1 Homotopy stuff

- Def: two maps $f_{0}, f_{1}: X \rightarrow Y$ are homotopic
- Lem: homotopic maps is an \sim and if $f_{0} \sim f_{1}, g_{0} \sim g_{1}$, then $f_{0} \circ g_{0} \sim f_{1} \circ g_{1}$
- Def: $[X, Y]=\operatorname{maps}(X, Y) / \sim$
- Prop: $\left[X, \mathbb{R}^{n}\right]$ has one element.
- Def: a space X is contractible
- Prop: a space Y is contractible $\Longleftrightarrow[X, Y]$ has 1 element for all spaces X.
- Def: two spaces, X, Y are homotopic equivalent
- Def: pair of spaces, map of pairs, two map of pairs are homotopic
- Def: homotopy groups
- Rmk: properties of homotopy groups
- Prop: $\pi_{n}(X, p)$ is a group. (Addition, identity map, abelian for $n>1$, and inverses)
- Def: map of pairs induces maps between homotopy: $f:(X, p) \rightarrow(Y, q)$ induces $f_{*}: \pi(X, p) \rightarrow$ $\pi(Y, q),[\phi] \mapsto[f \circ \phi]$
- Prop: functionality of the above $\operatorname{map} f_{*}$
- Prop: homotopy invariance: homotopic maps induces the same maps on homotopy groups.

Lecture 2

- Def: the n-simplex Δ^{n}
- Def: Faces of the n-simplex, f_{I} where $I \subset\{0, \ldots, n\}$
- Def: Face maps: $F_{I}: \Delta^{|I|-1} \rightarrow f_{I} \subset \Delta^{n}$
- Def: Chain complex, (C, d)
- Def: the i th homology group
- Def: $x \in$ ker then x is closed or a cycle. $x \in \operatorname{im}$, then x is exact/boundary. if $d x=0$, write $[x]$ be its image in $H_{*}(C)$.
- Def: the chain complex of the n-simplex, $\left(S_{*}\left(\Delta^{n}\right), d\right)$
- Prop: for the chain complex above, $d^{2}=0$
- Def: the reduced chain complex of Δ^{n}. $\left(\tilde{S}_{*}\left(\Delta^{n}\right), d\right)$
- Rmk: the idea behind reduced chain complex
- Def: the singular chain complex of X. Denoted as $\left(C_{*}(X), d\right)$. Elements of $C_{k}(X)$. The differential d.
- Def: $\phi_{\sigma}: S_{*}\left(\Delta^{k}\right) \rightarrow C_{*}(X)$
- Prop: $d \circ \phi_{\sigma}=\phi_{\sigma} \circ d$
- Prop: $d^{2}=0$ in $C_{k}(X)$
- Def: singular homology on $X . H_{i}\left(C_{*}(X)\right)$
- Prop: computing $H_{*}(\{\bullet\})$.

Lecture 3

- Def: reduced singular chain complex
- Prop: If X is path connected, then $H_{0}(X)=\mathbb{Z}$
- Def: a subcomplex (A, d) of a chain complex (X, d)
- Prop: Two properties of a subcomplex: If (A, d) is a subcomplex of (C, d) then (A, d) is a chain complex and $(C / A, d)$ is a chain complex.
- Def: the quotient complex
- Prop: if $A \subset X$, then $C_{*}(A)$ is a subcomplex of $C_{*}(X)$.
- Def: singular chain complex of a pair of spaces
- Prop: direct sum of chain complexes are also chain complexes.
- Prop: the homology group of X is the direct sum of homology group of its path components.
- Functoriality and Induced maps
- Def: Category. Objects and morphisms
- Def: composition rules for morphisms
- Ex: give some examples of morphisms
- Def: functor
- Def: chain maps
- Prop: \{Chain complexes; chain maps\} is a category
- Thm: Homology defines a functor
- Def: $f_{\#}: C_{*}(X) \rightarrow C_{*}(Y)$, where $f: X \rightarrow Y$ is a continuous map.
- Lem: $f_{\#}$ is a chain map
- Lem: The functorial property of $\square_{\#}$
- Rem: Here's a big picture of 2 functors

$$
\left\{\begin{array}{c}
\text { Spaces } \\
\text { Maps }
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { Chain CX } \\
\text { Chain maps }
\end{array}\right\} \longrightarrow\left\{\begin{array}{c}
R-\text { modules } \\
R-\text { linear maps }
\end{array}\right\}
$$

Be comfortable with showing that each bracket is a category and each arrow is well defined and a functor.

- Prop: Maps of pair functoriality. i.e. do the same chain of functors above, except with pair of spaces and map of pairs.
- Homotopy invariance
- Def: $g_{0}, g_{1}: C \rightarrow C^{\prime}$ are chain maps. They are chain homotopic if \ldots
- Lem: Chain homotopy is an equivalence relation.
- Def: Two chain complexes are chain homotopy equivalent if...
- Prop: If for two chain maps, $g_{0} \sim g_{1}$ then $g_{0 *}=g_{1 *}$
- Cor: $C \sim C^{\prime} \Longrightarrow H_{*}(C)=H_{*}\left(C^{\prime}\right)$
- Thm: Universal Chain Homotopy. Section completely skipped.

Lecture 5

- Cor: Three corollaries of Universal Chain Homotopy:
- If $f_{0} \sim f_{1}$ then $f_{0 *}=f_{1 *}$
- If $f: X \rightarrow Y, g: Y \rightarrow X$ gives homotopy equivalence then they are both isomorphisms
- If X is contractible what is $H_{*}(X)$?
- Exact sequence, SES of chain complexes, SES of a pair
- Thm: Snake lemma
- Cor: LES of pair
- Lem: $\tilde{H}(X) \cong H(X,\{p\})$
- Subdivision: $C_{*}^{U}(X)$
- Prop: $C_{*}^{U}(X)$ is a subcomplex
- Thm: $i_{*}\left(H_{K}^{U}(X) \rightarrow H_{K}(X)\right.$ is isomorphism
- Defn: Mayer Vieroris sequence
- Prop: MVS is a short exact sequence
- Prop: Mayer viertoris long exact sequence
- Prop: $\tilde{H}_{i}\left(S^{n}\right)$
- Notatoin: $\left[S^{n}\right]$
- Lemma: Turning a commmuting diagram of 2 SES into a commuting diagram of 2 LES.
- As a result of the lemma, you can turn two MVS SES into two MVS LES that commutes
- Defn: $r_{n}: S^{n} \rightarrow S^{n}$
- Prop: $r_{n *}$ maps $\left[S^{n}\right]$ to $-\left[S^{n}\right]$
- Cor: $r_{* v}$ also maps to $\left[S^{n}\right]$ to $-\left[S^{n}\right]$
- Def: Deformation retract, Good pair
- Thm: good pair isomorphism on homology, no proof needed
- Compute $S^{2} /\{N, S\}$. Compute $S^{1} \times S^{1} / S^{1} \times 1$. They are the same. But latter helps to compute $H_{*}\left(S^{1} \times S^{1}\right)$

Lecture 8

- Below helps prove Excision
- Thm: Five Lemma
- Defn: $C_{*}^{U}(X, A)$
- Lemma: $H_{*}^{U}(X, A) \rightarrow H_{*}(X, A)$ is isomorphic
- Thm: Excision
- Below helps prove collapsing of a pair
- Prop: LES of a triple
- Lemma: Deformation retraction induces isomorphism on relative homology
- Thm: Collapsing of a pair
- Def: Manifold
- Thm: Relative homology of a manifold
- Remember how conditions of Excision and collapsing of pair differ!

2 Cellular Homology

Lecture 9

- Defn: Degree of a map $f: S^{n} \rightarrow S^{n}$
- Properties of degree map
- Degree of antipodal map
- Degree of reflection
- homotopic equivalent same degree, homeomorphism then same degree
- Local degree Stuff
- Concept: $\pi_{*}: H_{n}\left(S^{n}\right) \rightarrow H_{n}\left(S^{n}, S^{n}-p\right)$, is an isomorphism. Identify $\pi_{*}\left[S^{n}\right]$ with $\left[S^{n}, S^{n}-p\right]$. Then, use excision to denote $[U, U-p] \rightarrow\left[S^{n}, S^{n}-p\right]$
- Prop: $\left[U^{\prime}, U^{\prime}-p\right] \rightarrow[U, U-p]$ is an isomorphism
- Defn: Local degree of a map
- Prop: Local degree does not depend on the choice of neighbourhood
- Prop: $V=\coprod U_{i}$. Then by excision, show that $j_{*}: H_{n}\left(V, V-f^{-1}(p)\right) \cong H_{n}\left(S^{n}, S^{n}-f^{-1}(p)\right)$ hence [$\left.u_{i}, u_{i}-p\right]$ is a genrator for $H_{n}\left(S^{n}, S^{n}-f^{-1}(P)\right)$
- Prop: the structure $H_{n}\left(S^{n}\right) \rightarrow H_{n}\left(S^{n}, S^{n}-p\right)$.
- Thm (big): Degree of f as sum of local degrees

Lecture 10

- Def: Attaching via a function
- Def: attaching via k ccell
- Defn: finite cell complex, k skeleton.
- Cell structures of S^{k}, D^{k}, graphs
- Def: Wedge Product
- Prop: $\mathbb{C P}^{n} \cong S^{2 n+1} / S^{1}$
- Defn: Hopf map
- Prop: using Hopt map to construct $\mathbb{C P}^{n}$
- Thm: Cellular construction of $\mathbb{C P}^{n}$ and computing $H_{*}\left(\mathbb{C P}^{n}\right)$ LES break up so we get direct sum.

Lecture 11

- Prop: $H_{k}\left(D^{k}, S^{k-1}\right) \cong H_{k-1}\left(S^{k-1}\right)$
- Prop: $\left(X_{k}, X_{k-1}\right)$ is a good pair
- Prop:
$-X_{k} / X_{k-1} \simeq \bigvee S^{k}$
- $H_{k}\left(X_{k}, X_{k-1}\right)$, Generated by e_{α}
- Defn: ρ_{β} map: prjection onto the β th cell. ρ_{β} works like $\delta_{i j}$ for e_{α}
- Def: $d_{k}^{\text {cell }}$
- Lemma: $d_{k}=\left(\pi_{k-1}\right)_{*} \circ \delta_{k}$
- Cor: $d_{k} \circ d_{k+1}=0$
- Defn: $C_{i}^{\text {cell }}(X)$
- Big Thm:
$-H_{*}^{\text {cell }}(X)=H_{*}\left(C_{*}^{\text {cell }}(X)\right) \cong H_{*}(X)$
- A way to compute $H_{*}^{\text {cell }}$

Lecture 12

- Lemma: let X be a fcc, where it has one 0 cell. ALl the rest of the cells has $\operatorname{dim} d$ with $m \leq d \leq n$. Then $H_{*}(d)=0$ for all $*<m$ or $*>n$.
- Lemma: X a FCC, then $\left(X, X_{k}\right)$ is a good pair
- Cor: $H_{k}\left(X_{k+1}\right)=H_{k}(X)$: proof is by LES of pair plus collaping of a pair
- Thm: X a fcc then $H_{*}^{\text {cell }}(X) \cong H_{*}(X)$

2.1 Homology with coefficients

- Defn: Tensor product
- $\otimes M$ functor
- Defn: singular chain complex with coefficient in G
- Defn: Euler character
- Thm: $\chi(X)=\chi(H \bullet(X))$
- Eilenberg Steenrod axioms
- Def: Free resolution
- Def: $\operatorname{Tor}_{i}(M, N)$ is well defined
- Fact: what is Tor $_{0}$?
- Def: short injective chain complex
- Thm: Structure theorem for chain complex over PID
- Cor: Two free chain CX over PID have \cong homology then then are homotopic equiv. Proof skipped, doesn't seem to be tested
- Cor: If C is a chain CX over a field \mathbb{F}, then $C \cong\left(H_{*}(C), 0\right)$ Proof skipped, doesn't seem to be tested
- Cor: The Universal coefficient theorem (UCT) Proof skipped, doesn't seem to be tested

3 Cohomology and Products

- If M, N are R modules then so is $\operatorname{hom}(M, N)$
- Def: $f: M_{1} \rightarrow M_{2}$, what is f^{*} ?
- Def: Contravariant functor
- Prop: f^{*} is a contravariant functor
- Def: $\left(\operatorname{hom}(C, N), d^{*}\right)$ cochain complex
- Def: The contravariant functor (Chain complex) to (Cochain complex)
- Def: Cohomology
- Prop: Draw the functorial diagram for how to go from pair of spaces to cohomology of pairs
- C_{i}^{*} explicitly. What are elements in C_{i}^{*} specified by?
- Prop: $\left(d^{*}\right)^{2}=0, d^{*} \alpha=\alpha d_{*}$
- Why $d^{*}(\alpha)(\sigma)=\left(\alpha \circ d_{*}\right) \sigma$
- Defn: Cochain maps: maps between cochain of different spaces. i.e. $f^{\#}(\alpha)(\sigma)=\alpha f_{\#} \sigma$
- Prop: $f^{\#}$ is a cochain map, that is $f^{\#} d^{*}=d^{*} f^{\#}$. I.e. commutes with boundary. Proof kind of messy.
- Thm: $f^{\#}$ induces f^{*}
- Defn: Two cochains are cochain homotopic if...
- Lemmas: $f \sim g$ implies $f^{*} \sim g^{*}$.
- Lemma: If $f, g: C \rightarrow C^{\prime}$ are chain hty, $f \sim g$ via h then...
- Prop: Eilenberg- Steenrod axioms, hence give you four properties of cohomology (1. homotopic \Longrightarrow same homologies. 2. LES of pair. 3. Excision 4. Dimension)
- Thm: Any functor satisfying above axioms is...
- Thm: Cohomologies and cellular cohomologies are iso if...

3.1 EXT and UCT

- Defn: $\operatorname{Ext}^{i}(M, N), \operatorname{Tor}_{i}(M, N)$. What is Ext ${ }^{0}$? what is Tor_{0} ?
- Example: compute $\operatorname{Ext}(\mathbb{Z} / n, \mathbb{Z})$
- Thm: Write H_{i}, H^{i} in terms of Tor and Ext. Using this, we get example of if we have fcc X, H_{k}, H^{k} can be written as direct sum of free and torsion components. Proof doesn't seem to be tested.

3.2 Pairing

- Def: Given C a chain complex over R, how to make a bilinear pairing
- Thm: $H^{k} \times H_{k}$ descended from above.

Lecture 15

3.3 Cup Products

- Def: Cup Product
- Lemma: \cup Makes $C^{k}(X ; R)$ into a commutative ring
- Lemma: Leibniz rule
- Cor: \cup descends to map on $H^{*}(X ; R)$
- Prop: Continuous maps induce ring hom between cohomologies. Note that this is true for H^{k} but NOT necessarily true for C^{k}.
- Prop: \cup on H^{*} is graded commutative. Proof skipped, require the map that maps to mirror-identity in simplices
- Thm: $r \sim 1_{C_{*}(X)}$ (This finishes the proof for graded commutativity)
- Defn: pairs using \mathbb{Z} coefficients: $C^{*}(X, A)$
- Prop: what can you say about $C^{*}(X, A) \times C^{*}(X)$?
- Cor \cup descends to a map $H^{*}(X, A) \times H^{*}(X) \rightarrow H^{*}(X, A)$
- Cor: Generally \cup defines a map $H^{*}(X, A) \times H^{*}(X, B) \rightarrow H^{*}(X, A \cup B)$ Proof?
- Examples of cup products and cohomology
- $H^{0}(X)$ when X is path connected
- $H^{*}\left(S^{n}, G\right)$
- Skipped
- Structure of $H^{*}(X \amalg Y) \cong H^{*}(X) \oplus H^{*}(Y)$ as direct product of rings Proof omitted since this is better to be tested via using
- $H^{*}((X, p) \vee(Y, q))$ two spaces attached at p, q.

3.4 Exterior products

Lecture 17

- Defn: Exterior product, defined using \times.
- Prop: properties about the exterior product
- $H^{*}(X, A) \times H^{*}(Y) \rightarrow H^{*}(X \times Y, A \times Y),(a, b) \mapsto a \times b$ extends to $H^{*}(X, A) \otimes H^{*}(Y) \rightarrow H^{*}(X \times Y, A \times Y)$
- Distribute $\left(a_{1} \times b_{1}\right) \cup\left(a_{2} \times b_{2}\right)$
- Thm: The exterior product isomorphism The proof is quite long and technical.
* \bar{h}, \underline{h} as contravariant functors
- Compute the following:
* Ring structure of $H^{*}\left(T^{2}\right)$
* (group structure of) $H^{*}\left(S^{2} \times S^{2}\right)$
* Deduce $S^{2} \times S^{2}$ is not homotopic equiv to $S^{2} \vee S^{2} \vee S^{4}$ despite having same homologies.
* $H^{*}\left(\Sigma_{g}\right)$
- Convention for computing using exterior product or cup product:
* Write $\left(a_{1}, \ldots, a_{n}\right)$ be generators H^{i} of some space
* Then, write $a, b=\left(0,0, \ldots, a_{1}\right)$, or something like that, etc.
* Write the dimension chart
* $\left(a_{1} \times b_{1}\right) \cup\left(a_{2} \times b_{2}\right)$

Lecture 18

- Focused on proving the isomorphism for exterior product

4 Vector bundles

- Defn: n-diml vector bundle
- Complex vector bundle
- Defn: Morphism
- Defn: bundle isomorphism
- Defn: sub-bundle
- Defn: section, non-vanishing section, trivial bundle
- Example: trivial bundle
- Prop: equivalent condition of being a trivial bundle
- Example: mobius bundle
- Example: tautological bundle and tangent sphere bundle Unfamiliar with this one
- Def: pullbacks of vector bundles. What are local trivialisations in this case?
- Lemma: pullback of vb can be composed
- Def: restriction to a smaller base of vector bundles
- Lem: non-vanishing sections can be pulled back
- Example: $\mathbb{R P}^{n}$ is nontrivial
- Defn: product of two vector bundles
- Defn: Whiteney sum
- Defn: supp of a function
- Defn: Partition of unity subordinate to a cover, admits PoU
- Thm: Big theorem: $\left.\left.E\right|_{B \times 0} \simeq E\right|_{B \times 1}$
\bullet
Lecture 20
- Set of lemmas to prove big theorem
- If $\left.E\right|_{B \times[0,1 / 2]}$ and $\left.E\right|_{B \times[1 / 2,1]}$ are trivial, then is E
- For each $b \in B$, there exists an open nbd U_{b} such that $\left.E\right|_{U_{b} \times I}$ is trivial.
- This proves the theorem
- Cor: $\pi: E \rightarrow B$ is a v.b. If $g_{0}, g_{1}: B^{\prime} \rightarrow B$, and $g_{0} \sim g_{1}$ via $h: B^{\prime} \times I \rightarrow B$, then $g_{0}^{*} \sim g_{1}^{*}$
- Cor: If B is contractible and admits PoU then it is trivial.

4.1 Riemannian metrics, Thom Iso, Euler class, etc

- Riemannian Metric
- Defn: unit disk, unit sphere bundle: note: they are not vector bundles. Along with map π restricted on there. $\pi: D_{g}(E) \rightarrow B, \pi: S_{g}(E) \rightarrow B$.
- Prop: the choice of Riemannian metrid doesn't matter
- Example: if two bundles are trivial, what is an R-metric? $S\left(B \times \mathbb{R}^{n}\right)-B \times S^{n-1}$ if it were trivial. This shows the real tautological and complex tautological bundles are nontrivial.
- Prop: Given a vector bundle, if B has a PoU then it has a R metric (proof: the riemannian metric is given by sum of R-metric at each of the member of the open cover of the local trivialisation)
- Defn: the Thom class
- Maps s_{0}, i_{b}, spaces $E_{b}, E_{b}^{\#}, E^{\#}$
- Definition of thom class U

Lecture 21

- Example: relating $H^{*}(B)$ to $H^{*}\left(E, E^{\#}\right)$
- Construction: Let $\pi: E \rightarrow B$ be a bundle. Let $B^{\prime} \rightarrow B$ be a map. There is a bundle isomorphism between E and $f^{*}(E)$
- Lemma: If U is a R Thom class for E then $F^{*} U$ is a R thom class for $f^{*}(E)$.
- Lemma: $B=B_{1} \cup B_{2} . U \in H^{n}\left(E, E^{\#}\right)$. Then what condition makes U a TC for E ?
- Thm: the Thom Isomorphism Theorem
- Note: $E^{\#} \sim S(E)$
- Def: Gysin sequence
- Def: Euler class
- Remark: The LES you're supposed to remember

Lecture 22

- Defn: admits an orientation

- Thm: Properties of e
- e behaves naturally under pullback
- If E is trivial and $n>0$ then $e(E)=0$
$-e\left(E_{1} \oplus E_{2}\right)=e\left(E_{1}\right) \oplus e\left(E_{2}\right)$
- If E has a non-vanishing section then $e(E)=0$

Two things to remember: E is trivial \Longleftrightarrow it is the pullback of the trivial bundle over a point.
If S is a nonvanishing section then $E=\langle s\rangle \oplus\langle s\rangle^{\perp}$

- Thm: solving $H^{*}\left(\mathbb{R P}^{n} ; \mathbb{Z} / 2\right)$
- Cor: $\pi_{3}\left(S^{2}\right) \neq 0$

4.2 Manifolds

- Def: n-manifold, smooth manifold, transition functions
- Defn: $(M \mid A)$. What is $H_{*}(M \mid x)$? What is $H^{*}(M \mid x ; R)$?
- Defn: R fundamental class
- Thm: if $A \subset M$ is compact then $(M|\mid A)$ admits a unique $\mathbb{Z} / 2$ fundamental class
- Defn: Orientable
- Defn: submanifold
- Defn: normal bundle
- Thm: Tubular neighbourhood theorem
- Prop: $E=E_{1} \oplus E_{2}$. Comment on orientatbility.
- Thm: M orientable \Longleftrightarrow its normal bundle is
- Below is on poincare duality
- Work in fields
- Thm: Poincare duality
- Defn: cap product, intersection pairing, algebraic PD, geometric PD

5 Formula Sheet

5.1 Possible R-modules of a topological space

- $C_{*}^{U}(X, A)$

5.2 Tools to compute homology groups

- Snake lemma / LES of a pair / LES of a triple
- Deformation retraction
- Excision
- Collapsing of a pair
- Universal coefficient theorem: $H^{i}(X ; G) \cong H o m\left(H_{i}(X ; G)\right) \oplus E x t^{1}\left(H_{k-1}(X) ; G\right)$
- Cohomology of wedge sums
- Cohomology of disjoint unions
- Isomorphism on exterior product

5.3 Some rules going from Ho to Co

- $d^{*}(\alpha)(\sigma)=\alpha d_{*}(\sigma)$
- $f^{\bullet}(\alpha)(\sigma)=\alpha f_{\bullet}(\sigma)$

5.4 Topological spaces

- T^{k}
- ΣX where $H_{k}(\Sigma X)=H_{k+1}(X)$
-

5.5 You should know

- Cellular decomposition of $\mathbb{C P}^{n}, S^{n}$
- Homologies:
$-S^{n}$
$-T^{n}$
$-\Sigma_{n}$
$-\mathbb{C P}^{n}$
- $\mathbb{R} \mathbb{P}^{n}$
- $S^{2} /\{N, S\}$
$-S^{1} \times S^{1} / S^{1} \times 1$
- Manifold ($M, M-x$)
- Cohomologies:
- $H^{*}\left(\Sigma_{g}\right)$
- $\mathbb{C P}^{n}$
- $H^{*}\left(\mathbb{R P}^{n} ; \mathbb{Z} / 2\right)$.
- Attention: $H^{*}\left(\mathbb{R}^{p} ; \mathbb{Z} / 2\right)$ vs $H^{*}\left(\mathbb{R} \mathbb{P}^{n} ; \mathbb{Z}\right)$
- Ring structures of
- $H^{*}\left(S^{n}\right)$, write it in terms of $\mathbb{Z}[\alpha] / \alpha^{2}$
- $H^{*}\left(S^{2} \vee S^{2} \vee S^{4}\right)$
- $H^{*}\left(T^{2}\right)$
- (group structure of) $H^{*}\left(S^{2} \times S^{2}\right)$
$-\Sigma_{g}$
-

