
1 EC

1.1 Fermat’s method of infinite descent

• Defn: rational triangles, primitive triangles

• Prop: parametrisation for primitive triangles: every primitive triangle is of the form...

• Defn: congruent number

• Lemma: equivalent condition of being a congruent number

• Thm: 1 is not a congruent number

• Lemma: infinite descent polynomial version

• Baby defn of elliptic curves

• Example: what is E(Q) where E : y2 = x3 − x?

• Cor: if E/K is an EC, then E(K(t)) = E(K). Why does this imply elliptic curves are not rational?

1.2 Remarks on Algebraic curves

• Def: Rational plane curve, rational parametrisation

• Prop: if K = K̄ then C is rational ⇐⇒ g(C) = 0, C is EC ⇐⇒ g(C) = 1 (Don’t know proof)

• Def: ordP (C)

• Fact: ordP : K(C)∗ → Z is a discrete valuation

• Def: Uniformizer of ordP (t)

• Example: consider the curve {y2 = x(x− 1)(x− λ)}. Consider homogenizing it, and compute ordP at
each point.

Concepts related to divisors

• Defn: divisor, degree of a divisor, effective divisor, principle divisor

• Defn: div(f) where f ∈ K(C)∗.

• Defn: Riemann Roch space

• Thm: Riemann- Roch thm, no proof

Differentforms of curves

• Prop: Change curves to legendre form. Don’t know its proof.

• Defn: weierstrass equation and legendre form

• Defn: degree of a morphism, separable morphism

• Thm: formula relating eϕ(P ) to deg(ϕ).Three properties of nonconstant morphism.

•

•
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1.3 Wierstrass equations

• Prop: What equations give point of inflection?

• Defn: elliptic curve: the real definition

• Thm: every elliptic curve is isomorphic over K to a curve in weierstrass form, sending
OE to (0 : 1 : 0). Unfamiliar.

• Prop: Isomorphic ECs only differ in W-form by change of variable. Unfamiliar.

• Cor: When charK ̸= 2, 3, then isomorphisms of EC is of a certain form. Unfamiliar.

• Def: J=invariant

• Cor: relationship between J invariant and ECs

• Thm: Method to derive ⊖P and P ⊕Q and 2P, 3P, 4P on the fly when P = (0, 0).

1.4 Group Law

• Thm: E(K) is an abelian group. 1. identity, 2. inverse, 3. associativity

• Defn: Linearly equivalent divisors, Pic(E),Pic0(E)

• Defn: ψ : E → Pic0(E)

• Prop: Two properties of ψ which helps to finish proving group law.

• Silverman 3.1, helps with above theorem:

If C is a smooth curve and f ∈ K(C)∗ then

– div(f) = 0 ⇐⇒ f ∈ K∗

– deg(div(f)) = 0. i.e. principle divisors always have degree 0.

• Thm: Elliptic curves are group varieties

• Thm and concepts: Weierstrass p theorem

• Thm: statement of results: K = C,R, local field, number field, finite field.

1.5 Isogenies

• Def: Isogeny, isogenous, hom(E1, E2)

• Remark: structure of hom(E1, E2). deg(ϕ1ϕ2) = deg(ϕ1) deg(ϕ2)

• Def: the [n] map, n−torsion group, E[n]

• Remark: if we have K = C, what is deg[n]? what is E[n]

• Lemma: If charK ̸= 2, y2 = (x− e1)(x− e2)(x− e3), what is E[2]?

• Prop: [n] is an isogeny

• Cor: hom(E1, E2) is a torsion- free Z−module

• Thm: ϕ : E1 → E2 is an isogeny, then ϕ(P +Q) = ϕ(P ) + ϕ(Q), ∀P,Q ∈ E
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• Remark: compare and contrast the above with hom(E1, E2) being an abelian group.

• Thm: deg([n]) = n2. Following helps to prove this

– Lemma: There exists a morphism ξ : P1 → P1 that makes a diagram commute. Other edges are
the x1, x2 map that extracts the x−coordinate. What can you say about degrees?

– Remark: above lemma tell us how to compute deg of an isog Unfamiliar.

– Lemma: deg([2]) = 4

– Defn: quadratic form

– Lemma: quadratic form ⇐⇒ parallelogram law

– Lemma: rewrite x3, x4 in terms of w0, w1, w2.

– Thm: degree is a quadratic form.Unfamiliar with the proof, too much calculations

– in 2003,2007 exams, tested the proof that deg map is a quad form

• Example: isogeny that is not [n], showed up in the last section on cyclic isogeny as well

•

1.6 Invariant differential

• Defn: ΩC , the space of differentials, as a vector space spanned by df

• Def: order of vanishing

• Facts: ΩC is a 1-diml vector space and that if ordp(f) = n ̸= 0 then ordp(df) = n− 1

• for any f , ordp(f) = 0 for all but finitely many p

• Def: div(w)

• Defn: genus

• Lemma: If charK ̸= 2, and E : y2 = (x−e1)(x−e2)(x−e3), ei distinct. Then w = dx/y is a differential
on E with no zeros or poles. g(E) = 1 and the v.s. of regular differentials is 1diml spanned by ω.

• Lemma: motivation and definition of the invariant differential

• Lemma: given ϕ, ψ ∈ Hom(E1, E2) ω an invariant differential on E2, then (ϕ + ψ)∗ω = ϕ∗ω + ψ∗ω
Unfamiliar with proof.

• Lemma: ϕ is separable iff ϕ∗ : ΩC2 → ΩC1 is nonzero.

• Thm: If charK ∤ n,E[n] ∼= (Z/nZ)2

1.7 Elliptic curves over finite fields

• Lemma: a AM-GM-like (sign flipped) inequality for positive definitive quadratic forms

• Def: The frobenius endomorphism. What is its degree?

• Prop: ϕ is separable, but 1− ϕ is not

• Thm: Hasse’s theorem

• Defn: zeta function
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• Defn: Inner product and trace

• Lemma: A formula that links tr(ϕ) with deg(ϕ).

• Defn: Zeta function for curves

• Lemma: zeta function for elliptic curve can be expressed as a rational function.

• Remark: prove Riemann hypothesis for elliptic curves, doesn’t seem too important so come back later

1.8 Formal groups

This is in preparation for EC in local fields

• The following ideas motivate the group law

• Defn: I-adic topology

• Defn: cauchy sequence in the I−adic topology

• Def: Ring complete with I-adic topology

• Remark: 1− x ∈ R∗ if x ∈ I

• Lemma: Hensel’s lemma, formal groups version

• Remark: Approximating E with power series. The whole thought process. That is, get a power
series w(t) that solves F (x) = x− f(t, x) which solves the weierstrass equation

• Defn: the set Ê(I) = {(t, w) ∈ E(K), t, w ∈ I}. Also can be written as Ê(I) = {(t, w(t)) ∈
E(K), t ∈ I} as the solution is unique by Hensel

• Thm: the set Ê(I) is a subgroup of E(K).

• Defn: formal group

• Defn: morphism and isomorphism of formal groups

• Thm: is Char R = 0, then every formal group F over R is isomorphic to Ĝα over R ⊗ Q
In the proof, define log and exp as these morphisms or isomorphisms. Log: Show uniqueness and
existence. Proof shaky

• Defn: [n] in terms of formal grous. [n]T = F ((n− 1)T, T ).

• Cor: [n] gives you F → F an isomorphism of groups so F (I) has no [n] torsion.

•

1.9 Elliptic curves over local fields

• Defn: Minimal weierstrass equation

• Question why does minimal weierstrass equation exist?

• Lemma: in weierstrass equation, (x, y) ̸= 0E , either x, y ∈ OK or v(x) = −2s, v(y) = −3s for some
s > 1.

• Defn: Ê(πrOK)

• The filtration Ei(K) and the filtration F (πrOK) for a formal group
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• Prop: Let F be a formal group over OK . Then if e = v(p) and r > e
p−1

log : F (πrOK)→ Ĝα(π
rOK)

is an isomorphism. exp also gives you an isomorphism other way around.

• Prop: if r ≥ 1, then
F (πrOK)

F (πr+1OK)
∼= (k,+)

• Cor: If |k| <∞, then F (πOK) contains a subgroup of finite index and is iso to OK ,+.

• Prop: given an elliptic curve, then given two minimal weierstrass equations for E, the reduction modulo
π defines isomorphic curves.

• Defn: reduction, good reduction, bad reduction

• When V (∆) is what, it has a good reduction? When it has a bad reduction? When it may not be
minimal?

• Defn: Kernel of reduction: E1(K) = Ê(πOK) = {p ∈ E(k) : p̃ = 0}, where ˜ just means
reduction modulo π. Precisely the points that maps to PoI in the reduced equation.

• Def: Ẽns

• When two singular situations corresponds to Ga and Gm?

• Defn: E0(K): points on E(K) who reduces to a nonsingular point

• Prop: E0(K) is a subgroup of E(K) and reduction mod π is surjective group hom: E0(K)→ Ẽns(k).

• Thm: If [K : Qp] <∞, then E(K) contains a subgroup Er(K) of finite index with Er(K) ≃
(OK ,+)

• Remark: some definition in local fields: ramified, unramified, ramification index, residue field degree,
max unram extension

• Thm: Suppose [K : Qp] <∞, E/K an EC with good reduction, p ∤ n, if P ∈ E(K), then K([n]−1P )/K
is unramified.

• Remark: make a diagram with two SES.

0→ E1(Km)→ E(Km)→ Ẽ(km)→ 0

and take UR, and take [n] map, and snake lemma, show it is unramified.

• Defn: Tawagama number

• Recall definitions: Er(K), E0(K), Ẽns, E1(K)

• Lem: If |k| <∞ then E0(K) ⊂ E(K) has finite index
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1.10 Elliptic curves over number fields

• Setting: [K : Q] a number field

• Defn: prime of good reduction. Given E/K, what does it mean when it has good reduction?

• Lemma: E/K only have finitely many primes of bad reduction

• Defn: E(K)tor

• Lemma: E(K)tor is finite.

• Lemma: E(K)[n] ↪→ Ẽ(kp)[n] if p is a prime of good reduction and p ∤ n. Idea: torsion wont disappear,
so it suffices to look at the torsion in modulo p.

• Remark: #ẼD(Fp) = p+ 1 when p is 3 mod 4.

• Thm: Consider ED : y2 = x3−D2x again. Show that rank ED(Q) ≥ 1 ⇐⇒ D is a congruent
number.

• E(Q)tor have almost integer coordinates. That is, if a point (x, y) is a torsion, then 4x, 8y ∈ Z.

• Thm: Lutz- Nagell. Proof some stupid calculation hope wont get tested.

• Remark: Mazur only 15 possibilities for E(Q)tor

1.11 Kummer Theory

• Lemma: given ∆ ⊆ K∗/((K∗)n, be a finite group. Then L = K( n
√
∆) is galois and there

exists
Gal(L/K) ≃ hom(∆, µn)

• Defn: Kummer pairing: well defined, bilinear, nondegen in both arguments

• Thm: The kummer theory bijection

There is a bijection between the following:

1. Finite subgroups ∆ ⊆ K∗/(K∗)n

2. Finite abelian extensions of L/K of exponent dividing n

∆ 7→ K(
n
√
∆)

(L∗)n ∩K∗

(K∗)n
← [ L

• There are only finitely many extensions L/K that satisfies certain properties:

– K a number field, µn ⊆ K
– S a finite set of primes of K

– Then, there are only finitely many extensions such that

∗ finite abelian of exponents dividing n

∗ unramified at all primes p /∈ S

• Defn: K(S, n)

• Lemma: K(S, n) is finite. This lemma proves previous theorem, but doubt testable
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1.12 Elliptic curves over number fields II

• Lemma: E(K)/nE(K)→ E(L)/nE(L) has finite kernel

• Lem: Let E(K) be an EC over a number field. If P ∈ E(K) then K([n]−1P )/K is Galois. If
E[n] ⊆ E(K) then the galois group is abelian of exponent dividing n.

• Thm: Weak Mordell- Weil theorem

• Thm: Mordell- Weil theorem

• Remark: Existence of the canonical height

1.13 Heights

• Defn: Height H : Pn(Q)→ Z

• Lem: Lipschitz-like condition for heights of F : P1 → P1.

• Defn: Height H : Q→ Z. Height: H : E(Q)→ R≥1. Little height: h : E(Q)→ R≥1

• Lemma: |h(ϕ(P ))− deg(ϕ)h(P )| is bounded.

• Defn: canonical height

• Lemma: |h(P )− ĥ(P )| is bounded for all P ∈ E(Q).

• Cor: ĥ satisfies the condition that for any B > 0, . . .

• Prop: ϕ̂(P ) = deg(ϕ)ĥ(P )

• Thm: quadratic form

1.14 Dual Isogenies and Weil Pairing

1.14.1 Dual Isogenies

• Thm 14.1 The universal-property-like theorem for EC

• Prop 14.2 The unique existence of the dual isogeny. As well as some properties

• Defn. Sum of divisors

• Lem 14.3 Dual isogenies distribute with the sum

• Equation relating degree to trace and that ϕ+ ϕ̂ = tr(ϕ)

• Think of dual isogenies as add to trace, multiply to degree.

• Lem 14.4 A divisor is principle ⇐⇒ (some conditions with sum)

• Definition of Weil Pairing

• Prop 14.5 The Weil pairing is nondegenerate and bilinear
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1.15 Galois Cohomology

• Defn: group cohomology: H0(G,A) = AG, C1(G,A), Z1(G,A), B1(G,A), H1(G,A)

• Theorem: SES into LES (snake lemma in Galois cohomology)

• inflation restriction, really wish to skip

• Hilbert 90: H1(Gal(L/K), L∗) = 0

• Some stuff are skipped.

• Defn: Construction of Selmer group

• Defn: Tate shafarech group

• The SES that relates the Selmer group to the Tate shafavech group

• Thm: S(n)(E/K) is finite. big proof, so skipped

•

1.16 Descent by Cyclic Isogeny

• Two key lemmas in computing rank of y2 = x(x2 + ax+ b)

• Method: Be able to compute the rank of the elliptic curve over Q, with techniques and
things to watch out

• Strong and weak BSD conjecture
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