
1 Homotopy stuff

Lecture 1

• Def: two maps f0, f1 : X → Y are homotopic

• Lem: homotopic maps is an ∼ and if f0 ∼ f1, g0 ∼ g1, then f0 ◦ g0 ∼ f1 ◦ g1

• Def: [X,Y ] = maps(X,Y )/ ∼

• Prop: [X,Rn] has one element.

• Def: a space X is contractible

• Prop: a space Y is contractible ⇐⇒ [X,Y ] has 1 element for all spaces X.

• Def: two spaces, X,Y are homotopic equivalent

• Def: pair of spaces, map of pairs, two map of pairs are homotopic

• Def: homotopy groups

• Rmk: properties of homotopy groups

• Prop: πn(X, p) is a group. (Addition, identity map, abelian for n > 1, and inverses)

• Def: map of pairs induces maps between homotopy: f : (X, p) → (Y, q) induces f∗ : π(X, p) →
π(Y, q), [ϕ] 7→ [f ◦ ϕ]

• Prop: functionality of the above map f∗

• Prop: homotopy invariance: homotopic maps induces the same maps on homotopy
groups.

Lecture 2

• Def: the n−simplex ∆n

• Def: Faces of the n−simplex, fI where I ⊂ {0, . . . , n}

• Def: Face maps: FI : ∆|I|−1 → fI ⊂ ∆n

• Def: Chain complex, (C, d)

• Def: the ith homology group

• Def: x ∈ ker then x is closed or a cycle. x ∈ im, then x is exact/boundary. if dx = 0, write [x] be its
image in H∗(C).

• Def: the chain complex of the n−simplex, (S∗(∆
n), d)

• Prop: for the chain complex above, d2 = 0

• Def: the reduced chain complex of ∆n. (S̃∗(∆
n), d)

• Rmk: the idea behind reduced chain complex

• Def: the singular chain complex of X. Denoted as (C∗(X), d). Elements of Ck(X). The differential d.

• Def: ϕσ : S∗(∆
k) → C∗(X)
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• Prop: d ◦ ϕσ = ϕσ ◦ d

• Prop: d2 = 0 in Ck(X)

• Def: singular homology on X.Hi(C∗(X))

• Prop: computing H∗({•}).

Lecture 3

• Def: reduced singular chain complex

• Prop: If X is path connected, then H0(X) = Z

• Def: a subcomplex (A, d) of a chain complex (X, d)

• Prop: Two properties of a subcomplex: If (A, d) is a subcomplex of (C, d) then (A, d) is a chain complex
and (C/A, d) is a chain complex.

• Def: the quotient complex

• Prop: if A ⊂ X, then C∗(A) is a subcomplex of C∗(X).

• Def: singular chain complex of a pair of spaces

• Prop: direct sum of chain complexes are also chain complexes.

• Prop: the homology group of X is the direct sum of homology group of its path components.

• Functoriality and Induced maps

• Def: Category. Objects and morphisms

• Def: composition rules for morphisms

• Ex: give some examples of morphisms

• Def: functor

• Def: chain maps

• Prop: {Chain complexes; chain maps} is a category

• Thm: Homology defines a functor

• Def: f# : C∗(X) → C∗(Y ), where f : X → Y is a continuous map.

• Lem: f# is a chain map

• Lem: The functorial property of □#

• Rem: Here’s a big picture of 2 functors{
Spaces
Maps

}
−→

{
Chain CX
Chain maps

}
−→

{
R−modules

R− linear maps

}
Be comfortable with showing that each bracket is a category and each arrow is well defined and a
functor.

Lecture 4
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• Prop: Maps of pair functoriality. i.e. do the same chain of functors above, except with pair of spaces
and map of pairs.

• Homotopy invariance

• Def: g0, g1 : C → C ′ are chain maps. They are chain homotopic if ...

• Lem: Chain homotopy is an equivalence relation.

• Def: Two chain complexes are chain homotopy equivalent if...

• Prop: If for two chain maps, g0 ∼ g1 then g0∗ = g1∗

• Cor: C ∼ C ′ =⇒ H∗(C) = H∗(C
′)

• Thm: Universal Chain Homotopy. Section completely skipped.

Lecture 5

• Cor: Three corollaries of Universal Chain Homotopy:

– If f0 ∼ f1 then f0∗ = f1∗

– If f : X → Y, g : Y → X gives homotopy equivalence then they are both isomorphisms

– If X is contractible what is H∗(X)?

• Exact sequence, SES of chain complexes, SES of a pair

• Thm: Snake lemma

• Cor: LES of pair

• Lem: H̃(X) ∼= H(X, {p})

Lecture 6

• Subdivision: CU
∗ (X)

• Prop: CU
∗ (X) is a subcomplex

• Thm: i∗(H
U
K(X) → HK(X) is isomorphism

• Defn: Mayer Vieroris sequence

• Prop: MVS is a short exact sequence

• Prop: Mayer viertoris long exact sequence

• Prop: H̃i(S
n)

• Notatoin: [Sn]

Lecture 7

• Lemma: Turning a commmuting diagram of 2 SES into a commuting diagram of 2 LES.

• As a result of the lemma, you can turn two MVS SES into two MVS LES that commutes

• Defn: rn : Sn → Sn

• Prop: rn∗ maps [Sn] to −[Sn]
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• Cor: r∗v also maps to [Sn] to −[Sn]

• Def: Deformation retract, Good pair

• Thm: good pair isomorphism on homology, no proof needed

• Compute S2/{N,S}. Compute S1 × S1/S1 × 1. They are the same. But latter helps to compute
H∗(S

1 × S1)

Lecture 8

• Below helps prove Excision

• Thm: Five Lemma

• Defn: CU
∗ (X,A)

• Lemma: HU
∗ (X,A) → H∗(X,A) is isomorphic

• Thm: Excision

• Below helps prove collapsing of a pair

• Prop: LES of a triple

• Lemma: Deformation retraction induces isomorphism on relative homology

• Thm: Collapsing of a pair

• Def: Manifold

• Thm: Relative homology of a manifold

• Remember how conditions of Excision and collapsing of pair differ!

2 Cellular Homology

Lecture 9

• Defn: Degree of a map f : Sn → Sn

• Properties of degree map

– Degree of antipodal map

– Degree of reflection

– homotopic equivalent same degree, homeomorphism then same degree

– Local degree Stuff

• Concept: π∗ : Hn(S
n) → Hn(S

n, Sn − p), is an isomorphism. Identify π∗[S
n] with [Sn, Sn − p]. Then,

use excision to denote [U,U − p] → [Sn, Sn − p]

• Prop: [U ′, U ′ − p] → [U,U − p] is an isomorphism

• Defn: Local degree of a map

• Prop: Local degree does not depend on the choice of neighbourhood
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• Prop: V =
∐

Ui. Then by excision, show that j∗ : Hn(V, V − f−1(p)) ∼= Hn(S
n, Sn − f−1(p)) hence

[ui, ui − p] is a genrator for Hn(S
n, Sn − f−1(P ))

• Prop: the structure Hn(S
n) → Hn(S

n, Sn − p).

• Thm (big): Degree of f as sum of local degrees

Lecture 10

• Def: Attaching via a function

• Def: attaching via k ccell

• Defn: finite cell complex, k skeleton.

• Cell structures of Sk, Dk, graphs

• Def: Wedge Product

• Prop: CPn ∼= S2n+1/S1

• Defn: Hopf map

• Prop: using Hopt map to construct CPn

• Thm: Cellular construction of CPn and computing H∗(CPn) LES break up so we get direct
sum.

Lecture 11

• Prop: Hk(D
k, Sk−1) ∼= Hk−1(S

k−1)

• Prop: (Xk, Xk−1) is a good pair

• Prop:

– Xk/Xk−1 ≃
∨
Sk

– Hk(Xk, Xk−1), Generated by eα

• Defn: ρβ map: prjection onto the βth cell. ρβ works like δij for eα

• Def: dcellk

• Lemma: dk = (πk−1)∗ ◦ δk

• Cor: dk ◦ dk+1 = 0

• Defn: Ccell
i (X)

• Big Thm:

– Hcell
∗ (X) = H∗(C

cell
∗ (X)) ∼= H∗(X)

– A way to compute Hcell
∗

Lecture 12

• Lemma: let X be a fcc, where it has one 0 cell. ALl the rest of the cells has dim d with m ≤ d ≤ n.
Then H∗(d) = 0 for all ∗ < m or ∗ > n.

• Lemma: X a FCC, then (X,Xk) is a good pair

• Cor: Hk(Xk+1) = Hk(X): proof is by LES of pair plus collaping of a pair

• Thm: X a fcc then Hcell
∗ (X) ∼= H∗(X)
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2.1 Homology with coefficients

• Defn: Tensor product

• ⊗M functor

• Defn: singular chain complex with coefficient in G

• Defn: Euler character

• Thm: χ(X) = χ(H•(X))

• Eilenberg Steenrod axioms

Lecture 13

• Def: Free resolution

• Def: Tori(M,N) is well defined

• Fact: what is Tor0?

• Def: short injective chain complex

• Thm: Structure theorem for chain complex over PID

• Cor: Two free chain CX over PID have ∼= homology then then are homotopic equiv. Proof skipped,
doesn’t seem to be tested

• Cor: If C is a chain CX over a field F, then C ∼= (H∗(C), 0) Proof skipped, doesn’t seem to be tested

• Cor: The Universal coefficient theorem (UCT) Proof skipped, doesn’t seem to be tested

3 Cohomology and Products

• If M,N are R modules then so is hom(M,N)

• Def: f : M1 → M2, what is f
∗?

• Def: Contravariant functor

• Prop: f∗ is a contravariant functor

• Def: (hom(C,N), d∗) cochain complex

• Def: The contravariant functor (Chain complex) to (Cochain complex)

• Def: Cohomology

• Prop: Draw the functorial diagram for how to go from pair of spaces to cohomology of pairs

Lecture 14

• C∗
i explicitly. What are elements in C∗

i specified by?

• Prop: (d∗)2 = 0, d∗α = αd∗

• Why d∗(α)(σ) = (α ◦ d∗)σ

• Defn: Cochain maps: maps between cochain of different spaces. i.e. f#(α)(σ) = αf#σ
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• Prop: f# is a cochain map, that is f#d∗ = d∗f#. I.e. commutes with boundary. Proof kind of messy.

• Thm: f# induces f∗

• Defn: Two cochains are cochain homotopic if...

• Lemmas: f ∼ g implies f∗ ∼ g∗.

• Lemma: If f, g : C → C ′ are chain hty, f ∼ g via h then...

• Prop: Eilenberg- Steenrod axioms, hence give you four properties of cohomology (1.
homotopic =⇒ same homologies. 2. LES of pair. 3. Excision 4. Dimension)

• Thm: Any functor satisfying above axioms is...

• Thm: Cohomologies and cellular cohomologies are iso if...

3.1 EXT and UCT

• Defn: Exti(M,N), Tori(M,N). What is Ext0? what is Tor0?

• Example: compute Ext(Z/n,Z)

• Thm: Write Hi, H
i in terms of Tor and Ext. Using this, we get example of if we have fcc X,

Hk, H
k can be written as direct sum of free and torsion components. Proof doesn’t seem to be tested.

3.2 Pairing

• Def: Given C a chain complex over R, how to make a bilinear pairing

• Thm: Hk ×Hk descended from above.

Lecture 15

3.3 Cup Products

• Def: Cup Product

• Lemma: ∪ Makes Ck(X;R) into a commutative ring

• Lemma: Leibniz rule

• Cor: ∪ descends to map on H∗(X;R)

• Prop: Continuous maps induce ring hom between cohomologies. Note that this is true for
Hk but NOT necessarily true for Ck.

• Prop: ∪ on H∗ is graded commutative. Proof skipped, require the map that maps to mirror-identity
in simplices

Lecture 16

• Thm: r ∼ 1C∗(X) (This finishes the proof for graded commutativity)

• Defn: pairs using Z coefficients: C∗(X,A)

• Prop: what can you say about C∗(X,A)× C∗(X)?

• Cor ∪ descends to a map H∗(X,A)×H∗(X) → H∗(X,A)
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• Cor: Generally ∪ defines a map H∗(X,A)×H∗(X,B) → H∗(X,A ∪B) Proof?

• Examples of cup products and cohomology

– H0(X) when X is path connected

– H∗(Sn, G)

– Skipped

– Structure of H∗(X
∐

Y ) ∼= H∗(X)⊕H∗(Y ) as direct product of rings Proof omitted since this is
better to be tested via using

– H∗((X, p) ∨ (Y, q)) two spaces attached at p, q.

3.4 Exterior products

Lecture 17

• Defn: Exterior product, defined using ×.

• Prop: properties about the exterior product

– H∗(X,A)×H∗(Y ) → H∗(X × Y,A× Y ), (a, b) 7→ a× b

extends to

H∗(X,A)⊗H∗(Y ) → H∗(X × Y,A× Y )

– Distribute (a1 × b1) ∪ (a2 × b2)

– Thm: The exterior product isomorphism The proof is quite long and technical.

∗ h, h as contravariant functors

– Compute the following:

∗ Ring structure of H∗(T 2)

∗ (group structure of) H∗(S2 × S2)

∗ Deduce S2 × S2 is not homotopic equiv to S2 ∨ S2 ∨ S4 despite having same homologies.

∗ H∗(Σg)

– Convention for computing using exterior product or cup product:

∗ Write (a1, . . . , an) be generators Hi of some space

∗ Then, write a, b = (0, 0, . . . , a1), or something like that, etc.

∗ Write the dimension chart

∗ (a1 × b1) ∪ (a2 × b2)

Lecture 18

• Focused on proving the isomorphism for exterior product

Lecture 19

4 Vector bundles

• Defn: n-diml vector bundle

• Complex vector bundle

• Defn: Morphism
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• Defn: bundle isomorphism

• Defn: sub-bundle

• Defn: section, non-vanishing section, trivial bundle

• Example: trivial bundle

• Prop: equivalent condition of being a trivial bundle

• Example: mobius bundle

• Example: tautological bundle and tangent sphere bundle Unfamiliar with this one

• Def: pullbacks of vector bundles. What are local trivialisations in this case?

• Lemma: pullback of vb can be composed

• Def: restriction to a smaller base of vector bundles

• Lem: non-vanishing sections can be pulled back

• Example: RPn is nontrivial

• Defn: product of two vector bundles

• Defn: Whiteney sum

• Defn: supp of a function

• Defn: Partition of unity subordinate to a cover, admits PoU

• Thm: Big theorem: E |B×0≃ E |B×1

•

Lecture 20

• Set of lemmas to prove big theorem

– If E |B×[0,1/2] and E |B×[1/2,1] are trivial, then is E

– For each b ∈ B, there exists an open nbd Ub such that E |Ub×I is trivial.

– This proves the theorem

• Cor: π : E → B is a v.b. If g0, g1 : B′ → B, and g0 ∼ g1 via h : B′ × I → B, then g∗0 ∼ g∗1

• Cor: If B is contractible and admits PoU then it is trivial.

4.1 Riemannian metrics, Thom Iso, Euler class, etc

• Riemannian Metric

• Defn: unit disk, unit sphere bundle: note: they are not vector bundles. Along with map π
restricted on there. π : Dg(E) → B, π : Sg(E) → B.

• Prop: the choice of Riemannian metrid doesn’t matter

• Example: if two bundles are trivial, what is an R-metric? S(B × Rn) − B × Sn−1 if it were trivial.
This shows the real tautological and complex tautological bundles are nontrivial.
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• Prop: Given a vector bundle, if B has a PoU then it has a R metric (proof: the riemannian metric is
given by sum of R-metric at each of the member of the open cover of the local trivialisation)

• Defn: the Thom class

– Maps s0, ib, spaces Eb, E
#
b , E#

– Definition of thom class U

Lecture 21

• Example: relating H∗(B) to H∗(E,E#)

• Construction: Let π : E → B be a bundle. Let B′ → B be a map. There is a bundle isomorphism
between E and f∗(E)

• Lemma: If U is a R Thom class for E then F ∗U is a R thom class for f∗(E).

• Lemma: B = B1 ∪B2. U ∈ Hn(E,E#). Then what condition makes U a TC for E?

• Thm: the Thom Isomorphism Theorem

• Note: E# ∼ S(E)

• Def: Gysin sequence

• Def: Euler class

• Remark: The LES you’re supposed to remember

Lecture 22

• Defn: admits an orientation

• Thm: Properties of e

– e behaves naturally under pullback

– If E is trivial and n > 0 then e(E) = 0

– e(E1 ⊕ E2) = e(E1)⊕ e(E2)

– If E has a non-vanishing section then e(E) = 0

Two things to remember: E is trivial ⇐⇒ it is the pullback of the trivial bundle over a point.

If S is a nonvanishing section then E = ⟨s⟩ ⊕ ⟨s⟩⊥

• Thm: solving H∗(RPn;Z/2)

• Cor: π3(S
2) ̸= 0

4.2 Manifolds

Lecture 23

• Def: n-manifold, smooth manifold, transition functions

• Defn: (M | A). What is H∗(M | x)? What is H∗(M | x;R)?

• Defn: R fundamental class

• Thm: if A ⊂ M is compact then (M | | A) admits a unique Z/2 fundamental class
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• Defn: Orientable

• Defn: submanifold

• Defn: normal bundle

• Thm: Tubular neighbourhood theorem

• Prop: E = E1 ⊕ E2. Comment on orientatbility.

• Thm: M orientable ⇐⇒ its normal bundle is

Lecture 24

• Below is on poincare duality

• Work in fields

• Thm: Poincare duality

• Defn: cap product, intersection pairing, algebraic PD, geometric PD
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5 Formula Sheet

5.1 Possible R−modules of a topological space

• CU
∗ (X,A)

5.2 Tools to compute homology groups

• Snake lemma / LES of a pair / LES of a triple

• Deformation retraction

• Excision

• Collapsing of a pair

• Universal coefficient theorem:

Hi(X;G) ∼= Hom(Hi(X;G))⊕ Ext1(Hk−1(X);G)

• Cohomology of wedge sums

• Cohomology of disjoint unions

• Isomorphism on exterior product

5.3 Some rules going from Ho to Co

• d∗(α)(σ) = αd∗(σ)

• f•(α)(σ) = αf•(σ)

5.4 Topological spaces

• T k

• ΣX where Hk(ΣX) = Hk+1(X)

•

5.5 You should know

• Cellular decomposition of CPn, Sn

• Homologies:

– Sn

– Tn

– Σn

– CPn

– RPn

– S2/{N,S}
– S1 × S1/S1 × 1

– Manifold (M,M − x)

• Cohomologies:
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– H∗(Σg)

– CPn

– H∗(RPn;Z/2).
– Attention: H∗(RPn;Z/2) vs H∗(RPn;Z)

• Ring structures of

– H∗(Sn), write it in terms of Z[α]/α2

– H∗(S2 ∨ S2 ∨ S4)

– H∗(T 2)

– (group structure of) H∗(S2 × S2)

– Σg

•
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