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1 Week1

2 Week 1 lecture 1.

Definition 2.1:

• k a field

• A = k[T1, . . . , Tn] are polynomials in n valuables, called Ti, over k

• take S ⊂ A V (S) is the vanishing locus of S, which are the points in kn such that it vanishes in all
polynomials in S.

• A set X ⊂ Kn is an algebraic set if X = V (S) for some S ⊆ A.

Remark 1: If I is the ideal of A generated by S, then V (S) = V (I). Fill in why that is later

Remark 2 (Geometric properties vs algebraic properties): So we are trying to construct a
dictionary from algebraic properties of ideals with geometric properties of algebraic sets. What
geometric properties in particular?

• dimension of the set X

• reducibility of a union X = X1 ∪ . . . ∪Xn of proper algebraic sets.

• the structure of new point x ∈ X

2.1 Noetherian rings and Hilberts basis theorems

Remark 3 (Motivation for Hilberts basis theorem ): Given A = k[T1, . . . , Tn] and S ⊆ A,
possibly infinite. Consider the algebraic set X = V (S). The question is, is there a finite subset
S0 ⊆ A such that X = V (S0)? The answer is yes, as a consequence of the Hilberts basis theorem.
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Proposition 2.1 (Three equivalent properties of Noetherian rings):
A ring A is Noetherian if it satisfies one (hence all) of the following properties:

• Every ideal of A is finitely generated

• every ascending chain of ideals of A stabilizes

• Every nonempty set σ of ideals of A has a maximal element.

Proof : fill in later □

Note that every PID is noetherian, but k[T1, T2, . . .] is not Noetherian.

Definition 2.2 (B−module M): fill in later

Definition 2.3 (B-algebra A): fill in later

Theorem 2.2 (Hilbert’s basis theorem):
Let B be a Noetherian ring. Then every ginitely generated algebra over B is Noethertian.

Proof : Fill in later □

Remark 4 (A is a f.g. B alg): A is a f.g. B algebra ⇐⇒ A can be written as

A = Span{ae11 , . . . ae
m

m | ei ≥ 0, ai ∈ A}

⇐⇒ there exists surjective ring homomorphism B[T1, . . . , Tn]→ A , Ti 7→ ai.

Proof : fill it in later. The proof should be standard. Fill in this proof has higher priorities □

3 Week 1 lecture 2

Hence as a consequence of Hilbert basis theorem, if k is a field, it is noetherian, so k[T1, . . . , Tn] is finitely
generated as a K algebra, so every one of its ideal is finitely generated, so we can write V (S) = V (S0).

Definition 3.1 (finite): Let A be a B algebra. Then we also know that A is a B−module. Then A as a
B-algebra is finite over B if it is finitely generated as a B-module.
Explicitly, if S ⊆ A, then

2



• S generates A as a B−algebra if

SpanB{s
e1
1 , . . . , se

n

n | ei ≥ 0} = A

• S generates A as a B−module if
SpanB{s1, . . . , sn} = A

Remark 5: It is easier to be generated as an algebra than a module.

Remark 6 (Example of finite generated algebras): Finite diml field extensions are finite gen-
erated algebras.
However, A = K[T, T−1] is not finite as a K algebra, also not as a K[T ] algebra, but it is finite as a
K[T − T−1] algebra, where A = k[T, T−1] = Spank[T−T−1]{1, T}.

Definition 3.2 (Integral): Let A be a B algebra. Then x ∈ A is integral over B is there exists a monic
polynomial p ∈ B[T ] such that p(x) = 0. A is integral over B is all x ∈ A is integral over B.
If B is a field, then x ∈ A is integral over B if and only if x is algebraic over B in the sense of algebraic
extensions.

Lemma 3.1 (Ring theory’s version of Cramers rule):
Let C be a n × n matrix over a ring A. Take colum vector v ∈ An, such that Cv = 0. Then
(detC)v = 0.

Proposition 3.2 (Equivalent conditions of being finite):
Let A be a B-algebra. Then TFAE:

• A is a finitely generated integral B−algebra.

• A is generated as a B algebra by a finite set of B-integral elements.

• A is finte over B, i.e. A can be finitely generated by some S as a B module.

In general, finite implies finitely generated, but integral does not. For example Q is integral over Z
but it is not a finitely generated Z algebra.

Proof : The 1→ 2, 2→ 3 are quite simple. (2 to 3 is like, since αs are algebraic over B, each higher powers
of α can be rewritten as lower power.)3→ 1 requires more thoughts, and it requires a lemma.

□
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4 Lecture 4

Definition 4.1 (Algebraically independent): Let A be an k−algebra where k is a field. Then
x1, . . . , xn ∈ A are algebraically independent if the only p ∈ k[T1, . . . , Tn] is the zero polynomial. Equiva-
lently, if the K−algebra homomorphism K[T1, . . . , Tn]→ A determined by Ti 7→ xi is injective.
In this case, k[T1, . . . , Tn] is isomorphic to k[x1, . . . , xn].

Theorem 4.1 (Noether’s normalization theorem):
Let A be a finitely generated algebra over a field K. Then there exists x1, . . . , xn ∈ A,n ≥ 0,
algebraically independent over K, such that A is integral over

A′ = k[x1, . . . , xn]

Proof : This proof is a rather lengthy inductive argument.

□

5 Week 2 lecture 1

Theorem 5.1 (Weak Nullstellensatz motivation):
The motivation is that given k a field, then there is a bijection between kn and
homk−alg(k[T1, . . . , Tn], k). But we can also go from the set homk−alg(k[T1, . . . , Tn], k) to ker fx =
(T1 − x1, . . . , Tn − xn).
However, considering the following:

x = (x1, . . . , xn) 7→ fx 7→ ker fx = (T1 − x1, . . . , Tn − xn)

we must show the equality here

ker fx = (T1 − x1, . . . , Tn − xn)

Proof : To show the equality, one direction is clear but the other one requires some expanding. □

Remark 7: Why is [T1 − x1, . . . , Tn − xn] a maximal ideal? Because consider the homomorphism

fx : k[T1, . . . , Tn]→ k

is subjective (check) so
k[T1, . . . , Tn]/ ker(fx) ∼ k

but k is a field so ker(fx) = (T1 − x1, . . .) is a max ideal.

So now you get a map
kn → mspec(k[T1, . . . Tn])
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(x1, . . . , xm) 7→ (T1 − x1, . . . , Tn − xn)

this is injective because (x1, . . . , xn) is the unique point in V (T1 − x1, . . . , Tn − xn). But it is not surjective
in general. Later we will learn that it is surjective if K is algebraically closed.

6 Week 2 lecture 2

Recall from last time,
V : Mspec(L[T1, . . . , Tn]) → {alg subsets of Ln} is actually injective, where Mspec is the max ideals. Note
the image is

• V is injective

• the image of V is the set of all singleton subsets of Ln

Theorem 6.1 (Hilbert’s Strong Nullstellensatz):
Let L be an algebraically closed field then V : Id(L[T1, . . . , Tn])→ {alg subsets of Ln} is

1. Surjective

2. Not injective anymore

Consider V ((t)) = {0} and V ((t2)) = {0} over k[T ].

Theorem 6.2 (Another Strong Nullstellensatz):
Let L be algebraically closed. Then

I(V (a)) =
√
a

V : {radical ideals of L(T1, . . . , Tn)} → {Alg subsets of Ln}

• This is injective because strong nullstellensatz

• surjective because taking the set X ⊆ L, x = V (a) =⇒ x = V (
√
a) as radical ideals are more

general than ideals

Proposition 6.3 (Zariski’s lemma):
Let K ⊆ L be fields, such that L is a finitely generated k−algebra. Then dimk L <∞.

In other words, if the k algebra L = k[x1, . . . , xn] happens to be a field, then dimk L <∞.

Remark 8 (Weak Nullstellensatz): Discussion: you can fill in later

7 Week 2 lecture 3

Theorem 7.1 (Weak Nullstellensatz):
for a field K, and a proper ideal a of k[T1, . . . , Tn], then there is a field extension L, dim[L : K] <∞,
x ∈ L, such that f(x) = 0,∀f ∈ a.
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Remark 9: Something about given p1, . . . , pm ∈ k[T1, . . . , Tn] and existence of r1, . . . , rm ∈
k[T1, . . . , Tn] such that

∑
ripi = 1. Then the ps have no common solution in any field extension

of k.

Corollary 7.2 (bijection):
If K is alg closed, then the map

kn → mspec(k[T1, . . . , Tn])

(x1, . . . , xn) 7→ (T1 − x1, . . . , Tn − xn)

is a bijection.

Theorem 7.3 (Strong Nullstellensatz):

I(VKcl(a)) =
√
a

Remark 10: In summary, in general, if K is a field, then

{radical ideals of k[T1, . . . , Tn]} → {alg subset of kn}

we can go from left to right by V and right to left by I.
So V (I(X)) = X so I is injective. And V (a) = V (

√
a) means V is surjective.

If K is algebraically closed then I(V (a)) = a for every radical a. In this case, I, V are bijections.

8 Week 3 lecture 1

Remark 11: Note that V, I are inclusion reversing. i.e.

I1 ⊆ I2 =⇒ V (I1) ⊇ V (I2)

X1 ⊆ X2 =⇒ I(X1) ⊇ I(X2)

If c is an ideal of k[T1, . . . , Tn] then we have bijections between

{radical ideals of k[T1, . . . , Tn]contains c} = {radical ideals of k[T1, . . . , Tn]/c}

←→

{alg subsets of kn contained in c}

Definition 8.1 (The zariski topology on kn): k a field. Then the closed sets are algebraic subsets of kn.
This is a topology.

1. V ((1)) = ∅, V ((0)) = kn

2. V (a) ∪ V (b) = V (a ∩ b) = V (ab)
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3. given (ai)i∈I of k[T1, . . . Tk],
⋂

i∈I V (ai) = V (
∑

i∈I ai)

This is called the closed set topology. We write An
k for kn with the zariski topology.

Definition 8.2 (Open sets in zariski topology): for f ∈ k[T1, . . . , Tn]

D(f) = {x̄ ∈ An | f(x̄) ̸= 0}

note that D(f) is a basis for zariski topology.

Remark 12 (An
k is not always hausdorff): it is hausdorff iff k finite.

This also makes An
k irreducible.

We are building more and more in our dictionary relating ideals and algebraic subsets

Example 8.1:

• Every singleton is irred

• a hausdorff space is irred if and only if it is singleton

• V ((pq)) = V (p) ∪ V (q), p, q irred, and p ̸= cq,∀c ∈ k.

Also note that maximal ideals =⇒ prime ideals =⇒ radical ideals.

Lemma 8.2:
if p is a prime ideals of a ring R and I1 ∩ I2 ⊆ P , with I1, I2 ideals, then I1 ⊆ p and I2 ⊆ p.

Proposition 8.3:
K be a field, X ⊆ An

k , an algebraic set. Then X is irreducible iff I(X) is prime.
So if V (a) is irred, then I(V (a)) is prime. If K is alg closed, then V (a) irred ⇐⇒

√
a is prime.

9 Week3 lecture 2

Remark 13 (Localization): The motivation is that R a ring, S ⊆ R a subset. We want to make
a new ring S−1A from A by making elements of S invertible. But we don’t want to make the whole
ring invertible, we only want to do the minimal necessary work.
Recall this is like in the abelianization of groups, but only abelianizing a small portion.
We can also think of it as fractions where numerators are in R and denominators are in S.

7



Definition 9.1 (Multiplicative subset):

Definition 9.2 (S−1A):

• For (a1, s1), (a2, s2) ∈ A× S, we have (a1, s1) ∼ (a2, s2) if u(a1s2 − a2s1) = 0 for some u ∈ S.

• a
s is the equivalence class containing the pair (a, s)

• a1

s1
+ a2

s2
= a1s2+a2s1

s1s2
, a1

s1
a2

s2
= a1a2

s1a2

• S−1A is the set of such equivalence classes with · and + as above.

Proposition 9.1:
Addition is well defined.

Now, how do you get from your original A to your localized ring S−1A?
Consider the ring homomorphism

is : A→ S−1A

a 7→ a

1

Note ker is = {a ∈ A | ua = 0, for some u ∈ S}.
When is is injective, when S has no zero divisors.
If 0 ∈ S then S−1A = {0}.

Proposition 9.2 (Universal property of S−1A):

• ∀s ∈ S, iS(s) is a unit

• for all rings B, for all ring homomorphism f : A → B such that f(s) is a unit ∀s ∈ S, there is
a unique ring homomorphism satisfying

h : S−1A→ B

h = h ◦ is
where f(as ) = f(a)f−1(s).

can add the commutative diagram into this picture.

Proof : The proof just requires to show uniqueness, existence, and well-defined. □
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Proposition 9.3:
Let A be a ring, h ∈ A
then

A[T ]/(1− hT )
ϕ−→ Ah

(

n∑
i=1

aiT
i) + (1− hT ) 7→

n∑
i=0

ai
hi

is a well defined isomorphism of rings.

Remark 14 (Why localization?): In a ring, ideals are complicated. But after localization, ideals
might be easier to study while lots of structures are still preserved about the ring.

Remark 15 (Contraction and extensions of ideals):
https://crypto.stanford.edu/pbc/notes/commalg/extcon.html

This gives a very detailed introduction about contraction and extension of ideals.

Definition 9.3 (Contraction and extensions of ideals):
Let ϕ : A→ B be a ring homomorphism.
Then

• If b is an ideal of B, then bc = ϕ−1(b) is an ideal of A. This is the contraction of b.

• If a is an ideal of A, then ae is the ideals of B generated by ϕ(a).

• if ϕ is surjective then ϕ(a) is an ideal of B.

In general, there is a bijection between

{Contracted ideals of A} ←→ {extended ideals of B}

bc 7→ bce

aec ← [ ae

note that a ⊆ aec and bce ⊆ b.
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10 Week 3 Lecture 3

Remark 16 (Extension and contraction w.r.t. localization):
A a ring, S ⊂ A a multiplicative subset, then let is : A→ S−1A where is(a) =

a
1 .

Let a be an ideal of A and b be an ideal of S−1A. Then

ae = S−1a = {a
s
| a ∈ a, s ∈ S}

bc = {a ∈ A | a
1
∈ b}

Note: we know that 1 ∈ S as this is definition of a multiplicative set.

Proposition 10.1:
With A and S as above,

• bce = b for every ideal b of S−1A

• there is a bijection between

{prime ideals of A disjoint from S} ←→ {prime ideals of S−1A}

p→ pe = S−1A

qe ← [ q

Example 10.2 (Really important example of localization):
Let p be a prime ideal of A. Let Sp = A \ p where S is a multiplicative set. Note it is a multiplicative
set because its product must not be in p by definition. Say Ap = S−1

p A. This gives the above bijection.
Then, S−1

p p contains all prime ideals of Ap = S−1
p A so it is the unique maximal ideal of Ap. Hence

Ap is a local ring: a ring with a unique max ideal. We commonly study a ring A by studying rings
of the form Ap. We can make Z(p) this way.
Don’t quite understand why it contains all prime ideals?

Theorem 10.3 (Going up and going down theorem):
Let A ⊆ B be rings, where f : A→ B inclusion map, then f∗ : specA→ specB by f∗(q) = q ∩A.
This theorem deals with finding an ideal q of B such that q ∩A = p for a given prime idealof A. I.e.
extend a prime ideal in A to an ideal of B. It is called q lies over p.

Corollary 10.4:
Let A ⊆ B be rings and be integral extensions, let q be a prime ideal of B. Then q in B is maximal
if and only if q ∩A is maximal inA.

Proof : Think about this one
Follows from in integral extensions, one is a field iff the other one is. □
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Proposition 10.5 (Integral extensions localizaitons are also integral extension):
let A ⊆ B be rings, A ⊆ S a mult set. Then S−1A ⊆ S−1B is also integral extension.

Proposition 10.6 (Lying over):
Let A ⊆ B be an integral extension of rings and let p be a prime ideal of A. THen there is a prime
ideal q of B such that q ∩A = p.

11 Week 4 lecture 1

Theorem 11.1 (Going up):
A ⊆ B be integral extension. Let pi, 1 ≤ m < n be increasing prime ideals of A and qi, 1 ≤ i ≤ m,
be increasing prime ideals of B, with each q lie over p. Then you can extend the p ideals, m+1, . . . n
to q.
This helps us to study the dimension of ideals in the future. The proof idea is to use lying over.

Proposition 11.2 (Incomparability):
Under the context of integral extension and prime ideals. Suppose two ideas q in B lie over p in A.
Then they are the same.

Definition 11.1 (Integrally closed domains): Note that

• A ⊆ B rings, then the integral closure of A in B are elements in B integral over A

• If A is an ID, then the integral closure of A is the integral closure of A in Frac(A). i.e. elements in
Frac(A) such that it can be written as a root of polynomial in the underlying A.

• An integral domain A is integrally closed if A is the integral closure of A.

Integral closure are interesting and they’re completely different from algebraic closure.

Proposition 11.3 (UFD is integrlaly closed.):

11.1 Week 4 lecture 2

Proposition 11.4:
Let A be an integrally closed domain. Let E be finite field extension of Frac(A).Then α ∈ E is
integral over A if and only if the min poly of α over Frac(A) ∈ A[T ].

Definition 11.2: A ⊂ B rings, a an ideal of A. Then an element b ∈ B is integral over a if a polynomial in
a[x] vanish it.
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Proposition 11.5:
Let A ⊆ B be rings and let a be an ideal of A. Then, b ∈ b is integral over a ⇐⇒ there is an
A[b]-submodule M of B such that

1. M is a faithful A[b] moduule

2. M is a finite A-algebra

3. bM ⊆ aM

Proposition 11.6:
Let A ⊆ B be rings. Let A be the integral closure of A in B. Let a be an ideal of A. Then the
integral closure of a in B is √

aA

Proposition 11.7:
Let A be an integrally closed integral domain. Let E be a field where Frac(A) ⊆ E.
If x ∈ E is integral over an ideal a of A then the coefficients of the minimal poly of x over Frac(A)
are in

√
a.

Lemma 11.8:
Let A be a ring. I an ideal of A. S ⊆ A a multiplicative set with S ∩ I = ∅. Then there is a maximal
element among the ideals of A containing I and disjoint from S. Any such max element is prime.

Proposition 11.9:
Let ϕ : A → B be a ring hom. A prime ideal P of A is the contraction of a prime ideal of B ⇐⇒
pec = p.

Theorem 11.10 (Going down):
Let A ⊆ B be integral extensions of IDs, with A integrally closed. Then if you get descending
prime ideals of A, a1, . . . , an and partial descending prime ideals of B, b1, . . . bm, m < n, such that
ai = bi ∩A. Then you can extend the bs down to bn.

Proof : long proof □
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11.2 Week4 lecture 3

12 Dimension theory for finitely generated algebras over a field

12.1 Krull dimension of a ring

Definition 12.1 (Krull dimension): Let A be a ring.

• the height of a prime ideal p of A is the maximal length of a chain of prime ideals.

p = pd ⊋ pd−1 ⊋ . . . p0

has length d.

• the Krull dimension of a space A is

dim(A) = sup {ht(p) | p ∈ spec(A)}

12.2 Transcendence basis

Definition 12.2 (Transcendence basis): Let K ⊆ L be fields.
A subset A of L is a transcendence basis for L over k if

1. A is algebraically independent over K

2. L is algebraic over K(A)

Proposition 12.1 (Three properties of algebraic independence):

1. If A ⊆ L is algebraic independent over K, then ∃A ⊆ B ⊆ L such that B is a transcendental
basis for L over K. similar to how you can extend a basis.

2. All transcendental basis for L over K have the same cardinality.

3. For fields, K ⊆ L ⊆ E, if b is a tr basis for L/K, and c is a tr basis for E/L, then B ∪C is a tr
basis over E/K.

Definition 12.3 (Transcendental degree): The common cardinality of all tr bases for L/K is the tran-
scendental degree of L/K.

12.3 Dimension theory for finitely generated algebras over fields

For an integral domain A which contains field K, trdegk(A) := trdegk Frac(A).
The goal is to show dim(A) = trdegk A whenever A is a finitely generated k−algebra and an ID.
For a commutative ring R and x ∈ R, define

S{x} = {xn(1− rx) | n ≥ 0, r ∈ R}

this is a multiplicative set. We define R{x} = S−1
{x}R.
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Proposition 12.2:
Let R be a ring and n ≥ 0. then

dimR ≤ n ⇐⇒ dimR{x} ≤ n− 1,∀x ∈ R

13 Week 5 lecture 1

Recall that our aim is to show trdegk A = dimA where A is a f.g. k−algebra and an ID. Recall we used
S{x}.

Proposition 13.1:
R is a ring, n ≥ 0, then dimR ≤ n ⇐⇒ dimR{x} ≤ n− 1,∀x ∈ R.

Proposition 13.2:
A an ID, and k- a subfield of A, then

dimA ≤ trdegk A

Proposition 13.3:
Let A ⊆ B be integral extensions of rings. then

• dimA = dimB

• if A B are integral domains, as k−algebras, where A is a sub-alg of B, then trdegk A = trdegk B

13.1 Week 5 Lecture 2

Theorem 13.4:
LetA be a f.g. k−algebra where k is a field and an integral domain, then dimA = trdegk A.

Lemma 13.5 (Nakayama’s lemma):
Let a be an ideal of a ring A such that a ⊆

⋂
m∈mspec m. Let M be a finite generated A-module. Then

1. if aM = M then M = 0.

2. if N is a submodule of M such that M = N + aM then M = N.
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Proposition 13.6 (Krull intersection theorem):
Let a be an ideal of a noetherian ring A. If

a ⊆
⋂

m∈mspecA

m

then ⋂
n≥1

an = {0}

13.2 Week 5 lecture 3

13.3 Artinian rings

Definition 13.1 (Artinian ring): DCC condition

The main goal for this lecture is to show that A is Artinian ⇐⇒ A is Noetherian and dimA = 0.

Proposition 13.7:
Non-zero Artinian rings have dimension 0, or every prime is maximal.

Proposition 13.8:
For an Art ring A, |mspecA| <∞.
For an Art ring A, (nil(A))n = 0 for some n ≥ 1.

Definition 13.2: Let M be a module over a ring A. Then M is said to be Noe/Art if every ascending/de-
scending chain of submodules of M stabilizes.

Proposition 13.9:
Let A be a ring such that some finite product of max ideals of A is 0. Then A is Art ⇐⇒ A is Noe.

Lemma 13.10:
Let A be a Noe ring. Then every radical ideal of A is a finite intersection of prime ideals. THis is
similar to the radical ideals proof.

Theorem 13.11:
Let A be a ring. Then A is artinian ⇐⇒ A is noetherian and dimA = 0.
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13.4 Week 6 Lec 1

13.5 Dimension theory for Noetherian rings

Definition 13.3 (Exact sequence and short exact sequence): We know what they are

Definition 13.4 (Graded rings): A graded ring is (A, (An)
∞
n=0) is a ring A, each An ⊆ A are additive

subgroups, and A is the direct sum of all the Ans. We also have AnAm ⊆ Am+n,∀n,m > 0. Note A0 is a
subring of A.

Proposition 13.12 (TFAE):

• A is Noetherian

• A0 is noetherian and A is a f.g. as an A0-algebra.

Proposition 13.13 (Additive function on classes and A-modules):
Let A be a ring. Let e be a class of A-modules. Let λ be an additive function on e. Then for all short
exact sequences N →M → L, we have λ(M) = λ(N)+λ(L) and λ(M) = λ(N)+λ(M/N),∀N ⊆M
submodule.

Proposition 13.14:
For an exact sequence, alternating sum of the λ of the modules is 0.

Definition 13.5 (Composition series): Is a descending chain of modules such that each is non-refinable,
and the smallest one is 0.

Lemma 13.15 (Composition series’s lengths):
If M has a composition series of length n then every composition series of M has length n. This is
called the length l(M) for M module.

Proposition 13.16 (Two properties about composition series):

• M has finite length ⇐⇒ it is artinian and noetherian

• M → l(M) is an additive function.

Remark 17: Talked about something like, if A is a noetherian graded ring, then if M is a finitely
graded A-modules, each component of M is a f.g.A0-module.
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13.6 Week 6 Lec 2

Hilbert functions.

Definition 13.6 (The poincare series): The Poincare series P (M,T ) of M (w.r.t. λ) is P (M,T ) =∑∞
n=1 λ(Mn) · Tn ∈ Z[[T ]], which is a power series.

Theorem 13.17 (Hilbert-Serre):
P (M,T ) is a rational function of the form

f(T )∏s
i=1(1− T ki)

We write d(M) for the order of the pole of the rational function P (M,T ) at T = 1. Then d(M) ≥ 0.

Proposition 13.18:
If x ∈ Ak, k ≥ 0, is not a zero divisor in M , then d(M/xM) = d(M)− 1.

Proposition 13.19:
If k1 = . . . = ks = 1, (A = A0[x1, . . . , xs], xi ∈ A1) then there exists polynomial HPm ∈ Q[T ] of
degree d(M)− 1 such that λ(Mn) = HPm(n) for all large enough n.

https://en.wikipedia.org/wiki/Hilbert_series_and_Hilbert_polynomial

13.7 Week 6 Lec 3

13.8 Filtrations

Definition 13.7 (Filtrations, a−filtration, stable a filtration): Let M be a module over a ring A. A
filtration is a descending sequence M = M0 ⊇M1 ⊇ . . . of submodules.
If a is an idealof A, then (Mn)

∞
n=0 is an a filtration if aMn ⊆ Mn+1,∀n. An a−filtration (Mn) is stable if

aMn = Mn+1 for all large n.

Lemma 13.20 (Bounded difference):
If (Mn), (Mn)

′ are stable a−filtrations of M then ∃n0 ≥ 0 such that Mn+n0
⊆M ′

n,M
′
n+n0

⊆Mn,∀n.

Proposition 13.21 (Some properties about graded rings):
Let A be a ring, and a an ideal such that A∗ =

⊕∞
n=0 a

n graded ring and a0 = A. If M is an A
module and (Mn) a a-filtration, then M∗ =

⊕
n M is a graded A∗ module. If A is northerian, then a

is finitely generated. So A∗ is finitely generated as an A-algebra. A∗ is Noetherian by Hilbert’s basis
theorem.

17

https://en.wikipedia.org/wiki/Hilbert_series_and_Hilbert_polynomial


Lemma 13.22:
Let A be a noetehrian ring. M a finitely generated A-module. (Mn) an a-filtration of M. then TFAE:

• M∗ is a finitely generated A∗ module.

• the filtration (Mn) is stable.

Proposition 13.23 (Artin-Rees lemma):
Let a be an ideal of a Noetherian ring A. M a finitely generated A−module. (Mn)n a stable
a-filtration of M . M ′ ⊆M an A- submodule. Then (Mn ∩M ′)∞n=0 is a stable a−filtration of M ′.

13.9 The associated graded ring

Let A be a ring. a an ideal of A.

Ga(A) =

∞⊕
n=0

an/an+1

a graded ring.
If M is an A module, and (Mn) is an a filtration, then

G(M) = ⊕nMn/Mn+1

is agraded Ga(A) module.

Proposition 13.24:
Let a be an ideal over a Noetherian ring A. then

• Ga(A) is a noetherian ring

• if M is a finitely generated A−module, (Mn) a stable a-filtration, then G(M) is a finitely
generated graded Ga(A) module.

13.10 Week 7 Lec 1

Definition 13.8 (Primary ideals): An ideal I of R is primary if I ̸= R and every zero divisor of R/I is
nilpotent.
If I is primary then

√
I is the small prime ideal that contains I. In particular, I →

√
I maps primary ideals

to prime ideals. An ideal I is p primary is p =
√
I.

Consider dimension theory for noetherian local rings. Let (A,m) be a noetherian local ring. For an m-primary
ideal q, δ(q) is the cardinality of the minimal generating set of q.
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Proposition 13.25:
There are three numbers form A.

• dimA

• δ(A) = min{δ(q) | q is a mprimary ideal of A}

• d(Gm(A)) is the order of the pole at T = 1 fo the rational function
∑∞

n=1 l(m
n/mn+1) · Tn.

These three numbers are all equal

Proposition 13.26:
Let (A,m) be a noetherian local ring. q an m−primary ideal of A. M a f.g. A−module. (Mn) a
q−stable filtration of M .then

• l(Mn/Mn+1) <∞

• l(Mn/Mn+1) = f(n), l(M/Mn) = g(n), f, g ∈ Q[t] for large enough n. 1 + deg l(Mn/Mn+1) =
deg l(M/Mn) ≤ δq.

• the leading terms of l(Mn/Mn+1) and l(M/Mn) depend only on A,m, q but not on (Mn).

Corollary 13.27:
If (A,m) is a noetherian local ring, q an m primary ideal, then

• for large enough n l(qn/qn+1) is a polynomial of degree ≤ δ(q)− 1.

• deg l(q/qn) = deg(A/mn) and deg l(qn/qn+1) = deg l(mn/mn+1).

Proposition 13.28:
For a noetherain local ring, δ(A) ≥ d(Gm(A))

Proposition 13.29:
For (A,m) noetherian local, if x ∈ m, not a 0 divisor, then

d(Gm/(x)(A/(x))) ≤ d(Gm(A))− 1.

13.11 Week 7 Lec 2

Proposition 13.30:
Let (A,m) be a Noetherian local ring, x ∈ m, not a zero divisor. Then

d(Gm/(x)(A/(x))) ≤ d(Gm(A))− 1
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Proposition 13.31 ((Heart of the whole theorem)):
For a Noetherian local ring (A,m), d(Gm(A)) ≥ dim(A).

Corollary 13.32:
For every Noetherian local ring A, we have dimA ≥ δ(A).

Theorem 13.33 (Big theorem):
(A,m) is Noetherian local ring. then

dim(A) = δ(A) = d(Gm(A))

Corollary 13.34 (Krull’s height theorem):
A is a noetherian ring. x1, . . . , xr ∈ A, then every minimal prime ideal for (x1, . . . , xr) has height
≤ r.

13.12 Week 7 Lecture 3

14 Tensor products and flatness

Let M,N be A−modules. Then we define M ⊗N to be the finite sums of elements of the form mi ⊗ ni.
Also recall the definition of bilinear maps and A⊕S where A is a ring and S is an arbitrary set.
The formal definition of tensor product is as follows:

Definition 14.1: Let M,N be A-modules. Then tensor product M ⊗ N is A⊕M×N/K where K is the
A-submodule of A⊕M×N generated by

• {(m,n1) + (m,n2)− (m,n1 + n2) | m ∈M,n1, n2 ∈ N}

• {(m1, n) + (m2, n)− (m1 +m2, n) | m1,m2 ∈M,n ∈ N}

• {a(m,n)− (am, n) | a ∈ A,m ∈M,n ∈ N}

• {a(m,n)− (m, an) | a ∈ A,m ∈M,n ∈ N}

The image of 1 · (m,n) ∈ A⊕(M×N)/K is denoted m⊗ n.
We get a bilinear map

iM⊗N : M ×N →M ⊗N

(m,n) 7→ m⊗ n

Proposition 14.1 (The universal property of tensor product):
For A−modulesM,N , the pair (M⊗N), iM⊗N : M×N →M⊗N has the following property: for every
A-module L,, and a bilinear map f : M ⊗ N → L, there exists a unique A-module homomorphism
h : M ⊗N → L such that f = h ◦ iM⊗N .
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M ×N M ⊗N

L

iM⊗N

∃!h,A−linear
f :bilinear

Proposition 14.2:
The pair (M ⊗N, iM⊗N ) is uniquely determined by the universal property.

Proposition 14.3:
We have

∑l
i=1 mi ⊗ ni ̸= 0 ⇐⇒

∑l
i=1 f(mi, ni) ̸= 0 for some A-bilinear map f : M ×N → L,L an

A-module.

Proposition 14.4:
If

∑
mi ⊗ ni = 0(∗) in M ⊗N then there are f.g. A−submodules, M ′ ⊆ M,N ′ ⊆ N , such that (∗)

holds in M ′ ⊗N ′.

Proposition 14.5:
⊗ is commutative, associative, distributive, and have an identity. (In terms of the tensor spaces
created by this operation is isomorphic.)

Definition 14.2 (Quotients): for submodules M ′ ⊆ M,N ′ ⊆ N , M/M ′ ⊗N/N ′ = M ⊗N/L. Then L is
generated by ,m′ ⊗ n,m⊗ n′.

14.1 Week 8 Lec 1

Remark 18 (Restriction of scalars): If f : A → B a ring hom, M - a B-module is an A module
via a ·m = f(a)m.

Remark 19 (Extension of scalars): If N is an A module then NB := B⊗N is a B module, where
B as an A module. then b0(b⊗ n) = (b0b)⊗ n. Get a map B×N → B⊗N , where A bilinear. Using
universal property, we get hb0 : B⊗N → B⊗N , hb0(b⊗n) = (b0b)⊗n. The map B → EndZ(B⊗M),
b0 7→ hb0 is a ring homomorphism. Get C⊗ (Rn) ≃ Cn.

Remark 20 (Tensor product of algebras): If B,C are algebras over A, then B ⊗A C becomes a
ring. Operations are well-defined.
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Remark 21 (Tensoring homomorphisms): Let f : M → N, g : P → Q be A−module homomor-
phisms. Then we can define f ⊗ g : M ⊗ P → N ⊗Q.

14.2 Flat modules

Proposition 14.6 (Tensoring an exact sequence):
For an exact sequence

M ′ f−→M
g−→M ′′ −→ 0

of A modules, for an A-module N , the sequence

M ′ ⊗N
f⊗idN−−−−→M ⊗N

g⊗idN−−−−→M ′′ ⊗N −→ 0

is exact

But there’s an warning: if the following is exact,

M ′ −→M −→M ′′

yet
M ′ ⊗N −→M ⊗N −→M ′′ ⊗N

might not be.

Definition 14.3 (Flat module): An A-module N is flat if M1 ⊗N
f⊗idN−−−−→ M2 ⊗N is injective whenever

M1
f−→M2 is.

14.3 Week 8 Lecture 2

Note that N1 ⊕N2, A-modules, is free, then both N1, and N2 are flat.

Proposition 14.7 (Flat modules are torsion free):
Consider M ⊗A, if M is flat then ∀a ∈ A,m ∈M , if am = 0 then either a is a zero divisor or m = 0.

Definition 14.4 (The Tor functor): Let M,N be A modules. Then

• A free resolution of N is an exact sequence

. . . −→ F2 −→ F1 −→ F0 −→ N −→ 0

where Fi is a free A-module. Note it always exists.

• TorAi (M,N) is the ith homology of chain complex. or fi ◦ fi+1 = 0.

. . . −→M ⊗ F2
f2−→M ⊗ F1

f1−→M ⊗ F0 −→ 0

Note that you no longer get N after tensoring.
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Here is a list of facts:

• Tori(M,N) doesn’t depend on the choice of free resolution

• Tori(M,N) ≃ Tori(N,M)

• Tori(M,N) can also be computed by taking a free resolution of M and tensoring with N .

We also have a few commutative diagram propositions similar to the snake lemma and there’s one where you
can fill out groups. I.e. we use snake lemma to get some LES between Tori(M,N), Tori(M,N ′),Tori(M,N ′′).

Lemma 14.8:
For an ideal I of a ring A,

I ⊗M →M

i⊗m→ im

is injective, ⇐⇒ Tor1(A/I,M) = 0.

Proposition 14.9:
An A-modules M is flat ⇐⇒ I ⊗M →M is injective for every f.g. ideal I of A.

Proposition 14.10:
An A-module is flat ⇐⇒ I ⊗M →M is injective forall f.g. ideal I of A.

Proof : There are three cases. The prof himself got confused in case 3. You should look at it after. □

Definition 14.5 (DVRs): Discrete Valuation Rings

Remark 22 (A few remarks about discrete valuation rings):
For nonzero items x, y ∈ A, v(x) = v(y) ⇐⇒ xy−1 is a unit.
The only nonzero ideal of A are generated by (πl), l ≥ 0.
The ideals are

(0) ⊆ (π0) ⊆ (π1) ⊆ (π2) ⊆ . . .
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