1x2(x

4
1 − x4

2)

H(f) · 36 = −x8
1 − 14x4

1x
4
2 − x8

2

t(f) · 108 = x12
1 − 33(x8

1x
4
2 + x4

1x
8
2) + x12

2

Icosahedron: 
f = x1x2(x

10
1 − 11x5

1x
5
2 − x10

2 )

H(f) · 144 = −(x20
1 + x20

2 )− 228(x15
1 x5

2 − x5
1x

15
2 )− 494x10

1 x10
2

t(f) · 864 = (x30
1 + x30

2 )− 522(x25
1 x5

2 − x5
1x

25
2 )− 10005(x20

1 x10
2 + x10

1 x20
2 )

Note that the linear combination of invariant forms remains invariant. Klein’s relation is a linear combina-
tion of some powers of these forms equating zero.
Klein’s relation is as follows:

Platonic Solid Klein Relation4

Tetrahedron 1
3
√
3
f3 +H(f)3 +

(
1
2 t(f)

)2
= 0

Octahedron 1
432f

4 +H(f)3 +
(
1
2 t(f)

)2
= 0

Icosahedron 1
1728f

5 +H(f)3 +
(
1
2 t(f)

)2
= 0

Table 2: Platonic Solids and Klein Relations

The three forms f for each of the three platonic solids are examples of Klein forms, which we will formally
define later in section 4.
Indeed, this is starting to look like the equations in (4). Consider the equation X2 + Y 3 + dZr = 0, each
platonic solid corresponds to an exponent of Z. More specifically, the Tetrahedron, Octahedron and Icosa-
hedron corresponds to r = 3, r = 4 and r = 5 respectively. However, one notices that the above Klein
relations provide parametrisations for only one value of d. We will explore how to extend the Klein rela-
tions and the covariants to make the equation work for more general values of d in Section 4.

3 Introduction to the Geometry of Numbers

The main subject of interest in this section is reduction theory, which studies binary forms under the SL2(Z)
action. These ideas are relevant to our main interest to generate parametrized solutions to (4) as they in-
spire a method to list all the parametrized solutions up to GL2(Z) equivalence.

2I calculated this using the sympy library in Python
3I calculated this using the sympy library in Python
4I verified this table with the sympy in Python
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In this section, we will first introduce definitions and results in the reduction theory of binary quadratic
forms (ax2

1 + bx1x2 + cx2
2) in Subsection 3.1. Then, we will show how Hermite reduction theory general-

izes these ideas to higher-order binary forms (homogenous of order k ≥ 2) in Subsection 3.2, present some
useful results in Subsection 3.3 and comment on how they can be used to generate parametrisations of so-
lutions.
The following definitions, theorem and proposition are retrieved from lecture notes on [9].

3.1 Reduction Theory in Binary Quadratic Forms

In the theory of quadratic binary forms, we can associate each positive definite real binary form with a
point - its unique root in H (the upper half plane of C). Reduced forms are exactly the forms whose asso-
ciated point lies in the fundamental domain for SL2(Z), and it has been shown that every form is SL2(Z)
equivalent to a reduced form. The reduced forms have a useful property, which is that their coefficients are
bounded by a number depending on its discriminant.

Definition 3.1 (Binary quadratic form): A binary quadratic form is a function of the form ax2
1 +

bx1x2 + cx2
2 where a, b, c ∈ R. Equivalently, it is a binary form of degree 2.

Definition 3.2 (Discriminant): The discriminant of a quadratic binary form f = ax2
1 + bx1x2 + cx2

2 is
disc(f) = b2 − 4ac.

Note that since elements in SL2(Z) have determinant 1, discriminants stay the same under the SL2(Z) ac-
tions, defined similarly as the GL2(Z) action in Section 2.

Definition 3.3 (Positive definitive quadratic binary forms): A quadratic binary form f is positive
definitive if f(x1, x2) > 0 for all (x1, x2) ∈ R2 \ {(0, 0)}.

Note that being positive definitive is equivalent to the condition that disc(f) < 0 and a > 0. This is be-
cause disc(f) > 0 and a > 0 implies a > 0 and c > 0. This also implies that the quadratic equation we
obtain by dehomogenizing (in either x1 or x2) has no roots and obtain only positive values for points that
are not the origin.

Definition 3.4 (Reduced): A positive definitive quadratic binary form is reduced if |b| ≤ a ≤ c and that
whenever one of the inequalities is an equality, then b ≥ 0.

Theorem 3.5 (An equivalent condition of being reduced): Consider a form f = ax2
1 + bx1x2 + cx2

2.
Let τ be its root in H. Then, f is reduced if and only if τ lies in the fundamental domain of SL2(Z) on H,
shown below:5

{z = x+ iy ∈ H, x, y ∈ R | x ∈ [−1/2, 1/2), |z| > 1, or |z| = 1 and x ≤ 0}

5The fundamental domain for SL2(Z) defined in [9] differs slightly compared to the definition in [6]. For example, 1
2
+ i

belongs to the fundamental region in [6] but not [9].
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Proof : See [9]. □

Proposition 3.6: Given a reduced binary quadratic form f = ax2
1 + bx1x2 + cx2

2 with discriminant d then
b2 ≤ |ac| ≤ |d|/3 when ac ̸= 0.

Proof : From |b| ≤ a ≤ c, we can obtain 4b2 ≤ ac = b2 −D. The proposition follows. □

The above proposition provides a bound on the coefficients for reduced binary forms. Although the above
definitions and theorems will not be used later in this essay, it provides some motivation for how terms in
Hermite reduction theory are defined.

3.2 Hermite Reduction Theory

Hermite reduction theory draws parallels to the ideas above to higher-order binary forms. We will intro-
duce Hermite determinant for higher-order forms, which plays the role of the discriminant. We will also
introduce the representative point that is associated with each form, which plays the role of the unique
root in H. Reduced forms are defined similarly. Definitions and propositions in this section references [6].
Throughout these next two sections, we let f ∈ R[x1, x2] be a form of order k (a binary form of order k).
Denote f ’s roots by (µi, νi) ∈ P1(C). We can always rewrite f in the following way:

f = A

k∏
i=1

(νix1 − µix2)

where A ∈ C∗.
Below is a way to define a real quadratic form based on f :

Definition 3.7 (φ(f, t⃗)): Let t⃗ ∈ (R∗)k be a vector representing some weights, then

φ(f, t⃗) =

k∑
i=1

t2i (νix1 − µix2)(νix1 − µix2)

Note that φ(f, t⃗) is a quadratic form. Furthermore, by expanding each term we verify that its coefficients
are real. It is also a positive definitive binary quadratic form, as (x1, x2) ̸= (0, 0) always give a positive
value of φ(f, t⃗).

Definition 3.8 (Φ(f, t⃗)): Fix a representative of roots (µi, νi)1≤i≤k of f in P(C), denonte

Φ(f, t⃗) =
|A|2(−disc(f)/4)k/2

(
∏k

i=1 ti)
2

12



Definition 3.9 (Hermite Covariant): Let f ∈ R[x1, x2] be a form of degree k as usual and let z ∈ C
be arbitrary. Define the Hermite covariant as follows:

Θ(f, z) = minΦ(f, t⃗), over all t⃗ ∈ (R∗)k such that φ(f, t⃗)(z, 1) = 0

If such Φ(f, t⃗)(z, 1) = 0 for all t⃗ then we set Θ(f, z) to ∞.

There are two points to notice. First, using min here makes the Hermite covariant not dependent on the
representatives of the roots (µi, νi). Second, since the form is real and positive definitive, replacing z with
z still yields 0. So we can assume z ∈ H.

Definition 3.10 (Hermite Determinant): For a form f ∈ R[x1, x2], we define its Hermite determinant
to be

Θ(f) = min
z∈H

Θ(f, z)

Definition 3.11 (Signature of a form): The signature of a form f is (r, s) where r is the number of
real roots and s the number of pairs of complex roots.

Definition 3.12 (Representative point): For a form f ∈ R[x1, x2], its representative point is any point
z ∈ H such that Θ(f) = Θ(f, z). In other words, it is the point in H that achieves the minimum value of
Θ(f, z).

Note that the representative points are usually unique for a given form f . Referencing Proposition 4.2.2.
of Edwards’s work in [6], if f ’s signature is (r, s) , it has distinct roots, and either k > 2 or s > 0, then its
representative point is unique.

Definition 3.13 (Reduced): A form f ∈ R[x1, x2] is Hermite reduced (or simply, reduced) if it has a
representative point in the fundamental domain for SL2(Z), as follows:

D = {z = x+ iy ∈ C, x, y ∈ R | |z| ≥ 1,−1/2 ≤ x ≤ 1/2}

Note that the definition of the fundamental domain differs slightly from Subsection 3.1.

Remark 3.14: In [10], Stoll and Cremona provided a method to find a reduced form that is SL2(Z)
equivalent to a given binary form of degree n ≥ 3.

3.3 Useful results from Hermite reduction theory

Upon defining the terms for Hermite Reduction theory in the previous subsection 3.2, we will also intro-
duce some results in Hermite reduction theory. We divide the results into two parts.
The first part consists of several results that will help us determine Θ(f) for a given form f .
Assuming that we have the value of Θ(f), the second part will help us to determine the bounds on the
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coefficients of the reduced forms, using Θ(f). At the end of this section, we will comment on why these
results are important.
The following theorems, definitions, and propositions are from [6].

3.3.1 Results that help compute Θ(f)

Theorem 3.15 (Covariance): f ∈ R[x1, x2] a binary form of order k. Let g ∈ GL2(R), then

Θ(f ◦ g, z) = |det(f)|kΘ(f, gz)

If we set z to be the point where f ◦ g obtains its minimum, we obtain another identity that looks like how
covariance is defined in Section 2.

Θ(f ◦ g) = |det(g)|kΘ(f)

Proof : See Theorem 4.2.1 in [6]. □

The identity above becomes helpful when we work with the parametrisations of Klein Forms for different
coefficients in the general Fermat equation.

Proposition 3.16: Let f = A
∏k

i=1(νix1 − µix2) be a real form of order k, where k ≥ 3. Suppose that f ′s
roots are distinct. If z = x+ iy ∈ H is f ’s representative point, then Θ(f) is given by

Θ(f) =

(
k

2y

)k

|A|2
k∏

j=1

(|νjx− µj |2 + |νjy|)2

Proof : See Proposition 4.2.3 in [6]. □

The proposition above allows us to write Θ(f) using its representative point. This will help us to compute
Θ(f) directly.

Proposition 3.17: Let f be a real 4-form whose roots are all finite. Then the following table lists the
weights at which f attains its Hermite determinant. There are three possibilities for f ’s signatures.

signature roots weights

(4, 0) α1, α2, α3, α4 t(αi) = 1/(f ′(αi, 1)) where f ′ is the
derivative with respect to the first variable.

(2, 1) α1, α2, β, β t(αi)
2 = |β − β||α3−i − β|2

t(β)2 = t(β)2 = |α1 − α2||α1 − β||α2 − β|
(0, 2) β1, β1, β2, β2 t(βi)

2 = t(βi)
2 = |βi − βi|

Table 3: The weights that yield the Hermite Determinant for 4 forms
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Proof : See Proposition 4.2.4 of [6]. □

Lemma 3.18:
Let f be a real form of order k ≥ 3 and let its signature be (r, s). If f has distinct roots and f(x2,−x1) =
±f(x1, x2), then the representative point of f is i.
Additionally, we factor f = f1f2, where f1 only has real roots and f2 only has complex roots, then:

• If r > 2, then i is also the representative point of f1

• If s > 0 then i is also the representative point of f2. If f2 has exactly one pair of complex roots, then
i is the unique root of f2 in H.

Proof : Consider the map z 7→ −1/z. Note that if z = (x2 : −x1) is a root of f, then so is −1/z = (x1 :
x2). Therefore, this map permutes the roots of f1 and f2. Additionally, this map maps H to itself, with
fixed points ±i. By Theorem 4.2.2. of [6], the representative point of f is unique in H. By Theorem 3.15,
the Hermite determinant does not change under action by SL2(Z). Hence the unique representative point
must be i. Therefore, i is the representative point. □

3.3.2 Results that compute bounds

Theorem 3.19: Write f ∈ R[x1, x2] as below

f =

k∑
i=1

(
k

i

)
aix

k−i
1 xi

2

If f is Hermite reduced,, then

|aiaj | ≤
(

4

3k2

) k
2

Θ(f), for all i, j such that i+ j ≤ k

Proof : See Theorem 4.2.5 in [6]. □

The theorem above is extremely useful to us. Having the Hermite determinant, we can use this bound to
generate the list of all possible reduced forms by exhaustively checking all possibilities of the coefficients,
which is finite. This will produce a list of reduced forms. Yet we know that all binary forms are SL2(C)
equivalent to some reduced forms, and a later result will show that all SL2(C)-equivalent forms yield the
same parametrisation, this helps us to determine a complete list of parametrisations.

4 A Computational Approach for the Diophantine Equation

After building some knowledge about invariant theory and the geometry of numbers, we have the prelim-
inary knowledge to understand Edwards’s approach in [6] to generate all parameterised solutions to the
equations of the form (X2 + Y 3 + dZr = 0) as in (4).
This section and the next section are tightly connected, in the sense that this section introduces three key
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theoretical ingredients that serves as the core of Edwards’s Algorithm, which is what next section focuses
on.
Before diving deeper into the technical details, it is important to get a sense of why these three ingredients
are important. Below is a quick preview on how each ingredient is used in Edwards’s algorithm.

• Subsection 4.1, Klein forms and their connection to parametrisations: Building on Section
3, this section shows us which binary forms can be used to construct parameterised solutions. Fur-
thermore, this section provides us an explicit way to generate solutions to (4) given any Klein form
(to be defined later, though we already saw examples in Subsection 2). In the algorithm, this helps
to produce concrete numeric solutions in order to check whether the generated parameterisations
yield coprime solutions.

• Subsection 4.2, Applying Hermite Reduction Theory to Klein forms: Building on Hermite
Reduction Theory in Section 3, this section helps us in two ways. First, it gives us a bound for the
coefficients for the Klein forms, so that we can enumerate all possibilities of Klein forms explicitly
in the algorithm. Second, it shows us how to compute representative points of forms, so that we can
throw away all the forms that are not reduced, which are precisely those whose representative points
are not in the fundamental region.

• Subsection 4.3, Lifting solutions to Klein forms: This section helps us to determine the coeffi-
cients of a Klein form given a single solution (X,Y, Z) ∈ Z3. In the algorithm, we will first generate
all possible solutions of the form (X,Y, Z) ∈ Z3 (within a justified bound). Then for each solution
(X,Y, Z), we will use this theory to ’lift’ it to a Klein form f such that (X,Y, Z) is one of the integer
specialisations of f .

Now, we should shift our attention back to this section and focus on understanding the technical details
behind it.

4.1 Klein forms and their connection to parametrisations

Continuing on Section 2, in this subsection, we will first introduce Klein form and a series of ideas that
links Klein forms and the parametrised solutions of X2 + Y 3 = dZr together.
Following Edwards’s work in [6], we first define a set of constants for each of the three platonic solids:

Definition 4.1 (Constants f̃r, k,N, βr):

Platonic Solid r f̃r k = deg(f) N βr deg(H(f)) deg(t(f))

Tetrahedron 3 f̃3 = x4
2 − 2

√
3x2

1x
2
2 − x4

1 4 12 3
√
3 4 6

Octahedron 4 f̃4 = x1x2(x
4
1 − x4

2) 6 24 432 8 12

f̃4
∗
= x1x2(x

4
1 + x4

2)

Icosahedron 5 f̃5 = x1x2(x
10
1 + 11x5

1x
5
2 − x10

2 ) 12 60 1728 20 30

Table 4: Constants for each Platonic Solid

The following is the meaning of each constant in the above table:

• r denotes the exponent of Z in the equation X2 + Y 3 = dZr, where the parametrisation of this
equation corresponds to the platonic solid as demonstrated in Klein’s Relation (Table 2).

• f̃r is the equation whose roots correpsonds to the vertices of the platonic solid. Note that f̃4
∗
is an-

other equation whose roots correspond to the vertices of the Octahedron.
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• k denotes the number of vertices in the platonic solid, and it also corresponds to the degree of the
binary form f̃r.

• N denotes the order of the group of rotational symmetries of the platonic solid.

• βr denotes the reciprocals of the constants in front of f in Table 2.

• t(f), H(f) denotes the Hessian and the functional determinant of f , respectively, as defined in Defi-
nition 2.9. Their degrees are 2k − 4, 3k − 6, respectively.

Now we can rewrite Klein’s relation with our new notation, as in [6]:(
1

2
t(f̃r)

)2

+H(f̃r)
3 +

1

βr
f̃r

r
= 0 (5)

and for f̃4
∗
, we get (

1

2
t(f̃∗

4 )

)2

+H(f̃∗
4 )

3 − 1

β4
f̃∗
4

4
= 0 (6)

Although (5) looks very similar to (4), we are only limited to produce parameterised solutions to the equa-
tion whose coefficient in front of Zr is 1

βr
. This gives parameterised solutions to only one value of d. To

address this issue, we introduce a series of definitions. This allows d, the coefficient in front of f̃r, to be
arbitrary.

Definition 4.2 (C (r),C (r, d)):
Let r ∈ {3, 4, 5} and d ∈ C∗, we define

C (r) = {f̃r ◦ g | g ∈ GL2(C)}

C (r, d) =

{
f ∈ C (r)

∣∣∣∣(1

2
t(f)

)2

+H(f)3 + dfr = 0

}
Note that both C (r) and C (r, d) consists of binary forms. In particular, each binary forms in C (r, d)
presents a parametrised solution to X2 + Y 3 = dZr.

This notation allows us to work with different values of d for (4), not just one d.

Definition 4.3 (Parametrisation): Given f ∈ C (r, d), a binary form, we write

Φ(f) =

(
1

2
t(f), H(f), f

)
which is a parametrised solution to X2 + Y 3 = dZr.

Next, we will present two results that allows us to write C (r, d) in terms of f̃r, referencing [6].

Lemma 4.4:
First, f̃r ∈ C (r, β−1

r ).

Second, if f ∈ C (r, d), i.e.
(
1
2 t(f)

)2
+H(f)3 + dfr = 0, then
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1. If g ∈ GL2(C), then f ◦ g ∈ C (r, det(g)
6
d).

2. If λ ∈ C∗, then λf ∈ C (r, λ6−rd).

Proof : f̃r ∈ C (r, β−1
r ) follows from the definition of C (r, β−1

r ) and (5).
To show 1, since H(f), t(f), fr are covariants of weights 2, 3, 0 respectively, so

g ◦ t(f) = det(g)
3
t(g ◦ f)

g ◦H(f) = det(g)
2
H(g ◦ f)

g ◦ (fr) = g ◦ fr

From
(
1
2 t(f)

)2
+H(f)3 + dfr = 0 and from squaring the first equation, cubing the second, and multiplying

the third by det(g)
6
, we obtain that f ◦ g ∈ C (r, det(g)

6
d).

To show 2, note that H(f) and t(f) can both be seen as homogeneous polynomials in the coefficients
a0, . . . ak. H(f) is degree 2 in the ais and t(f) is degree 3 in the ais, hence H(f)3 and t(f)2 are both of

degree 6 in the ais. Hence, multiplying
(
1
2 t(f)

)2
+H(f)3 + dfr = 0 by λ6 shows that the new constant in

front of fr is d · λ6−r. □

Proposition 4.5: We can write C (r, d) and C (r) as follows

C (r, d) =
{
f = f̃r ◦ g | det(g)6 = βrd

}
C (r) =

⋃
d∈C∗

C (r, d)

Proof : To show the first identity, note that f̃r ∈ C (r, β−1
r ), so f̃r ◦ g ∈ C (r, det(g)

6
β−1
r ). So it follows.

The second identity follows from the first and the original definition of C (r). □

Definition 4.6 (Klein forms): We define Klein forms as the union C (3) ∪ C (4) ∪ C (5).

Note that Klein forms are our main objects of interest. In the rest of this essay, our main goals are to de-
termine which binary form is a Klein form and to generate Klein forms.
We are now ready to study a subset of all Klein forms, called the integral Klein forms, as well as their
properties.

Definition 4.7 (Ar): For each r ∈ {3, 4, 5}, we consider forms of degree k ∈ {4, 6, 12} respectively.

For f , written as f =
∑k

i=0

(
k
i

)
aix

k−i
1 xi

2, we define

A3(f) = {a0, . . . , a4}

A4(f) = {a0, . . . , a6}
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A5(f) = {a0, . . . , a5, 7a6, a7, . . . a12}

Note that essentially, Ar of the form f is just to extract the coefficient for each summand and dividing it
by the weight of the binomial coefficient.
One exception is that the seventh coefficient for A5(f) is multiplied by 7. Note that this implies that it is
possible for a6 to be of the form z

7 , where z ∈ Z. However, the form itself still has Z coefficient in front of

x6
1x

6
2, since

(
12
6

)
has a factor of 7.

Definition 4.8 (R-Integral Klein Forms): Let R ⊆ C be a ring, then the subset of R-integral forms is
defined as

C (r, d)(R) = {f ∈ C (r, d) | Ar(f) ⊆ R}

Note that the ring R is usually Z or R.

We now present two results about R-integral Klein forms.

Proposition 4.9 (The set of R-integral Klein Forms are closed under GL2(Z)): Fix (r, k) to be
one of (3, 4), (4, 6) or (5, 12).
Then C (r, d)(Z) is closed under the action of GL2(Z).

Proof : Note that GL2(Z) is generated by S, T, U , where

S =

(
0 1
−1 0

)
, T =

(
1 1
0 1

)
, U =

(
1 0
0 −1

)
Therefore, it suffices to check C (r, d)(Z) is closed under the action by S, T, U .

Write f =
∑k

i=0

(
k
i

)
aix

k−i
1 xi

2. Since the action by S is just to replace ai with ak−i and multiply each odd
indexed coefficient by −1, the set is closed under action by S. Similarly, the action by U is to simply mul-
tiply each odd-indexed coefficient by −1. Therefore this set is also closed under the action by U .
We now show the set is closed under the action by T . Action by T is the same as evaluating f(x1+x2, x2).
We have

f(x1 + x2, x2) =

k∑
i=0

(
k

i

)
a′ix

k−i
1 xi

2

where

a′t = at +

t−1∑
i=0

(
t

i

)
ai, t ∈ {0, . . . , k} (7)

For r = 3, 4 this shows that a′t is still in Z for each t.
For r = 5, for 0 ≤ t ≤ 6, each of the summands above is an integer, hence each a′t is still an integer. For

7 ≤ t ≤ 12, 7 divides
(
t
6

)
, this guarantees that

(
t
6

)
a6 is an integer, so is

∑t−1
i=0

(
t
i

)
ai. Therefore, this set is

also integrally closed under action by T . □
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Remark 4.10: Remark that formula (7) will be helpful to us in the next section. We will encounter the
case where it is difficult to compute the representative point of f directly, yet we can easily compute the
representative point of T ◦ f .

The proposition below will tell us about the properties of Z integral forms when taking covariants.

Proposition 4.11: Fix (r, k) to be (3, 4), (4, 6) or (5, 12). Let C =
∑n

i=0 Cix
n−i
1 xi

2 be a covariant. Sup-
pose that

• C0 ∈ Z[a0, . . . , ak], and

• If r = 5, then the covariant has weight ≤ 5

• Ar(f) ⊆ Z

Then, C(f) ∈ Z[x1, x2]. That is C(f) is a binary form whose coefficients are integral.

Proof : See Proposition 2.4.2 in [6]. □

The above proposition tells us that if f ∈ C (r, d) is Z−integral, then C(f) has coefficients in Z.
Next, we present a theorem that characterizes all Klein forms.

Definition 4.12 (The 4th and 6th covariants): Let f be a degree k form.
We define Ω as follows:

Ω =

(
δ2

δxδy′
− δ2

δyδx′

)
where x, y, x′, y′ are variables.
We define the 4th and 6th covariants as follows:

τ4(f) =
1

2

(
(k − 4)!

k!

)2

Ω4f(x, y)f(x′, y′) |x,x′=x1,y,y′=x2

τ6(f) =
1

2

(
(k − 6)!

k!

)2

Ω6f(x, y)f(x′, y′) |x,x′=x1,y,y′=x2

Essentially, the 4th and the 6th covariants are obtained by computing the derivatives Ω for 4, 6 times re-
spectively, multiplying a constant, and then substitute x, x′ by x1 and y, y′ by x2 and finally obtaining a
binary form in x1, x2. Note that τ4(f) is a 2k − 8 form and τ6(f) is a 2k − 12 form, having weights 4, 6,
respectively.

20



Definition 4.13 (The catelecticant invariant j): Let f be a 4−form and we define j(f) to be

j(f) =

∣∣∣∣∣∣
a0 a1 a2
a1 a2 a3
a2 a3 a4

∣∣∣∣∣∣
Note that it has weight 6.

Theorem 4.14 (Classification of Klein forms): Let C[x1, x2]k denote k-degree binary forms whose
coefficients are in C.
Fix d ∈ C∗ as the coefficient of Zr, then

C (3, d) = {f ∈ C[x1, x2]4, | τ4(f) = 0, j(f) = 4d}

C (4, d) = {f ∈ C[x1, x2]6, | τ4(f) = 0, τ6(f) = 72d}

C (5, d) = {f ∈ C[x1, x2]12, | τ4(f) = 0, τ6(f) =
360

7
d · f}

Proof : See Theorem 2.5.1, Lemma 2.5.2, and Theorem 2.5.3 on [6]. □

This theorem presents the necessary and sufficient conditions for a form to be in C (r, d). In fact, for a
form f , to test whether f ∈ C (r, d), we just need to compute two of τ4(f), τ6(f) or j(f). On the other
hand, as we will see in Subsection 4.3, we can compute τ4(f) and τ6(f) in terms of the coefficients of f ex-
plicitly. This allows us to generate equations in the ais that are equivalent to τ4(f) = 0, τ6(f) = 72d, or
τ6(f) = 360

7 d · f . Thus, to check whether f ∈ C (r, d), it suffices to check whether its coefficients satisfies
the equations in terms of the ais. These equations in ais are called the defining equations, as we will see
later.
This concludes the Subsection 4.1. In this subsection, we introduced Klein forms and showed how to use
them to generate parametrised solutions.

4.2 Applying Hermite Reduction Theory to Klein forms

In the previous subsection, we studied Klein forms, how they produce parameterised solutions, and the
equivalent conditions for a form to be a Klein form in Theorem 4.14. This is the second key ingredient in
Edwards’ algorithm.
In this subsection, we will show how to use Hermite Reduction Theory on Klein forms in order to obtain
bounds on the coefficients of reduced Klein forms. Recall that in Section 3, we have grouped the results of
Hermite Reduction Theory into two parts: how to compute Θ(f) and and how to compute the coefficients
given Θ(f). In this subsection, we will combine them together to obtain explicit bounds for the coefficients
and also provide a method to compute representative points of Klein forms.
Again, the results presented in this section references [6].
We first present a result about the roots of Klein forms.

Proposition 4.15: If f ∈ C (r, d)(R), then it has at least one real root.
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Proof : See Proposition 4.3.1. of [6]. □

Theorem 4.16: Let f ∈ C (r, d)(R) and let f ′ ∈ C (r, d′)(R) be Klein forms whose coefficients are all real,
and d, d′ ̸= 0.
Denote GL2(R)+ be the set of matrices in GL2(R) with positive determinants. Then

• If d, d′ have the same sign, then f, f ′ are GL2(R)+ equivalent.

• If d, d′ have different signs and r is 3 or 5, then f and −f ′ are GL2(R)+ equivalent.

Proof :
Consider Lemma 4.4. When d, d′ have different signs, and r is 3 or 5, we can change f by applying −I, so
that −f ∈ C (r,−d). Now it remains to prove the first claim.
We use Lemma 4.4 again, we can apply g, g′ ∈ GL2(R) with determinants d−1/6, d′−1/6 respectively, to
f, f ′. This ensures that f ◦ g, f ′ ◦ g′ ∈ C (r, 1) ∪ C (r,−1). Additionally, they either both belong to C (r, 1)
or C (r,−1).
So we can now assume d = d′ = ±1. By Proposition 4.15, f, f ′ has at least one real root. By techniques
analogous to the proof of Theorem 4.23, we may apply a GL2(R)+ transformation to f such that its real
root maps to ∞, and the first three coefficients of f are (0, 1, 0). Similarly, we can change f ′ such that its
real root also maps to ∞ with its first three coefficients (0, 1, 0).
However, by the defining equations for r = 3, 4, 5, which is a relation about the coefficients of the Klein
forms (See Remark 4.22), the rest of the coefficients are determined uniquely by the first three coefficients.
We will see similar proof techniques in Remark 4.22 and Theorem 4.23 later in this section. Therefore,
there exists a matrix in GL2(R)+ that serves as a proof that f to f ′ are GL2(R)+ equivalent. □

Now, we will show two theorems that are directly useful for computation: the first one will be helpful
for computing Representative points of a Klein form, and the second one will be helpful to compute the
bounds of the coefficients of a Klein form that is also Hermite Reduced.

Theorem 4.17: Suppose that f ∈ C (r, d)(R), then, the following is its Hermite determinant.

Class A representative Signature Θ(f)
of this class

C (3, d) f̃3 (2, 1)6 2633|d|2/3
C (4, d), d > 0 f̃4 (4, 1) 2839|d|
C (4, d), d < 0 f̃∗

4 (2, 2) 2839|d|
C (5, d) f̃5 (4, 4) 22431855|d|2

Table 5: Hermite Determinant for each class of Klein Forms

Furthermore, if we factor f = f1f2, where all of f1’s roots are real and all of f2’s roots are complex, here is
a fast way to find a representative point for each class of Klein forms:
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Class Method
C (3, d) Use Proposition 3.17 directly on f , since f is a 4 form

C (4, d), d > 0 Return the unique root of f2 in H
C (4, d), d < 0 Return the representative point of f2 using Proposition 3.17

C (5, d) Return the representative point of f1 using Proposition 3.17

Table 6: Find Representative Points

Remark 4.18: 7

Suppose a 4-form has finite roots. Then, to compute its representative points using its roots ri and the
weights t2i obtained from Table 3.17, we only need to compute the root of the quadratic binary form

ϕ(z, 1) =

k∑
i=1

t2i (z − ri)(z − ri)

in H. This is by definitions of the Hermite covariant and the Hermite determinant.

We will use the above theorem in the algorithm. It provides us a method to compute representative points
of a form given its coefficients.

Proof : 8 We first verify that the signature is correct for each of the f̃r. Indeed,

• f̃3 has roots [±0.517638,±1.931852i]

• f̃4 has roots [∞, 0,±1,±i].

• f̃∗
4 has roots [∞, 0,±

√
i,±

√
−i]

• f̃5 has roots [∞, 0,±0.618034,−0.5 ± 1.538842i,−0.5 ± 0.363271i, 1.309017 ± 0.951057i, 0.190983 ±
0.587785i]

Therefore, the signatures are correct for f̃r.
Next, we show that i is a representative point for each of f̃r. Indeed,

• For f̃4, f̃∗
4 and f̃5, we can use Lemma 3.18. By verifying that f(x2,−x1) = ±f(x1, x2) we conclude

that their representative points are i.

• For f̃3, note that f(x2,−x1) /∈ ±f(x1, x2), so we cannot use Lemma 3.18. To find its representative
point, we use Table 3 to find the roots and the weights:

– Roots are [0.517638,−0.517638, 1.931852i,−1.931852i]

– Respective weights are [15.454813, 15.454813, 4.141105, 4.141105]

Using Remark 4.18, indeed i is its representative point.

We then verify that Θ(f) is correct for each of f̃r. This is done by using Proposition 3.16 with d equal to
the reciprocal of βr (as shown in (5)). We can find the value of βr in Table 4.

6In [6], this should be (2, 1) instead of (2, 2).
7I thought of on my own.
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Upon verifying that the formula Θ(f) is correct when f is one of the f̃3, f̃4, f̃∗
4 or f̃5, we now verify the

formula for all f ∈ C (r, d).
Let f ∈ C (r, d) be arbitrary, then

• By Theorem 4.16, ±f = f̃r ◦ g for some g ∈ GL2(R)+.

• By Theorem 3.15, Θ(f) = |det(g)|kΘ(f̃)

• By Lemma 4.4, det(g)
6
= βrd

Combing the above, for r = 3, we have

Θ(f) = |det(g)|kΘ(f̃3) = |det(g)|k2633
(

1

βr

)2/3

= 2633|d|2/3

The case for r = 4, 5 is verified similarly. This verifies the table for all f ∈ C (r, d).
The correctness of methods listed in Table 6 follows from the two points mentioned in Lemma 3.18.
Therefore, finding the representative point of a form in C (4, d), where signature is (4, 1), is equivalent to
finding its unique root in H. Finding the representative point of a form in C (4, d) with signature (2, 2) is
equivalent to finding the representative point of its complex factor. Similarly, finding the representative
point of a form in C (5, d) is equivalent to finding its representative point of its real factor.

□

Theorem 4.19: Let f ∈ C (r, d) be a Hermite reduced Klein Form. Let k denote its degree. Then, we
have the following bound on its coefficients:

For all i, j, such that i+ j ≤ k, |aiaj | ≤ B2

where B is given by the following table:

Class B

C (3, d) 2 · 31/2|d|1/3

C (4, d) 16|d|1/2

C (5, d) 1600 · 51/2|d|

Table 7: Bound on the Coefficients of Klein Forms

Proof : We use the bounds presented in Theorem 3.19. We simply plug in the value of Θ(f) specified in
Table 5 of Theorem 4.17 to obtain B.

□

In Edwards’ Algorithm, the above theorem is very important. It is useful for generating a list of candi-
dates to be Hermite reduced Klein forms. This will provide us a with a list of forms as a starting point.
This concludes Subsection 4.2. In this subsection, we presented methods to compute representative points

8I computed the values in this proof using the numpy library in Python.
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and the bounds on Hermite reduced Klein forms.

4.3 Lifting solutions to Klein forms

In this subsection, we will present two important theorems by Edwards in [6] that is used to ‘lift’ solutions
of the form (X,Y, Z) ∈ Z3 to a Klein form. In his work, Edwards describes this as the ‘Arithmetic heart’
of this paper. This is the third key ingredient in Edwards’ algorithm.
This subsection consists of two important theorems by Edwards, the lifting theorem and the uniqueness
theorem.
Essentially, if we are given a triple (X,Y, Z) ∈ Z3 such that gcd(X,Y, Z) = 1, and it is a solution to

X2 + Y 3 + dZr = 0

Then, the existence theorem would tell us that there exists a form f ∈ C (r, d) such that (X,Y, Z) is an in-
teger specialisation of f . Furthermore, the uniqueness theorem will tell us that if there exists f ′ ∈ C (r, d)
such that (X,Y, Z) is also an integer specialisation of f ′, then f ′ is SL2(C) equivalent to f. That is, all of
the Klein forms in C(r, d) that integer specializes to a particular (X,Y, Z) are all equivalent under the ac-
tion of SL2(C).
For a specific (X,Y, Z) that solves X2 + Y 3 + dZr = 0, once you find one form that integer specializes to
it, you can find all by SL2(C) actions.
Before stating and proving the theorems, it is also worth pointing out that, as a result of the proof the
lifting theorem, we also obtain a recipe for computing the form f that specializes to (X,Y, Z), given the
values of (X,Y, Z).
Now we are ready to state the two theorems.

Theorem 4.20 (The lifting theorem): Fix d ∈ Z, d ̸= 0 and r ∈ {3, 4, 5}. Let (X,Y, Z) ∈ Z3 be a
solution to the spherical diophantine equation

X2 + Y 3 + dZr = 0

such that gcd(X,Y, Z) = 1, then there exists a binary form f ∈ C (r, d)(Z) where (X,Y, Z) is f ’s integer
specialisation. That is, there exists (c1, c2) ∈ Z2 such that Φ(f)(c1, c2) = (X,Y, Z).

Before we prove the theorem, we first introduce a lemma and state the defining equations for C (r, d).

Lemma 4.21:
Fix f ∈ C (r, d) a form. Let (X,Y, Z) ∈ C be such that X2 + Y 3 = dZr. Then, f (written more explic-
itly, f(x1, x2)) specializes to (X,Y, Z) with complex arguments. That is, there exists c1, c2 ∈ C such that
Φ(f)(c1, c2) = (X,Y, Z).

Proof (of Lemma 4.21): Consider the system of equations in the unknowns s1, s2:{
H(f)(s1, s2) = Y

f(s1, s2) = Z

They are binary forms of degree 2k − 4 and k respectively. Using methods from elimination theory (this is
a system of equations in two variables), we can obtain solutions (c1, c2) ∈ C2.
Now, since

(
1
2 t(f), H(f), f

)
satisfies X2 + Y 3 + dZr = 0 and H(f)(c1, c2) = Y , f(c1, c2) = Z, we must have
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1
2 t(f)(c1, c2) = ±X.
Here are two cases:

• If 1
2 t(f)(c1, c2) = X, then Φ(f)(c1, c2) = (X,Y, Z)

• Otherwise, 1
2 t(f)(c1, c2) = −X. In this case, we change c1, c2 by multiplying it with a matrix so that

the new vector yields a parametrisation for (X,Y, Z).

Since f = f̃r ◦ h for some h ∈ GL2(C), (for r = 4, set f̃r to f̃4
r .)

For the cases r = 3, 4, 5, set m̃ to be

(
i 0
0 i

)
,

(
0 1
1 0

)
,

(
i 0
0 i

)
respectively.

Observe that in each case, m̃ is a matrix of determinant −1 that fixes f̃ . Therefore, h−1m̃h := m is

a matrix of determinant −1 that also fixes f . We replace

[
c1
c2

]
by

[
c′1
c′2

]
= m

[
c1
c2

]
.

Now, since f,H(f), t(f) are covariants of weighs 0, 2, 3 respectively, we have that f(c′1, c
′
2) =

f(c1, c2) = Z and H(f)(c′1, c
′
2) = f(c1, c2) = Y . Yet t(f)(c′1, c

′
2) has its sign flipped so t(f)(c′1, c

′
2) =

−(−X) = X.

Hence Φ(f)(c′1, c
′
2) = (X,Y, Z) as desired.

□

Remark 4.22:
From Theorem 4.14, we are able to obtain a set of defining equations for each r = 3, 4, 5. That is, a form
f = [a0, . . . , ak] is in C (r, d) if and only if it satisfies the defining equations. We will use the defining equa-
tions in the proof of Lifiting theorem. This is also useful to us when determining a3, . . . , ak from a0, a1, a2.
Below are the defining equations obtained from Appendix A of [5]. 9

The defining equations for C (3, d) are given by:

0 = a0a4 − 4a1a3 + 3a22

−4d = a0a2a4 + 2a1a2a3 − a32 − a0a
2
3 − a21a4

The defining equations for C (4, d) are given by:

0 = a0a4 − 4a1a3 + 3a22

0 = a0a5 − 3a1a4 + 2a2a3

0 = a0a6 − 9a2a4 + 8a23

0 = a1a6 − 3a2a5 + 2a3a4

0 = a2a6 − 4a3a5 + 3a24

−72d = a0a6 − 6a1a5 + 15a2a4 − 10a23

To make this essay short, I omitted the defining equations for C (5, d). It is available in Appendix A of [5].

To obtain the defining equations for C (5, d), one would need to write f ∈ C[x1, x2]12 =
∑12

i=0 aix
12−i
1 xi

2,

9When implementing Edwards’s algorithm, I used the defining equations with the signs of d flipped. Otherwise the sympy
library will not find a solution.
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expand τ4(f) = 0 and τ6(f) =
360
7 d · f . Then we end up with equations in the ai and d, which are precisely

the defining equations for C (5, d).
In my implementation of Edwards’s algorithm, I only computed the tetrahedral and the octaheral case.
Hence I only used the defining equations for C (3, d) and C (4, d).
We can finally prove the theorem.

Proof (of Theorem 4.20):
This proof consists of four steps

• Step 1. find some f ∈ C (r, d), c1, c2 ∈ C where f is not necessarily in C (r, d)(Z).

• Step 2. apply transitions on a0, a1, a2, a3, such that X,Y, Z can be directly expressed using
a0, a1, a2, a3.

• Step 3. apply another transition so that a0, a1, a2 ∈ Z

• Step 4. finally, show that Ar(f) ⊆ Z. i.e. the rest of the coefficients a4, . . . , ak ∈ Z (or 7a6 ∈ Z when
r = 5.)

Step 1.
We start with any f ∈ C (r, d) and use Lemma 4.21 to find c1, c2 ∈ C such that Φ(f)(c1, c2) = (X,Y, Z).
Step 2.
Since C (r, d) is closed under transformations in SL2(C), we can apply a transformation m to f such that

Φ(f ◦m)(1, 0) = (X,Y, Z), where m is a matrix of determinant 1 with m

[
c1
c2

]
=

[
1
0

]
. Now, for convenience,

we denote f for the form after transformation.
Recall that we defined a0, . . . , ak be the coefficients of f after diving by a factor of binomial coefficients.
Expanding Φ(f ◦m)(1, 0) = (X,Y, Z), we obtain

f(1, 0) = Z = a0 (8)

H(1, 0) = Y = a0a2 − a21 (9)

t(1, 0) = 2X = a20a3 − 3a0a1a2 + 2a31 (10)

The right-hand equality is obtained by taking the coefficient of x
deg(covariant)
1 x0

2 for each covariant as a re-
sult of evaluating at (x1, x2) = (1, 0). The exact expressions are obtained from expanding H(f), t(f) given
f ′s coefficients.
Step 3.

Now we make the second transformation. We will act on f by the matrix

(
1 λ
0 1

)
, or equivalently, replac-

ing f(x1, x2) by f(x1 + λx2, x2) in order to ensure that a0, . . . , a3 are integral. Note that the matrix maps
(1, 0) to (1, 0) so that the above equations are still true. Furthermore, the matrix has determinant 1, so it
still lies in C (r, d).
λ is defined as follows:

• Case when Z = 0.

In this case, a0 = 0, then a1 will not be 0 as Klein forms cannot have multiple roots. We can pick λ
such that a2 = 0.

Since Z = 0 and gcd(X,Y, Z) = 1, we have gcd(X,Y ) = 1. Combined with the fact that X2 + Y 3 =
dZr = 0, we obtain that X = ±1, Y = −1, Z = 0. Plugging this back into the equation, we have
a0 = 0, a1 = ±1, a2 = 0.
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• Case when Z ̸= 0.

If Z ̸= 0, then, for any desired value of a1, we can pick λ such that after transformation by

(
1 λ
0 1

)
,

a1 is equal to that desired value. Since gcd(Y,Z) = 1, Y is a unit in Z/(ZrZ), we can pick λ such
that a1 ∈ Z and that a1 = −X/Y (mod Zr).

From the equations in Step 2 ((8), (9), (10)), we can deduce that

a0a2 = Y + a21 ≡ Y +

(
X

Y

)2

mod Zr

≡ −dZr

Y 2
mod Zr

and that

a20a3 = 2X + 3a0a1a2 − 2a31

= 2X + 3(a0a1a2 − a31) + a31

= 2X + 3a1Y + 3a31

≡ −X +
X3

Y 3
mod Zr

≡ −XdZr

Y 3
mod Zr

This implies that a0, a1, a2, a3 ∈ Z.
Now, let vp be the p−adic valuation on Q. For any p such that p | Z, we have vp(a0) = vp(Z), and
vp(a1) = 0.

From the equations above, we have vp(a2) + ap(a0) ≥ vp(Z
r) = rvp(Z), so that

vp(a2)
vp(Z) ≥ r − 1.

Similarly,
vp(a3)
vp(Z) ≥ r − 3.

Step 4.
Now, our goal is to show Ar(f) ⊆ Z. In the previous step, in the case Z = 0, we obtained a0, . . . , a2 and
in the case Z ̸= 0, we obtained a0, . . . , a3. We now show that the rest of the coefficients are also in Z. (or
7a6 ∈ Z in the case r = 5.)
We will prove the claim for the octahedral case.10 Note that the results for the tetrahedral case and the
icosahedral case can be found in [6].
Recall the defining equations for r = 4 in Remark 4.22. Again we split into two cases depending on
whether Z = 0.

• Case when Z = 0. From Step 3, we can assume (a0, a1, a2) = (0,±1, 0). Using the defining equations,
we can deduce that a3 = 0, a4 = 0 and a6 = 0. Then, we can deduce that a5 = 12d/a1. Therefore, all
the coefficients are integral.

• Case when Z ̸= 0. From step 3, we obtained that for any prime p | Z,

vp(a0)

vp(Z)
= 1,

vp(a1)

vp(Z)
= 0,

vp(a2)

vp(Z)
≥ 3,

vp(a3)

vp(Z)
≥ 2

comibing this with the defining equations, we obtain that

vp(a4)

vp(Z)
≥ 1,

vp(a5)

vp(Z)
≥ 0,

vp(a6)

vp(Z)
≥ 3
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Also, from the set of defining equations, we can deduce that if any of the ais have a denominator
that is not 1, then any primes dividing its denominator would be an integer dividing a0 = Z. (i.e.
from 0 = a0a4 − 4a1a3 + 3a22, since a1, a2, a3 are integers, a0a4 must also be integers. Any primes
dividing a4’s denominator must divide a0, other cases are similar). However, the above showed that
the valuation of the ais as rationals is at least as big as the valuation of Z. Therefore, all of the ais
are integers.

The cases where r = 3, 5 are shown similarly. □

Theorem 4.23 (The Uniqueness Theorem): Let f, f ′ ∈ C (r, d). Suppose there exists (c1, c2) ∈ Z2

such that
Φ(f)(c1, c2) = (X,Y, Z)

Then,

• If there exists (c′1, c
′
2) ∈ Z2 such that Φ(f ′)(c′1, c

′
2) = (X,Y, Z), then f, f ′ are SL2(Z) equivalent.

• If there exists (c′1, c
′
2) ∈ Z2 such that Φ(f ′)(c′1, c

′
2) = (−X,Y, Z), then f, f ′ are GL2(Z) equivalent.

Proof : See Theorem 3.2.1 of [6].

□

This concludes Subsection 4.3. In this subsection, we presented a method to lift integers solutions of the
form (X,Y, Z) to a Klein form that specializes to it. We also showed uniqueness of the form up to SL2(C)
transformation.
Now, we are ready to put the three key sections to practice - to enumerate all Hermite reduced Klein forms
up to GL2(Z) equivalences in the next section.

5 Edwards’s algorithm and implementation

In this section, we will first present Edwards’s algorithm in Subsection 5.1, which explicitly lists all Her-
mite reduced Klein forms (for integral d values) up to GL2(C) equivalences. Then, we will see the walk-
through of the algorithm on an example of (r, d) in Subsection 5.2. Then, we will see some results for my
implementation in Subsection 5.3 and how to use them in Subsection 5.4.
This section is important because it gives us a practical way to explicitly generate all the possible coprime
integer solutions to

X2 + Y 3 + dZr = 0

for r ∈ {3, 4, 5}, d ∈ Z, d ̸= 0. It is also significant as it puts the three core ingredients in Section 4 to
practice.

5.1 Edwards’ Algorithm

In this subsecion, we will present Edwards’ algorithm to explicitly compute all the Hermite reduced Klein
form in C (r, d) for r ∈ {3, 4, 5} and d ∈ Z, d ̸= 0, up to GL2(C) equivalences. The algorithm is divided into

10I proved a different case compared to [6]. However, I did verify my proof with [5].
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four steps:

• Step 1: Produce all the Klein forms that satisfy the correct bound for reduced forms.

• Step 2: Given Klein forms in step 1, eliminate those whose representative points are not in the fun-
damental region. Note that step 1 and 2 together are retrieved from section 5.1 of [6].

• Step 3: Given the result of Step 2, keep only the GL2(Z) reduced form. In addition, keep only one
form in each GL2(Z) orbit. This corresponds to section 5.2 of [6].

• Step 4: Given the result of step 3, only keep the ones that yield relatively prime specialisations. This
corresponds to section 5.4 of [6].

For each step, I will present the pseudocode, discuss its proof of correctness, and some technical details.

5.1.1 Step 1. Produce Klein Forms

This algorithm first enumerates all the possibilities of a0, a1, a2 exhaustively within the bounds. Then, for
each case, it determines X,Y, Z and the rest of the coefficients. If possible, it lifts the X,Y, Z to a Klein
form. It eventually returns the Klein forms with integral coefficients.
Pseudocode

1 Algorithm_1(r,d):

2 B = compute_B(r,d) # Based on the table in previous section

3 resulting_forms = []

4 for a0, a1, a2 in [-B...B]x[-B...B]x[-B...B] :

5 Z = a0

6 Y = a0*a2-a1^2

7 x_abs = sqrt(-Y^3-d*(Z^r))

8 if x_abs is not integer:

9 ’continue with the next loop iteration’

10 for X in [-x_abs,x_abs]:

11 if a0 == 0 and a1 == 0: # a0, a1 cannot be simultaneously zero

12 ’continue with the next loop iteration’

13 # computes a3 based on a0,a1,a2,X

14 a3 = compute_a3(a0,a1,a2,X)

15 #check if a3 is an integer

16 if a3 is not integer:

17 ’continue with the next loop iteration’

18 coefficients = compute_coefficients(a0,a1,a2,a3,d) # computes the rest of the

coefficients based on the defining equations

19 if not all of the coefficients are integer: #in the r=5 case, check 7*a6

20 ’continue with the next loop iteration’

21 if not check_bounds_are_correct(coefficients):# Check that all coefficients

matches the bound on the table from previous section

22 ’continue with the next loop iteration’

23 resulting_forms = resulting_forms + coefficients

24 return resulting_forms

Proof of correctness
We claim that this algorithm produces all the Klein forms in C (r, d) up to GL2(Z) equivalence such that
its coefficients satisfy the bounds of Table 7.
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By Theorem 4.19, the coefficients satisfy the bounds. By Theorem 4.20, these coefficients do indeed repre-
sent a Klein form. Additionally, we have also searched exhaustively within the bounds, and each (X,Y, Z)
lifts to exactly one Klein form up to GL2(Z) equivalence by Theorem 4.20. Therefore, the claim is proven.
Technical details:

• Computing a3:

The method to compute a3 differs when a0 = 0 and when a0 ̸= 0.

– When a0 ̸= 0, it is determined from a20a3 − 3a0a1a2 + 3a31 = 2X.

– When a0 = 0, then determine it using a3 = 3a22/(4a1).
11

• Computing the rest of the ais:

I used the sympy library to compute the rest of the ais using the defining equations.

5.1.2 Step 2. Keep only Hermite Reduced Forms

Given all the forms produced in Step 1, it throws away all the forms that is not Hermite reduced.
Pseudocode

1 Algorithm2(r, Step_1_results):

2 resulting_forms = []

3 for each form in Step_1_results:

4 case r is 3:

5 if a0 is 0:

6 rep_point = compute_representative_point(form)

7 #this case is slightly different, see technical details

8 else assume signature is (4,0) or (2,1): # since (0,3) cannot be Klein form

9 rep_point = compute_representative_point(form)

10 case r is 4:

11 assume signature is (4,1) or (2,2): # since (0,3) cannot be Klein form

12 rep_point = compute_representative_point(form)

13 case r is 5:

14 assume signature is (4,4):

15 rep_point = compute_representative_point(form)

16 if rep_point is not in fundamental_region:

17 ’continue with next iteration’

18 resulting_forms = resulting_forms + form

19 return resulting_forms

Proof of correctness
The correctness follows from Theorem 4.17 and Definition 3.2.
Technical Details 12

• Computing the representative point: When a0 ̸= 0, we just follow Table 6 and Remark 4.18 to find
the representative point.

However, when a0 = 0, computing the representative points is quite tricky. This happens when one
of the roots is ∞. In the octahedral cases, the representation point only depends on the complex

11I used the defining equations in Remark 4.22 for C (3, d) and C (4, d) to derive this.
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part of the form (that is, if f = f1f2, as Table 6, then its representative point only depends on f2).
Therefore, as ∞ is not a complex root, so we can still proceed as usual.

When a0 = 0 in the tetrahedral and icosahedral case, we apply the following two tricks to obtain the
representative point:

1. When the last coefficient ak ̸= 0, we reverse the coefficients (or equivalently, transform by(
0 1
1 0

)
), compute its representative point, then take the reciprocal. Since the reciprocal of a

value in H is not in H, we take the conjugate.

The reason why this trick works is because x1, x2 are interchangeable in the definitions of Her-
mite Covariant and the representative points. The only exception is that in the definition of
Hermite Covariant, ϕ(z, 1) = 0 is not symmetric in x1 and x2. Therefore, we take the reciprocal,
then take conjugate.

2. It is possible that a0 = ak = 0. Hence, the trick of reversing its coefficients do not work.

In this case, we shall apply a transformation by the matrix T =

(
1 1
0 1

)
to the form.

The formula 7 for performing a T transformation matrix gives us an explicit way to implement
it. Once we perform the T transformation and compute the representative point z̃, it satisfies
ϕ(z̃, 1) = 0. To recover the original representative point, z, we have ϕ(z̃, 1) = ϕ(z + 1, 1) = 0. So
we subtract 1 from z̃.

• Floating point precision: I used np.roots to compute the roots and to rounded them to the nearest
6th decimal places. This is important when deciding whether a point is in the fundamental region,
the real part of a point might be 0.5, but it is computed as 0.5 − 10−16 which is less than 0.5. An-
other reason to round it is so that it looks cleaner in the outputs.

• Remark: When considering a form as a homogenized polynomial, make sure to multiply each term
by its respective binomial coefficients.

5.1.3 Step 3. Keep only GL2(Z) reduced forms and only one per orbit

In this step, we keep only the GL2(Z) reduced forms. Furthermore, we only keep one representative per
equivalence class of GL2(Z) equivalent forms.
Pseudocode

1 Algorithm3(Step_2_results):

2 GL2Z_reduced_forms = []

3 for each form in Step_2_results:

4 if representative_point(form) is not in D-:

5 #D- denotes the fundamental domain for GL2(Z)

6 ’continue with next iteration’

7 GL2Z_reduced_forms = GL2Z_reduced_forms + form

8 Keep only one reduced form in each GL2Z orbits

9 return one form in each group

In here, D− = {z = x + iy | |z| ≥ 1,−1/2 ≤ x ≤ 0} denotes the fundamental domain for GL2(Z), and a
form f is GL2(Z) reduced if its representative point is in D−.

12I thought of the three following bullet points on my own.
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Now, two reduced forms f1, f2 are GL2(Z) equivalent if they have the same representative point z and one
is the transformation of another under Stab(z,GL2(Z))/± I, where I is the identity matrix.
Recall that

S =

(
0 1
−1 0

)
, T =

(
1 1
0 1

)
, U =

(
1 0
0 −1

)
As shown in [6], below table enumerates the elements of Stab(z) = Stab(z,GL2(Z))/ ± I depending on the
value of z:

Case z Stab(z) |Stab(z)|
z in the interior of D− Any ⟨I⟩ 1

z on the boundary of D−, z = i or z = ω := − 1
2 +

√
3
2 i ⟨S,U⟩ 4

ω ⟨ST,US⟩ 6
z on the boundary of D−, z ̸= i and z ̸= ω x = 0 ⟨U⟩ 2

|z| = 1 ⟨US⟩ 2
x = − 1

2 ⟨U⟩ 2

Table 8: Stab(z) for each z

Proof of correctness
See lemma 5.2.1. in [6].
Technical Details

• Transformations: The implementation of T -transformation is discussed in step 2 of the algorithm. S
tranformation is achieved by reversing the indices and negating coefficients of odd indices. U trans-
formation is achieved by negating coefficients of odd indices.

• Generating the orbits: To group the forms into their GL2(Z) orbits with Stab(z), I generated the
orbits of the form under Stab(z) and threw away all the other forms in that orbit. Note that since
k is even, applying −I to the form does not change the value at all. However, in Edwards’ outputs,
we identify forms ±f(x1, x2) together, and we also identify f(x1,±x2) and f(x2, x1) as the same.
Therefore, there could be up to 8 · 6 equivalent forms in the case where the representative point is ω.
We need to make sure we generate all the possibilities.

5.1.4 Step 4. Keep only relatively prime specialisations

The last step throws away forms that do not generate relatively prime solutions under any integer speciali-
sations.
Pseudocode

1 Algorithm_4(Step_3_results,r,d):

2 relatively_prime_forms = []

3 for f in Step_3_results:

4 compute H(f), t(f)

5 N = N(r) # Recall N is the number of rotational symmetries

6 N0 = ’product of all primes dividing N*d’

7 for s1,s2 in [-N0... N0] x [-N0,... N0]:

8 if gcd(Phi(f)(s1,s1)) == 1:

9 relatively_prime_forms = relatively_prime_forms + form

10 continue to the next form

11 return relatively_prime_forms
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This algorithm performs the following: For a form f , among all possible values of (s1, s2), −N0 ≤ s1, s2 ≤
N0, if pair of (s1, s2) yields a relatively prime solution Φ(f)(s1, s2), then it will be kept.
Proof of correctness
It suffices to show that for a fixed reduced Klein form f , if there exists (s1, s2) ∈ Z2 such that Φ(f)(s1, s2),
then there exists (s′1, s

′
2), −N0 ≤ s1, s2 ≤ N0 such that Φ(f)(s′1, s

′
2) are relatively prime. For the proof, see

Edwards Section 5.4 in [6].
Technical Details

• To compute H(f), t(f) and to compute Φ(f)(s1, s2) given (s1, s2), I used the sympy library.

Combining the four steps above, we obtained an algorithm that generates a list of GL2(Z) equivalent Her-
mite reduced Klein forms that yields relatively prime solutions.

Remark 5.1: 13 One may point out, given the bounds, we are technically able to enumerate all possible
integral forms, a0, . . . , ak, check whether Φ(f) yields an answer, and then proceed with step 2, 3 and 4.
That is, we can produce a list of forms without using the defining equations to lift the integer solutions.
Then, why do we still bother to lift the solutions? The reason is to reduce runtime. If we try all the values
of a3, . . . ak exhaustively, it would take longer.
Running the algorithm on (r, d) = (4, 1) took 9.16779 seconds. If we wish to try all the possibilities of
a3, a4, a5, a6, then runtime would be exponential in B, since each |aiaj | ≤ B2 for all i+ k ≤ j. Under some
assumptions, the algorithm would take about 164 times longer to run, which is approximately 167 hours.
Therefore, another importance of root lifting is to keep our program computationally feasible.

5.2 A walkthrough of the algorithm

In this subsection, we will present a walk-through of the algorithm with the parameter (r, d) = (4, 2) to see
how the algorithm produces GL2(Z) reduced Klein forms. As a reminder, [a0, . . . , a6] represents the binary

form
∑6

i=0

(
6
i

)
aix

6−i
1 xi

2.
To obtain the following results, I traced through my own implementation of the algorithm with respect to
the parameter (4, 2).

• Step 1: In this step, the algorithm produces all the Klein forms that satisfy the correct bounds. We
obtained 114 distinct forms of the form [a0, . . . , a6].

• Step 2: In this step, the algorithm removes all the Klein forms whose representative point is not in
the fundamental region. We start with the 114 forms obtained from Step 1. In this step, 90 forms
were removed and there were only 24 forms left.

The following are some forms whose representative points are not in the fundamental region:

– The form [−13, 8,−5, 6,−9, 12,−9] with representative point 0.620 + 0.851i is eliminated. The
representative point is not in the fundamental region as its real part is not in [−1/2, 1/2].

– The form [1, 2, 5, 16, 53, 158, 337] with representative point −2.125+1.961i is also eliminated. Its
real part is also not in [−1/2, 1/2]

– The form [−18,−3, 0, 3, 2, 1, 4] with representative point −0.195 + 0.762i is also eliminated. Al-
though its real part is in [−1/2, 1/2], its modulus is equal to 0.786, which is less than 1.

• Step 3: We start with the 24 forms obtained in Step 2.

We first eliminate 8 forms that are not GL2(Z) reduced. These are precisely the points whose real
part is positive. Here are some examples:

13I thought of this remark on my own.
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– The form [−4, 1,−2, 3, 0,−3, 18] with representative point 0.316 + 1.231i is eliminated.

– The form [−1, 0,−1, 2, 3,−4, 59] with representative point 0.125 + 1.961i is eliminated.

– The form [8,−4, 4,−2,−2, 5,−13] with representative point 0.438 + 0.980i is eliminated.

We are left with 16 forms after removing the forms that are not GL2(Z) reduced.
We next group the forms together if they are GL2(Z) equivalent or identified by ±f(x1,±x2),±f(x2,±x1).
For example [−8,−4,−4,−2, 2, 5, 13] and [8, 4, 4, 2,−2,−5,−13] are identified as ±f(x1, x2) are iden-
tified together. This gives us 8 forms.

(Aside: A not so simple example is in the case when (r, d) = (4,−1), the two forms (−8,−4,−4,−4,−2, 1, 7),
(−7,−6,−3,−2,−3,−6,−7) are identified up to GL2(Z) equivalence and transformation by U and
some sign changes).

• Finally, in step 4, we remove the forms that do not yield coprime parametrisations. Some exam-
ples of the forms that are eliminated include [−4,−2, 0,−2,−4,−6, 8] and [0,−2, 0, 0, 0,−12, 0]. This
leaves us with 5 forms in total.

5.3 Results of the implementation

I implemented all four steps of the algorithm for the tetrahedral case and the octahedral case in Python
with Jupyter notebook. Please see 14 for the code and for a pdf print-out of the code and its results.
For the cases (r, d) ∈ {(3,±1), (4,±1)} the outcome of my program matches exactly what was presented in
Appendix B of [5].
The results of my calculations are presented in the form [a0, . . . , ak]. As a quick reminder, we recover our

binary form f by letting f(x1, x2) =
∑k

i=0

(
k
i

)
aix

k−i
1 xi

2, where k is 4, 6, 12 when r is 3, 4, 5, respectively.
Later in Subsection 5.4, we will see an example of recovering f,H(f), t(f) from the form [a0, . . . , ak].
The following are the results that I obtained for the parameters (r, d) to be (3,1), (3,-1), (3,2), (3,-2), (3,3),
(3,-3), (4,1), (4,-1), (4,2), (4,-2), (4,3) and (4,-3).

(3, 1) Representative Point (3,−1) Representative Point
[−2,−1, 0,−1,−2] −0.268 + 0.963i [2, 1, 0, 1, 2] −0.268 + 0.963i
[−1, 0,−1, 0, 3] 1.316i [1, 0, 1, 0,−3] 1.316i
[−1, 0, 0,−2, 0] 1.414i [1, 0, 0,−2, 0] 1.414i
[−1, 1, 1, 1,−1] −0.268 + 0.963i [1,−1,−1,−1, 1] −0.268 + 0.963i
[0,−1, 0, 0,−4] 1.414i [0,−1, 0, 0, 4] 1.414i
[1, 0,−1, 0,−3] 1.316i [1, 0, 1, 0,−3] 1.316i

Table 9: Results for r = 3, d ∈ {±1}.

The above table matches exactly with results in [6] up to sign changes from actions by U and −I. The
actions are precisely flipping the sign of all odd-indexed coefficients, or flipping the sign of all coefficients,
respectively.
The following two tables present the forms when r = 3 and d ∈ {±2,±3}. These are not presented in [6].

(3, 2) Representative Point (3,−2) Representative Point
[−1, 0,−1,−2, 3] −0.158 + 1.509i [1, 0, 1, 2,−3] −0.158 + 1.509i
[0,−1, 0, 0,−8] 1.782i [0,−1, 0, 0, 8] 1.782i
[1, 2, 1, 0,−3] −0.436 + 1.011 [−1,−2,−1, 0, 3] −0.436 + 1.011i

Table 10: Results for r = 3, d ∈ {±2}
14Please see below for the code and results. For the results, navigate to the end of the pdf document: https://drive.

google.com/drive/folders/1Epnd6sQfXXh7vCH-MNW6o8keXRszf75x?usp=sharing
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(3, 3) Representative Point (3,−3) Representative Point
[−2,−1, 0,−2,−4] −0.318 + 1.180i [2, 1, 0, 2, 4] −0.318 + 1.180i
[−1,−1, 0,−2,−8] −0.426 + 1.580i [1, 1, 0, 2, 8] −0.426 + 1.580i
[0,−2, 0, 0,−3] 1.020i [0,−2, 0, 0, 3] 1.020i
[0,−1, 0, 0,−12] 2.040i [0,−1, 0, 0, 12] 2.040i

Table 11: Results for r = 3, d ∈ {±3}

Note that when r = 3, f ∈ C (r, d) ⇐⇒ −f ∈ C (r,−d), as t,H, f are covariants of weigh 2, 3, 0 respec-
tively, so flipping the sign of d and z = f simultaneously yields the same parametrisation. Therefore, in
the above tables for r = 3, I placed equivalent forms in the same row.
The following tables list the forms for r = 4.

(4, 1) Representative Point (4,−1) Representative Point
[−3,−4,−1, 0, 1, 4, 3] −0.268 + 0.963i [−8,−4,−4,−4,−2, 1, 7] −0.5 + 0.866i
[−1, 0, 1, 0, 3, 0,−27] 1.732i [−5,−1, 1, 3, 3, 3, 9] −0.436 + 1.011i
[0,−3, 0, 0, 0, 4, 0] 1.075i [−1, 0,−1, 0, 3, 0, 27] 1.732i
[0,−1, 0, 0, 0, 12, 0] 1.861i [−1, 0, 0,−2, 0, 0, 32] 1.782i

[−1, 1, 1, 1,−1, 5, 17] −0.158 + 1.509i
[0,−3, 0, 0, 0,−4, 0] 1.075i
[0,−1, 0, 0, 0,−12, 0] 1.861i

Table 12: Results for r = 4, d ∈ {±1}

Again, the above table matches exactly with results in [6] up to sign changes from action by U , −I and
US. These are actions that flip the sign of odd-indexed coefficients, flip the sign of every coefficient, and
reverse the whole list (swapping x1, x2), respectively.
The following two tables present the forms when r = 4, d ∈ {±2,±3}. These results weres not presented in
[6].

(4, 2) Representative Point (4,−2) Representative Point
[−5,−1, 2, 2, 4, 4,−8] −0.310 + 1.133i [−8,−4,−4,−2, 2, 5, 13] −0.438 + 0.98i
[−1, 1, 2, 2, 4,−4,−40] −0.449 + 1.642i [−4,−1,−2,−3, 0, 3, 18] −0.316 + 1.231i

[0,−3, 0, 0, 0, 8, 0] 1.278i [−1, 0,−1,−2, 3, 4, 59] −0.125 + 1.961i
[0,−1, 0, 0, 0, 24, 0] 2.213i [0,−3, 0, 0, 0,−8, 0] 1.278i

[0,−1, 0, 0, 0,−24, 0] 2.213i

Table 13: Results for r = 4, d ∈ {±2}

(4, 3) Representative Point (4,−3) Representative Point
[−3,−1, 2, 0, 4, 4,−24] 1.414i [−15,−8,−5, 0, 5, 8, 15] −0.5 + 0.866i

[0,−4, 0, 0, 0, 9, 0] 1.225i [−8,−3,−4,−4, 0, 4, 16] −0.385 + 1.04i
[0,−1, 0, 0, 0, 36, 0] 2.449i [−2,−1, 0,−3,−6,−9, 36] −0.374 + 1.691i

[−1, 0, 1, 4, 3, 8, 101] −0.478 + 2.077i
[0,−4, 0, 0, 0,−9, 0] 1.225i
[0,−1, 0, 0, 0,−36, 0] 2.449i

Table 14: Results for r = 4, d ∈ {±3}
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5.4 How to use the outputs

In this subsection, we will give two example of how to turn the output of the algorithm to the binary form
f(x1, x2), and then how to use f(x1, x2) to obtain the triple (X,Y, Z) to solve our equation.
We will work with two examples.

Example 5.2:
Consider the form [a1, . . . , ak] = [1, 2, 1, 0,−3] ∈ C (3, 2), which can be obtained from the table (r, d) =
(3, 2) above. This is in the tetrahedral case. So r = 3, and k = 4.
First, we recover f by computing

f(x1, x2) =

4∑
i=0

(
4

i

)
aix

4−i
1 xi

2 = x4
1 + 8x3

1x2 + 6x2
1x

2
2 − 3x4

2

Then, we compute t(f) and H(f) by using the formulas of the Hessian and the functional determinant in
Definition 2.9. In my case, I used the Sympy library in Python.
They turned out to be

H(f) = −3x4
1 − 4x3

1x2 − 6x2
1x

2
2 − 12x1x

3
2 − 3x4

2

t(f) = 10x6
1 + 12x5

1x2 − 30x4
1x

2
2 − 120x3

1x
3
2 − 90x2

1x
4
2 − 36x1x

5
2 − 18x6

2

As a quick check, we must have

H(f)3 +

(
t(f)

2

)2

+ df3 = 0

Upon checking, this is indeed the zero polynomial. One can also perform this check using the Sympy li-
brary in Python.
Now, we can obtain some values of (X,Y, Z) by computing integer specialisation of t(f)/2, H(f), f by
s1, s2:

X =
t(f)(s1, s2)

2
, Y = H(f)(s1, s2), Z = f(s1, s2)

The following are some examples of integer specialisations that yields solutions to X2+Y 3+2Z3 = 0 where
gcd(X,Y, Z) = 1.

s1 s2 X Y Z
1 0 5 −3 1
2 1 −433 −131 101
4 3 −18, 1705 −3, 939 2, 413
8 5 −5, 472, 865 −46, 003 32, 301

Table 15: Some integer solutions to X2 + Y 3 + 2Z3 = 0

Example 5.3:
Now, we show an example in the octahedral case.
Consider the form [−1, 0, 1, 4, 3, 8, 101] in C (4,−3). This form can be found in the table above for (r, d) =
(4,−3).
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We recover f by computing the following:

f(x1, x2) =

6∑
i=0

(
6

i

)
aix

6−i
1 xi

2 = −x6
1 + 15x4

1x
2
2 + 80x3

1x
3
2 + 45x2

1x
4
2 + 48x1x

5
2 + 101x6

2

By using the formulas for the Hessian and the functional determinant in Definition 2.9, we obtain the fol-
lowing:

H(f) = −x8
1 − 16x7

1x2 − 28x6
1x

2
2 − 112x5

1x
3
2 − 406x4

1x
4
2 − 112x3

1x
5
2 + 644x2

1x
6
2 + 1520x1x

7
2 + 239x8

2

t(f) = 4x12
1 + 24x11

1 x2 + 264x10
1 x2

2 + 1496x9
1x

3
2 + 1980x8

1x
4
2 + 1584x7

1x
5
2 + 3696x6

1x
6
2 + 20592x5

1x
7
2

+78012x4
1x

8
2 + 144056x3

1x
9
2 + 50952x2

1x
10
2 − 19272x1x

11
2 − 34556x12

2

Again, we check that −3f4 +H(f)3 +
(

t(f)
2

)2

is the zero polynomial.

The values of (X,Y, Z) are obtained by computing the integer specialisation of t(f)/2, H(f), f by s1, s2 as
follows:

X =
t(f)(s1, s2)

2
, Y = H(f)(s1, s2), Z = f(s1, s2)

The following are some integer specialisations that gives solution to X2 + Y 3 − 3Z4 = 0, where
gcd(X,Y, Z) = 1.

s1 s2 X Y Z
1 0 2 −1 −1
1 2 −16, 070, 038 285, 839 9, 419
2 3 9, 721, 202, 906 9, 231, 263 130, 913
5 4 5, 058, 523, 244, 882 92, 040, 479 1, 721, 831

Table 16: Some integer solutions to X2 + Y 3 − 3Z4 = 0

I did not implement the algorithm in the icosahedral case. However, the process of obtaining solutions to
X2 + Y 3 + dZ5 = 0 from an output of the algorithm would be analogues to the previous two examples.
This concludes Section 5. In this section, we presented Edwards’s algorithm, our implementation, some of
its outputs, as well as how to turn the output of the algorithm into a solution that solves (4).

6 A Geometric Approach for the Diophantine Equation

This section discusses Beukers’s work in [3]. In Subsection 6.1, we will introduce some ideas in Beukers’s
approach and compare them to Edwards’s approach. In subsection 6.2 we will point how the algorithm
introduced Section 5 serves as a proof of a specialised version of Beuker’s Theorem.

6.1 Beukers’s Theorem

In this subsection, we will present Beukers’s theorem and discuss some ideas of the proof. Considering the
length of the essay, I decided to skip most of the details. The purpose of this section is to comment on
Beukers’s work and point out similarities between Beukers’s approach and Edwards’s approach.
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Theorem 6.1 (Beukers’s Theorem):
Recall the generalised Fermat equation in the spherical case:

AXp +BY q + CZr = 0, gcd(X,Y, Z) = 1, XY Z ̸= 0 (11)

where p, q, r, A,B,C ∈ Z, p, q, r ≥ 2 are fixed and X,Y, Z ∈ Z are the unknowns.
Then

• There exists a finite number of parametrised solutions to the above equation and every solution of
the above equation is a specialisation of one of the parametrised solutions.

• If the above equation has one solution (X,Y, Z) ∈ Z3, then, it has infinitely many solutions in Z.

The setup of Beukers’s work is as follows.
Let G ⊂ GLn(C) be a finite subgroup. We consider the action of G on the polynomial ring C[X1, . . . , Xn]
by letting G · f(X1, . . . , Xn) = f(X ′

1, . . . , X
′
n), where G[X1, . . . , Xn]

T = [X ′
1, . . . , X

′
n]. Now, we consider

C[X1, . . . , Xn]
G, which is the ring of polynomials that are G-invariant. Noetherian Normalisation Lemma

says that this ring is finitely generated.
Now, let I1, . . . , Ir be a set of homogenous polynomials that generates the ring C[X1, . . . , Xn]

G, and let φ
be defined as follows:

φ : Cn → Cr

X⃗ → (I1(X⃗), . . . , Ir(X⃗)), where X⃗ = (X1, . . . , Xn)

Below is an example from [3]:

Example 6.2: Consider the cyclic group G ⊂ GL2(C) generated by

(
0 1
−1 −1

)
15 Then, C[x1, x2]

G is

generated by

• I1 = x1x2(x1 + x2)

• I2 = x2
1 + x1x2 + x2

2

• I3 = (x1 − x2)(2x
2
1 + 5x1x2 + 2x2

2)

In Beukers’s work, he studied the image of φ as an affine variety V , and he used more theory in algebraic
geometry to place some assumptions about V as a variety. We also assume that V can be defined over Q.
Along with some other restrictions, the following is our main subject of interest:
Suppose our variety V is given by a set of equations:

f1(Y⃗ ) = f2(Y⃗ ) = . . . = fk(Y⃗ ) = 0, Y⃗ = (Y1, . . . , Yr)

and that fi ∈ Z[Y ] with

fi(I1(X⃗), I2(X⃗), . . . Ir(X⃗)) = 0

then we wish to solve the following set of equations with some additional restrictions about the variety V
that we won’t mention here:

fi(y⃗) = 0, i = 1, . . . , k (12)

15Note that in [3], the matrix is

(
0 1
−1 −1

)T

instead. The polynomials I1, I2, I3 are invariant under the matrix we pre-

sented in the essay.
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In other words, our main goal is to study the solutions to the diophantine equations f1, . . . , fk. In this
case, φ : Cn → Cr, component wise reads I1, . . . , Ir, plays the role of parameterizations that are specialized
by vector X⃗: given a vector X⃗, it turns X⃗ into a vector Y⃗ that solves our desired system of diophantine
equations fi.
In this case, φ plays the role of a parametrised of solution to fi. For example, the map

(x1, x2) 7→ (I1(x1, x2), I2(x1, x2), I3(x1, x2)) = (y1, y2, y3)

serves as a family of parameterised solution to y21 + 27y22 − 4y3 = 0.
We may ask ourselves: as introduced in 3, binary forms can be SL2(Z) equivalent to another binary form,
and every binary form is SL2(Z) equivalent to a reduced binary form. In this case, although the I1, . . . , Ir
are not necessarily binary forms, do we have anything similar with respect to the parametrisation φ?
Indeed, in Beukers’s work, there is a similar idea. In his work, Q-matrices are defined as the matrices in
GLn(Q̄) such that φ · m is defined over Q. Equivalence of φ and φ · m is analogues to the idea of SL2(Z)
equivalence in Edwards’s approach.
We next present two key propositions in Beukers’s work that leads to the proof of Beukers’s theorems:

Proposition 6.3: Let y⃗ be a solution to (12), then there exists a Q−matrix m and s⃗ ∈ Qn, such that
y = (φ ·m)(s⃗). 16

This proposition plays the role of the lifting theorem (Theorem 4.20) in Section 4. They both start with
a solution to the diophantine equation, then ‘lifts’ it to a parametrisation. Except that in Beuker’s ap-
proach, the techniques are from algebraic number theory, whereas in Edwards’s approach, the techniques
are algebraic.

Proposition 6.4: There exists a set of Q−matrices, denoted by M , such that whenever y⃗ is a solution to
(12), then there exist a matrix m ∈ M, and vector s⃗ ∈ Qn such that y⃗ = (φ ·m)(s⃗).17

The proposition above states that there are most finitely many Q−matrices, such that every solutions to
the diophantine equation can be written as (φ · m)(s⃗). This proposition can be compared to Theorem
4.19 in Edwards’s approach, which states that there are finite number of reduced binary form that are also
Klein forms.
As we can see, using different techniques and working in different settings, both Edwards’s and Beukers’s
approaches consists of ‘lifting’ a solution of the diophantine equation to a family, then showing that the
number of families is finite.

6.2 Relation with Edwards’s Algorithm

The correctness of the algorithm introduced in Section 5 serves as a proof to a specialised version of Beuk-
ers’s theorem:

Theorem 6.5 (Specialised version of Beukers’s Theorem): Consider the diophantine equations be-
low in the spherical case with unknowns X,Y, Z ∈ Z

X2 + Y 3 + CZr = 0, gcd(X,Y, Z) = 1, XY Z ̸= 0

where C ∈ Z and r ∈ Z, r ≥ 2.

16Some details of this proposition are intentionally left out.
17Some details of this proposition are intentionally left out.

40



Then there exists a finite number of parametrised solutions, X = PX(x1, x2), Y = PY (x1, x2), Z =
PZ(x1, x2), to the above diophantine equation.

Proof : The proof follows from the correctness of Edwards’s algorithm. □

7 Conclusion

The following is a brief summary of this essay. In Section 2, we introduced the Riemann sphere, the Möbius
transformation on it, and how its groups of rotation relates to the platonic solids via Klein’s theorem. In
Section 3, we introduced quadratic binary forms and some results, then extended it to Hermite reduction
theory, which generalizes the results to forms of degree greater than 2. In Section 6, we presented Beuk-
ers’s theorem and introduced some of its proof ideas. In Section 4, we saw how Edwards studied a special
case of equations in Beukers’s theorem as well as applied invariant theory and Hermite reduction theory
to them. In Section 5, we studied and implemented Edwards’s algorithm and produced a complete set of
parametrisations of reduced Klein forms under GL2(Z) equivalences.
The following are three directions that an interested reader can explore:
Direction 1. One can compute and plot a diagram of how the number of families of parametrised so-
lutions vary with respect to d. One may be interested to explore whether there is a pattern between the
number of families and the value d.
Direction 2. In [6], Edwards mentioned that it took 6 hours to produce the list of 27 forms for the equa-
tion X2 + Y 3 +Z5 = 0. One may be interested in finding methods to reduce the runtime of this algorithm.
Direction 3. As mentioned in the Introduction, there are many interesting studies in the hyperbolic case
of the generalised Fermat equations. We refer the interested readers to [2].
Overall, we studied some theory and methods that allowed us to generates the families of parametrised so-
lutions for the generalised Fermat equations in the spherical case. We learned about the rotation groups
of platonic solids, binary forms, Hermite reduction theory, and we saw them coming together in an algo-
rithm.
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