1 Commutative Alg Active Recall

1.1 Introduction

- Defn: algebraic set, vanishing locus
- Prop: $S \subseteq k[T_1, \ldots, T_n]$. Let $I = \langle S \rangle$, then V(S) = V(I)

1.2 Noetherian rings and Hilbert's basis theorem

- Idea: Motivation for Hilbert's basis theorem
- Prop: Three equivalent definitions of Noetherian rings
- Idea: Chain of inclusions of different types of integral domains
- Lem: $\phi: A \to B$ is a ring hom. Then if A is Noetherian, so is $\phi(A)$.
- Prop: preimages of ideals are ideals.
- Def: let A, B be rings. Then a A is a B-algebra if...
- Def: B-algebra homomorphism, B-subalgebra
- Def: B-subalgebra generated by S'. Both as an intersection and written explicitly.
- Def: finitely generated B algebra. Both in terms of literal sense and a quotient sense.
- Idea: The correspondence finitely generated B algebras and \iff quotients of $B[T_1, \ldots, T_m]$
- Thm: Hilbert's basis theorem
- Thm: If $S \subset k[T_1, \ldots, T_n]$ then there exists a finite $S_0 \subset S$ such that $\langle S \rangle = \langle S_0 \rangle$.

1.3 The noether normalization theorem

- Defn: Let A be a B- algebra. Then A is finite over B if...
- Idea: $k[T, T^{-1}]$ is not finite over k or k[T] but it is over $k[T T^{-1}]$
- Defn: Let A be a B-algebra. Then A is integral over B if...
- Idea: compare integral extension and algebraic extension
- Lem: Let C be a $n \times n$ matrix over a ring A. If $V \in A^n$, and $Cv = [0, \ldots, 0]^T$, then $det(C)v = [0, \ldots, 0]^T$.
- Let: Let $B \subset A$ be rings. Then $x \in A$ is integral over B if there is a B[x] module M of A such that
 - -M is faithful as a B[x] module
 - -M is finitely generated as a B-module.
- Idea: if M is a module over A, then if $1 \in M$, then it's faithful.
- Prop: Three equivalent properties of A being a finite B-algebra. Why does $\phi(B)$ algebraic imply B-algebraic?
- Defn: Let A be a k-algebra over field k. Then algebraic independence means... The literal definition and definition as a map in the polynomial ring.
- Thm: Noether's Normalization Theorem
- Lem: Schwartz–Zippel Lemma

1.4 Hilbert's Nullstellensatz

- Idea: bijection between $k^n \rightleftharpoons \hom_{k-\text{alg}}(k[T_1, \dots, T_n], k)$
- Prop: $\ker(f_x) = (T_1 x_1, \dots, T_n x_n)$
- Prop: $(T_1 x_1, \ldots, T_n x_n)$ is a maximal ideal
- Prop: The map $k^n \to \operatorname{mspec} k[T_1, \ldots, T_n], (x_1, \ldots, x_n) \mapsto (T_1 x_1, \ldots, T_n x_n)$ is injective. (Note: if k alg-closed, then it is surjective. Otherwise, find an example of non-alg closed k such that the map is not surjective.)
- Rem: Intuition for Hilbert's strong NSZ: $I(V(T^2)) = (T)$, so $I(V(\bullet))$ is like taking roots.
- Def: radical of an ideal. \sqrt{I}
- Prop: Let $A \subset B$ be integral domains. B is integral over A. Then $A \cap B^{\times} = A^{\times}$
- Let: Let $A \subset B$ be integral domains. B integral over A. Then B is a field $\iff A$ is a field.
- Prop: Zariski's Lemma: let k ⊂ K be fields. If K is finitely generated as k-algebra, then K is finite as a k algebra. (i.e. dim_k K < ∞.)
- Thm: The weak NSZ: For a field k, a proper ideal a of k, there is a field extension L of k and $x \in L^n$ such that $f(x) = 0, \forall x \in \mathfrak{a}$. (if k is algebraically closed, L = k.)
- Cor: if k is algebraically closed, there is a bijection $k^n \to \operatorname{mspec} k[T_1, \ldots, T_n]$.
- Def: $V_{k^{al}}(\mathfrak{a}) = \{x \in k^{al} \mid f(x) = 0, \forall f \in \mathfrak{a}\}$
- Thm: The strong NSZ: $I(V_{k^{al}}(\mathfrak{a})) = \sqrt{\mathfrak{a}}$
- Prop: The statement representing the harder direction for NSZ
- Rem: note that Strong NSZ shows $I(V_{k^{al}}(\mathfrak{a})) \subseteq \sqrt{\mathfrak{a}}$, where $I(V_{k^{al}}(\mathfrak{a})) \supseteq \sqrt{\mathfrak{a}}$ and V(I(X)) = X are easier claims that only require elementary set theory.
- Rem: bijections between radical ideals of $k[T_1, \ldots, T_n]$ and algebraic subsets of k^n .

1.5 The Zariski topologies on Kn and Spec(A)

1.6 The Space Spec(A)

- Let I be an ideal. What is I(V)? and what are the closed subsets of Spec(R)?
- Thm: The zariski topology of Spec(R) is indeed a topology.
- What are basis of zariski topology?

1.7 Localization

- Def: multiplicative subset
- Def: $S^{-1}A$
- Theorem: addition and multiplication are well defined in $S^{-1}A$
- **Def:** inclusion map $i_A : A \to S^{-1}A$
- Thm: Universal property for $S^{-1}A$

- Lemma: if $0 \in S$ then $S^{-1}A$ is trivial
- Def: The ring A_h
- Thm: $A[T]/(1-hT) \cong A_h$
- Def: contraction and extension of an ideal
- Lemma: If $A \hookrightarrow B$ then $\mathfrak{b}^C = A \cap \mathfrak{b}$.
- Lemma: Surjective homomorphisms sends ideal to ideals
- Def: contracted ideals and extended ideals
- Prop: $\mathfrak{a}^{ec}, \mathfrak{b}^{ce}, \mathfrak{a}^{ece}, \mathfrak{b}^{cec}$
- Remark: A map between contracted ideals and extended ideals
- Prop: If \mathfrak{b} is a prime ideal of B then \mathfrak{b} is prime $\iff \mathfrak{b}^C$ is prime.
- Remark: Contracted and extended ideals in the context of localisation
- **Prop:** Consider *S*, *A* localisation with extension/contraction of ideals.
 - $\mathfrak{b}^{ce} = \mathfrak{b}$
 - Bijection of ideals: ones that avoids and ones.....
 - How to prove? One may need $S^{-1}A/\mathfrak{p}^e \cong \overline{S}^{-1}(A/\mathfrak{p})$
- Defn: $A_{\mathfrak{p}}$
- Prop: When let $S = A \setminus \mathfrak{p}$, the above statement becomes... What is the maximal ideal?

1.8 Going up and going down

- Prop: $A \subset B$ integral. \mathfrak{b} an ideal of B. Then $A/\mathfrak{b} \cap A \hookrightarrow B/\mathfrak{b}$ is integral.
- Cor: $A \hookrightarrow B$ be integral extensions. Let \mathfrak{q} be a prime ideal of B. then $\mathfrak{q} \cap A$ is a max ideal in $A \iff \mathfrak{q}$ is a max ideal in B.
- Remark: If $A \subseteq B$, then explain $S^{-1}A \to S^{-1}B$ as a homomorphism
- Prop: If $A \subset B$ integral, then $S^{-1}A \subset S^{-1}B$ is integral
- Prop: Incomparability
- Prop: Lying over
- Prop: Going up
- List of things to show going down
- Example: not-integral extension, going up fails
 - Defn: integral closure: if $A \subset B$, what is the integral closure of A. For A an ID standalone, what is integral closure of A?
 - Thm: integral closure is a subring
 - Defn: Integrally closed
 - Prop: Every UFD is integrally closed.

- Prop: A an integrally closed ID. E a finite extension of A. Then $\alpha \in E$ is integral over A iff ...
- Def: element integral over ideal
- Prop: Equivalent condition for being integral over an ideal
- Prop: Integral closure of an ideal
- Prop: a prime ideal is the contraction of a prime ideal $\iff p^{ec} = p$
- Thm: going down This is a big proof. It's skippable.

1.9 Dimension theory for finitely generated algebras over a field

- Def: Height of an ideal
- Def: Krull dimension of a ring
- Prop: Integral domain A is a field $\iff \dim(A) = 0$
- Prop: What is the dimension of a PID?
- Prop: 3 equivalent definitions of transcendental basis
- Prop: Three properties of transcendental basis
- Defn: Trdeg
- Thm: if A is a f.g. K-algebra then $trdeg_K(A) = dim(A)$
- Defn: Localize at an element
- Prop: Let R be a ring. $n \ge 0$. Then, $\dim R \le n \iff \dim R_x \le n-1, \forall x \in R$
- Three properties about localisation at an element.
- Prop: A an ID, K a subfield of A, then $trdeg_K(A) \ge dim(A)$
- Prop: Let $A \subset B$ be integral extension of rings. Then
 - $-\dim A = \dim B$
 - If A, B are ID, K-alg, K-field, A a K-subring of B, then $trdeg_K(A) = trdeg_K(B)$
- Prop: $Trdeg(A) = \dim A$

1.10 Nakayama's lemma and applications

- Thm: Nakayama's lemma
- Thm: Krull's intersection Theorem

1.11 Artinian rings

• Def: Artinian Rings

- Prop: Artinian ring if and only if every chain of ideals...
- Examples of Artinian rings: when is artinian ring a field? $K[T]/\langle T^n \rangle$?, K[T]?, \mathbb{Z} ?
- Prop: Dimension of non-zero artinian ring
- Def: Nilradical and jacobson radical
- Prop: In an artinian ring, what is the relationship between its Nil and J?
- Prop: An artinian ring only hsa finitely many max ideals
- Prop: If A is artinian, what can you say about nil(A)?
- Def: Noetherian modules and artinian modules
- Prop: If ..., then A is Artinian \iff it is Noetherian Unfamiliar with the proof
- Thm: A is Noetherian \iff it is artinian with dim 0.

1.12 Dimension theory for noetherian rings

- Defn: Exact sequence, SES
- Defn: Graded rings
- Prop: In a graded ring, what can you say about A_0 and A_n ?
- Graded A-module
- Def: homogenous elements in M. What do general elements in M look like?
- Def: homomorphism of graded A modules
- Def: A_+
- Prop: For a ring A, A is notherian if and only if... A_0 ... and ...
- Defn: Additive function
- Prop: Alternative sum of λ of a LES is 0 given that λ is an additive function
- Def: composition series
- Lemma: let M be a module. Then all of its composition series have common length and any chain can be refined to composition series.
- **Defn:** $\ell(M)$
- Prop: M has finite length $\iff M$ is artinian and noetherian
- Remark: Setting for Hilbert functions Why is M_n a finitely generated A_0 algebra?
- Defn: Poincare series
- Thm: Hilbert- Serre
- Now, assume that λ is positive definite. Define d(M).

- Prop: d(M/xM) = d(M) 1 if $x \in M$ is not a zero divisor
- Prop: existence of Hilbert Polynomial
- Defn: Hilbert Polynomial
- -
- Def: Filtrations
- Def: a-filtration, stable a-filtration
- Lemma: Bounded difference Not too familiar with proof. Come back to it another time.
- Prop: given an ideal. Mkae a graded ring A^* . Given an \mathfrak{a} filtration, make a graded A^* module.
- Prop: A noetherian implies A^* noetherian
- Lemma: M^* f.g. A^* module implies M_n stable. Unfarmiliar!
- Prop: Artin Rees-LemmaUnfarmiliar!
- Def: Associated graded ring and graded G(A) module.
- Def: Graded G(A) modules.
- Prop: Three properties about associated A modules
- Defn: Primaryy ideals
- Thm: The dimension theorem: Three numbers of A. This is a big theorem so I skipped entirely.
- Cor: Krull's height theorem

1.13 Tensor products

- Def: Free A-module over S
- Def: Tensor Product
- Thm: Universal property for tensor product
- Def: tensors vs pure tensors
- Prop: $(M \otimes N, i_{M \otimes N})$ is the only pair that satisfies universal property up to iso
- Prop: $\sum_{i=1}^{l} m_i \otimes n_i \neq 0$ if and only if...
- Embedding of a tensor doesn't work
- Prop: If $\sum m_i \otimes n_i = 0$ then there exist f.g. A modules, $M' \subset M, N' \subset N$ such that $\sum m_i \otimes n_i = 0$ in $M' \otimes N'$.
- Prop: Five natural isomorphisms of tensor products
- Example: tensor prod of v.s. are v.s. with basis the pure tensors
- Def: restriction of scalars and extensions of scalars
- Prop: Show that extension of scalars makes sense

- Examples of extensions of scalars
- Defn: tensor product of algebras and why it makes sense. Two ways to make $B \otimes C$ into an A-algebra.
- Change base field of f.g. algebras
- Defn: tensoring homomorphisms

1.14 Flat modules

- Prop: If N is a module then the functor $M \to M \otimes N$ is right exact
- Counter example for the above $M' \to M \to M''$ doesn't work $(\mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z} \otimes \mathbb{Z}/2\mathbb{Z})$
- Defn: Flat module
- Example: Give two examples of flat modules
- Example: Flat modules are torsion free
- Defn: Torsion free A module
- Defn: Free resolution and tor functor
- Example of Tor given x, A, A/(x)
- Lemma: Ring modulo ideal with Tor
- Prop: Equivalent condition for a module being flat v.s. its ideals