
1 Commutative Alg Active Recall

1.1 Introduction

• Defn: algebraic set, vanishing locus

• Prop: S ⊆ k[T1, . . . , Tn]. Let I = ⟨S⟩, then V (S) = V (I)

1.2 Noetherian rings and Hilbert’s basis theorem

• Idea: Motivation for Hilbert’s basis theorem

• Prop: Three equivalent definitions of Noetherian rings

• Idea: Chain of inclusions of different types of integral domains

• Lem: ϕ : A → B is a ring hom. Then if A is Noetherian, so is ϕ(A).

• Prop: preimages of ideals are ideals.

• Def: let A,B be rings. Then a A is a B−algebra if...

• Def: B-algebra homomorphism, B-subalgebra

• Def: B-subalgebra generated by S′. Both as an intersection and written explicitly.

• Def: finitely generated B algebra. Both in terms of literal sense and a quotient sense.

• Idea: The correspondence finitely generated B algebras and ⇐⇒ quotients of B[T1, . . . , Tm]

• Thm: Hilbert’s basis theorem

• Thm: If S ⊂ k[T1, . . . , Tn] then there exists a finite S0 ⊂ S such that ⟨S⟩ = ⟨S0⟩.

1.3 The noether normalization theorem

• Defn: Let A be a B- algebra. Then A is finite over B if...

• Idea: k[T, T−1] is not finite over k or k[T ] but it is over k[T − T−1]

• Defn: Let A be a B−algebra. Then A is integral over B if...

• Idea: compare integral extension and algebraic extension

• Lem: Let C be a n × n matrix over a ring A. If V ∈ An, and Cv = [0, . . . , 0]T , then det(C)v =
[0, . . . , 0]T .

• Lem: Let B ⊂ A be rings. Then x ∈ A is integral over B if there is a B[x] module M of A such that

– M is faithful as a B[x] module

– M is finitely generated as a B−module.

• Idea: if M is a module over A, then if 1 ∈ M , then it’s faithful.

• Prop: Three equivalent properties of A being a finite B-algebra. Why does ϕ(B) algebraic
imply B−algebraic?

• Defn: Let A be a k-algebra over field k. Then algebraic independence means... The literal definition
and definition as a map in the polynomial ring.

• Thm: Noether’s Normalization Theorem

• Lem: Schwartz–Zippel Lemma
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1.4 Hilbert’s Nullstellensatz

• Idea: bijection between kn ⇌ homk−alg(k[T1, . . . , Tn], k)

• Prop: ker(fx) = (T1 − x1, . . . , Tn − xn)

• Prop: (T1 − x1, . . . , Tn − xn) is a maximal ideal

• Prop: The map kn → mspec k[T1, . . . , Tn], (x1, . . . , xn) 7→ (T1 − x1, . . . , Tn − xn) is injective. (Note: if
k alg-closed, then it is surjective. Otherwise, find an example of non-alg closed k such that the map is
not surjective.)

• Rem: Intuition for Hilbert’s strong NSZ: I(V (T 2)) = (T ), so I(V (•)) is like taking roots.

• Def: radical of an ideal.
√
I

• Prop: Let A ⊂ B be integral domains. B is integral over A. Then A ∩B× = A×

• Lem: Let A ⊂ B be integral domains. B integral over A. Then B is a field ⇐⇒ A is a field.

• Prop: Zariski’s Lemma: let k ⊂ K be fields. If K is finitely generated as k−algebra, then
K is finite as a k algebra. (i.e. dimk K < ∞.)

• Thm: The weak NSZ: For a field k, a proper ideal a of k, there is a field extension L of k
and x ∈ Ln such that f(x) = 0,∀x ∈ a. (if k is algebraically closed, L = k.)

• Cor: if k is algebraically closed, there is a bijection kn → mspec k[T1, . . . , Tn].

• Def: Vkal(a) = {x ∈ kal | f(x) = 0,∀f ∈ a}

• Thm: The strong NSZ: I(Vkal(a)) =
√
a

• Prop: The statement representing the harder direction for NSZ

• Rem: note that Strong NSZ shows I(Vkal(a)) ⊆
√
a, where I(Vkal(a)) ⊇

√
a and V (I(X)) = X are

easier claims that only require elementary set theory.

• Rem: bijections between radical ideals of k[T1, . . . , Tn] and algebraic subsets of kn.

1.5 The Zariski topologies on Kn and Spec(A)

1.6 The Space Spec(A)

• Let I be an ideal. What is I(V )? and what are the closed subsets of Spec(R)?

• Thm: The zariski topology of Spec(R) is indeed a topology.

• What are basis of zariski topology?

1.7 Localization

• Def: multiplicative subset

• Def:S−1A

• Theorem: addition and multiplication are well defined in S−1A

• Def: inclusion map iA : A → S−1A

• Thm: Universal property for S−1A
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• Lemma: if 0 ∈ S then S−1A is trivial

• Def: The ring Ah

• Thm: A[T ]/(1− hT ) ∼= Ah

• Def: contraction and extension of an ideal

• Lemma: If A ↪→ B then bC = A ∩ b.

• Lemma: Surjective homomorphisms sends ideal to ideals

• Def: contracted ideals and extended ideals

• Prop: aec, bce, aece, bcec

• Remark: A map between contracted ideals and extended ideals

• Prop: If b is a prime ideal of B then b is prime ⇐⇒ bC is prime.

• Remark: Contracted and extended ideals in the context of localisation

• Prop: Consider S,A localisation with extension/contraction of ideals.

– bce = b

– Bijection of ideals: ones that avoids and ones......

– How to prove? One may need S−1A/pe ∼= S
−1

(A/p)

• Defn: Ap

• Prop: When let S = A \ p, the above statement becomes... What is the maximal ideal?

1.8 Going up and going down

• Prop: A ⊂ B integral. b an ideal of B. Then A/b ∩A ↪→ B/b is integral.

• Cor: A ↪→ B be integral extensions. Let q be a prime ideal of B. then q∩A is a max ideal in A ⇐⇒
q is a max ideal in B.

• Remark: If A ⊆ B, then explain S−1A → S−1B as a homomorphism

• Prop: If A ⊂ B integral, then S−1A ⊂ S−1B is integral

• Prop: Incomparability

• Prop: Lying over

• Prop: Going up

• List of things to show going down

• Example: not-integral extension, going up fails

– Defn: integral closure: if A ⊂ B, what is the integral closure of A. For A an ID standalone, what
is integral closure of A?

– Thm: integral closure is a subring

– Defn: Integrally closed

– Prop: Every UFD is integrally closed.
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– Prop: A an integrally closed ID. E a finite extension of A. Then α ∈ E is integral
over A iff ...

– Def: element integral over ideal

– Prop: Equivalent condition for being integral over an ideal

– Prop: Integral closure of an ideal

– Prop: a prime ideal is the contraction of a prime ideal ⇐⇒ pec = p

– Thm: going down This is a big proof. It’s skippable.

1.9 Dimension theory for finitely generated algebras over a field

• Def: Height of an ideal

• Def: Krull dimension of a ring

• Prop: Integral domain A is a field ⇐⇒ dim(A) = 0

• Prop: What is the dimension of a PID?

• Prop: 3 equivalent definitions of transcendental basis

• Prop: Three properties of transcendental basis

• Defn: Trdeg

• Thm: if A is a f.g. K-algebra then trdegK(A) = dim(A)

• Defn: Localize at an element

• Prop: Let R be a ring. n ≥ 0. Then, dimR ≤ n ⇐⇒ dimRx ≤ n− 1,∀x ∈ R

• Three properties about localisation at an element.

• Prop: A an ID, K a subfield of A, then trdegK(A) ≥ dim(A)

• Prop: Let A ⊂ B be integral extension of rings. Then

– dimA = dimB

– If A,B are ID, K-alg, K−field, A a K−subring of B, then trdegK(A) = trdegK(B)

• Prop: Trdeg(A)=dimA

1.10 Nakayama’s lemma and applications

• Thm: Nakayama’s lemma

• Thm: Krull’s intersection Theorem
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1.11 Artinian rings

• Def: Artinian Rings

• Prop: Artinian ring if and only if every chain of ideals...

• Examples of Artinian rings: when is artinian ring a field? K[T ]/⟨Tn⟩?, K[T ]?, Z?

• Prop: Dimension of non-zero artinian ring

• Def: Nilradical and jacobson radical

• Prop: In an artinian ring, what is the relationship between its Nil and J?

• Prop: An artinian ring only hsa finitely many max ideals

• Prop: If A is artinian, what can you say about nil(A)?

• Def: Noetherian modules and artinian modules

• Prop: If ..., then A is Artinian ⇐⇒ it is Noetherian Unfamiliar with the proof

• Thm: A is Noetherian ⇐⇒ it is artinian with dim 0.

1.12 Dimension theory for noetherian rings

• Defn: Exact sequence, SES

• Defn: Graded rings

• Prop: In a graded ring, what can you say about A0 and An?

• Graded A-module

• Def: homogenous elements in M . What do general elements in M look like?

• Def: homomorphism of graded A modules

• Def: A+

• Prop: For a ring A, A is noetherian if and only if... A0... and ...

• Defn: Additive function

• Prop: Alternative sum of λ of a LES is 0 given that λ is an additive function

• Def: composition series

• Lemma: let M be a module. Then all of its composition series have common length and any chain can
be refined to composition series.

• Defn: ℓ(M)

• Prop: M has finite length ⇐⇒ M is artinian and noetherian

• Remark: Setting for Hilbert functions Why is Mn a finitely generated A0 algebra?

• Defn: Poincare series

• Thm: Hilbert- Serre

• Now, assume that λ is positive definite. Define d(M).
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• Prop: d(M/xM) = d(M)− 1 if x ∈ M is not a zero divisor

• Prop: existence of Hilbert Polynomial

• Defn: Hilbert Polynomial

• ———————————–

• Def: Filtrations

• Def: a-filtration, stable a-filtration

• Lemma: Bounded difference Not too familiar with proof. Come back to it another time.

• Prop: given an ideal. Mkae a graded ring A∗. Given an a filtration, make a graded A∗

module.

• Prop: A noetherian implies A∗ noetherian

• Lemma: M∗ f.g. A∗ module implies Mn stable. Unfarmiliar!

• Prop: Artin Rees-LemmaUnfarmiliar!

• Def: Associated graded ring and graded G(A) module.

• Def: Graded G(A) modules.

• Prop: Three properties about associated A modules

• Defn: Primaryy ideals

• Thm: The dimension theorem: Three numbers of A. This is a big theorem so I skipped entirely.

• Cor: Krull’s height theorem

1.13 Tensor products

• Def: Free A-module over S

• Def: Tensor Product

• Thm: Universal property for tensor product

• Def: tensors vs pure tensors

• Prop: (M ⊗N, iM⊗N ) is the only pair that satiesfies universal property up to iso

• Prop:
∑l

i=1 mi ⊗ ni ̸= 0 if and only if...

• Embedding of a tensor doesn’t work

• Prop: If
∑

mi ⊗ ni = 0 then there exist f.g. A modules, M ′ ⊂ M,N ′ ⊂ N such that
∑

mi ⊗ ni = 0 in
M ′ ⊗N ′.

• Prop: Five natural isomorphisms of tensor products

• Example: tensor prod of v.s. are v.s. with basis the pure tensors

• Def: restriction of scalars and extensions of scalars

• Prop: Show that extension of scalars makes sense
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• Examples of extensions of scalars

• Defn: tensor product of algebras and why it makes sense. Two ways to make B⊗C into an A-algebra.

• Change base field of f.g. algebras

• Defn: tensoring homomorphisms

1.14 Flat modules

• Prop: If N is a module then the functor M → M ⊗N is right exact

• Counter example for the above M ′ → M → M ′′ doesn’t work (Z/2Z ∼= Z⊗ Z/2Z)

• Defn: Flat module

• Example: Give two examples of flat modules

• Example: Flat modules are torsion free

• Defn: Torsion free A module

• Defn: Free resolution and tor functor

• Example of Tor given x,A,A/(x)

• Lemma: Ring modulo ideal with Tor

• Prop: Equivalent condition for a module being flat v.s. its ideals
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