1 Homotopy stuff

- Def: two maps $f_0, f_1 : X \to Y$ are homotopic
- Lem: homotopic maps is an ~ and if $f_0 \sim f_1, g_0 \sim g_1$, then $f_0 \circ g_0 \sim f_1 \circ g_1$
- Def: $[X, Y] = \operatorname{maps}(X, Y) / \sim$
- Prop: $[X, \mathbb{R}^n]$ has one element.
- Def: a space X is contractible
- Prop: a space Y is contractible $\iff [X, Y]$ has 1 element for all spaces X.
- Def: two spaces, X, Y are homotopic equivalent
- Def: pair of spaces, map of pairs, two map of pairs are homotopic
- Def: homotopy groups
- Rmk: properties of homotopy groups
- Prop: $\pi_n(X, p)$ is a group. (Addition, identity map, abelian for n > 1, and inverses)
- Def: map of pairs induces maps between homotopy: $f : (X, p) \to (Y, q)$ induces $f_* : \pi(X, p) \to \pi(Y, q), [\phi] \mapsto [f \circ \phi]$
- Prop: functionality of the above map f_*
- Prop: homotopy invariance: homotopic maps induces the same maps on homotopy groups.

Lecture 2

- Def: the *n*-simplex Δ^n
- Def: Faces of the *n*-simplex, f_I where $I \subset \{0, \ldots, n\}$
- Def: Face maps: $F_I : \Delta^{|I|-1} \to f_I \subset \Delta^n$
- Def: Chain complex, (C, d)
- Def: the *i*th homology group
- Def: $x \in \text{ker}$ then x is closed or a cycle. $x \in \text{im}$, then x is exact/boundary. if dx = 0, write [x] be its image in $H_*(C)$.
- Def: the chain complex of the *n*-simplex, $(S_*(\Delta^n), d)$
- Prop: for the chain complex above, $d^2 = 0$
- Def: the reduced chain complex of Δ^n . $(\tilde{S}_*(\Delta^n), d)$
- Rmk: the idea behind reduced chain complex
- Def: the singular chain complex of X. Denoted as $(C_*(X), d)$. Elements of $C_k(X)$. The differential d.
- Def: $\phi_{\sigma}: S_*(\Delta^k) \to C_*(X)$

- Prop: $d \circ \phi_{\sigma} = \phi_{\sigma} \circ d$
- Prop: $d^2 = 0$ in $C_k(X)$
- Def: singular homology on $X.H_i(C_*(X))$
- Prop: computing $H_*(\{\bullet\})$.
- Def: reduced singular chain complex
- Prop: If X is path connected, then $H_0(X) = \mathbb{Z}$
- Def: a subcomplex (A, d) of a chain complex (X, d)
- Prop: Two properties of a subcomplex: If (A, d) is a subcomplex of (C, d) then (A, d) is a chain complex and (C/A, d) is a chain complex.
- Def: the quotient complex
- Prop: if $A \subset X$, then $C_*(A)$ is a subcomplex of $C_*(X)$.
- Def: singular chain complex of a pair of spaces
- Prop: direct sum of chain complexes are also chain complexes.
- Prop: the homology group of X is the direct sum of homology group of its path components.
- Functoriality and Induced maps
- Def: Category. Objects and morphisms
- Def: composition rules for morphisms
- Ex: give some examples of morphisms
- Def: functor
- Def: chain maps
- Prop: {Chain complexes; chain maps} is a category
- Thm: Homology defines a functor
- Def: $f_{\#}: C_*(X) \to C_*(Y)$, where $f: X \to Y$ is a continuous map.
- Lem: $f_{\#}$ is a chain map
- Lem: The functorial property of $\Box_{\#}$
- Rem: Here's a big picture of 2 functors

$$\begin{cases} \text{Spaces} \\ \text{Maps} \end{cases} \longrightarrow \begin{cases} \text{Chain CX} \\ \text{Chain maps} \end{cases} \longrightarrow \begin{cases} R - \text{modules} \\ R - \text{linear maps} \end{cases}$$

Be comfortable with showing that each bracket is a category and each arrow is well defined and a functor.

Lecture 4

- Prop: Maps of pair functoriality. i.e. do the same chain of functors above, except with pair of spaces and map of pairs.
- Homotopy invariance
- Def: $g_0, g_1 : C \to C'$ are chain maps. They are chain homotopic if ...
- Lem: Chain homotopy is an equivalence relation.
- Def: Two chain complexes are chain homotopy equivalent if...
- Prop: If for two chain maps, $g_0 \sim g_1$ then $g_{0*} = g_{1*}$
- Cor: $C \sim C' \implies H_*(C) = H_*(C')$
- Thm: Universal Chain Homotopy. Section completely skipped.

- Cor: Three corollaries of Universal Chain Homotopy:
 - If $f_0 \sim f_1$ then $f_{0*} = f_{1*}$
 - If $f: X \to Y, g: Y \to X$ gives homotopy equivalence then they are both isomorphisms
 - If X is contractible what is $H_*(X)$?
- Exact sequence, SES of chain complexes, SES of a pair
- Thm: Snake lemma
- Cor: LES of pair
- Lem: $\tilde{H}(X) \cong H(X, \{p\})$
- Subdivision: $C^U_*(X)$
- Prop: $C^U_*(X)$ is a subcomplex
- Thm: $i_*(H^U_K(X) \to H_K(X)$ is isomorphism
- Defn: Mayer Vieroris sequence
- Prop: MVS is a short exact sequence
- Prop: Mayer viertoris long exact sequence
- Prop: $\tilde{H}_i(S^n)$
- Notatoin: $[S^n]$

Lecture 7

- Lemma: Turning a commuting diagram of 2 SES into a commuting diagram of 2 LES.
- As a result of the lemma, you can turn two MVS SES into two MVS LES that commutes
- Defn: $r_n: S^n \to S^n$
- Prop: r_{n*} maps $[S^n]$ to $-[S^n]$

- Cor: r_{*v} also maps to $[S^n]$ to $-[S^n]$
- Def: Deformation retract, Good pair
- Thm: good pair isomorphism on homology, no proof needed
- Compute $S^2/\{N, S\}$. Compute $S^1 \times S^1/S^1 \times 1$. They are the same. But latter helps to compute $H_*(S^1 \times S^1)$

- Below helps prove Excision
- Thm: Five Lemma
- Defn: $C^U_*(X, A)$
- Lemma: $H^U_*(X, A) \to H_*(X, A)$ is isomorphic
- Thm: Excision
- Below helps prove collapsing of a pair
- Prop: LES of a triple
- Lemma: Deformation retraction induces isomorphism on relative homology
- Thm: Collapsing of a pair
- Def: Manifold
- Thm: Relative homology of a manifold
- Remember how conditions of Excision and collapsing of pair differ!

2 Cellular Homology

- Defn: Degree of a map $f: S^n \to S^n$
- Properties of degree map
 - Degree of antipodal map
 - Degree of reflection
 - homotopic equivalent same degree, homeomorphism then same degree
 - Local degree Stuff
- Concept: $\pi_*: H_n(S^n) \to H_n(S^n, S^n p)$, is an isomorphism. Identify $\pi_*[S^n]$ with $[S^n, S^n p]$. Then, use excision to denote $[U, U p] \to [S^n, S^n p]$
- Prop: $[U', U' p] \rightarrow [U, U p]$ is an isomorphism
- Defn: Local degree of a map
- Prop: Local degree does not depend on the choice of neighbourhood

- Prop: $V = \coprod U_i$. Then by excision, show that $j_* : H_n(V, V f^{-1}(p)) \cong H_n(S^n, S^n f^{-1}(p))$ hence $[u_i, u_i p]$ is a genrator for $H_n(S^n, S^n f^{-1}(P))$
- Prop: the structure $H_n(S^n) \to H_n(S^n, S^n p)$.
- Thm (big): Degree of f as sum of local degrees

- Def: Attaching via a function
- Def: attaching via k ccell
- Defn: finite cell complex, k skeleton.
- Cell structures of S^k, D^k , graphs
- Def: Wedge Product
- Prop: $\mathbb{CP}^n \cong S^{2n+1}/S^1$
- Defn: Hopf map
- Prop: using Hopt map to construct \mathbb{CP}^n
- Thm: Cellular construction of \mathbb{CP}^n and computing $H_*(\mathbb{CP}^n)$ LES break up so we get direct sum.

Lecture 11

- Prop: $H_k(D^k, S^{k-1}) \cong H_{k-1}(S^{k-1})$
- Prop: (X_k, X_{k-1}) is a good pair
- Prop:

$$- X_k/X_{k-1} \simeq \bigvee S^k$$

- $H_k(X_k, X_{k-1})$, Generated by e_{α}

- Defn: ρ_{β} map: prjection onto the β th cell. ρ_{β} works like δ_{ij} for e_{α}
- Def: d_k^{cell}
- Lemma: $d_k = (\pi_{k-1})_* \circ \delta_k$
- Cor: $d_k \circ d_{k+1} = 0$
- Defn: $C_i^{cell}(X)$
- Big Thm:
 - $H^{cell}_{*}(X) = H_{*}(C^{cell}_{*}(X)) \cong H_{*}(X)$
 - A way to compute H_*^{cell}

- Lemma: let X be a fcc, where it has one 0 cell. ALl the rest of the cells has dim d with $m \le d \le n$. Then $H_*(d) = 0$ for all * < m or * > n.
- Lemma: X a FCC, then (X, X_k) is a good pair
- Cor: $H_k(X_{k+1}) = H_k(X)$: proof is by LES of pair plus collaping of a pair
- Thm: X a fcc then $H^{cell}_*(X) \cong H_*(X)$

2.1 Homology with coefficients

- Defn: Tensor product
- $\otimes M$ functor
- Defn: singular chain complex with coefficient in G
- Defn: Euler character
- Thm: $\chi(X) = \chi(H_{\bullet}(X))$
- Eilenberg Steenrod axioms

Lecture 13

- Def: Free resolution
- Def: $\operatorname{Tor}_i(M, N)$ is well defined
- Fact: what is Tor₀?
- Def: short injective chain complex
- Thm: Structure theorem for chain complex over PID
- Cor: Two free chain CX over PID have ≅ homology then then are homotopic equiv. Proof skipped, doesn't seem to be tested
- Cor: If C is a chain CX over a field \mathbb{F} , then $C \cong (H_*(C), 0)$ Proof skipped, doesn't seem to be tested
- Cor: The Universal coefficient theorem (UCT) Proof skipped, doesn't seem to be tested

3 Cohomology and Products

- If M, N are R modules then so is hom(M, N)
- Def: $f: M_1 \to M_2$, what is f^* ?
- Def: Contravariant functor
- Prop: f^* is a contravariant functor
- Def: $(\hom(C, N), d^*)$ cochain complex
- Def: The contravariant functor (Chain complex) to (Cochain complex)
- Def: Cohomology
- Prop: Draw the functorial diagram for how to go from pair of spaces to cohomology of pairs

- C_i^* explicitly. What are elements in C_i^* specified by?
- Prop: $(d^*)^2 = 0, d^*\alpha = \alpha d_*$
- Why $d^*(\alpha)(\sigma) = (\alpha \circ d_*)\sigma$
- Defn: Cochain maps: maps between cochain of different spaces. i.e. $f^{\#}(\alpha)(\sigma) = \alpha f_{\#}\sigma$

- Prop: $f^{\#}$ is a cochain map, that is $f^{\#}d^* = d^*f^{\#}$. I.e. commutes with boundary. Proof kind of messy.
- Thm: $f^{\#}$ induces f^*
- Defn: Two cochains are cochain homotopic if...
- Lemmas: $f \sim g$ implies $f^* \sim g^*$.
- Lemma: If $f, g: C \to C'$ are chain hty, $f \sim g$ via h then...
- Prop: Eilenberg- Steenrod axioms, hence give you four properties of cohomology (1. homotopic \implies same homologies. 2. LES of pair. 3. Excision 4. Dimension)
- Thm: Any functor satisfying above axioms is...
- Thm: Cohomologies and cellular cohomologies are iso if...

3.1 EXT and UCT

- Defn: $\operatorname{Ext}^{i}(M, N)$, $\operatorname{Tor}_{i}(M, N)$. What is Ext^{0} ? what is Tor_{0} ?
- Example: compute $\operatorname{Ext}(\mathbb{Z}/n,\mathbb{Z})$
- Thm: Write H_i, H^i in terms of Tor and Ext. Using this, we get example of if we have fcc X, H_k, H^k can be written as direct sum of free and torsion components. Proof doesn't seem to be tested.

3.2 Pairing

- Def: Given C a chain complex over R, how to make a bilinear pairing
- Thm: $H^k \times H_k$ descended from above.

Lecture 15

3.3 Cup Products

- Def: Cup Product
- Lemma: \cup Makes $C^k(X; R)$ into a commutative ring
- Lemma: Leibniz rule
- Cor: \cup descends to map on $H^*(X; R)$
- Prop: Continuous maps induce ring hom between cohomologies. Note that this is true for H^k but NOT necessarily true for C^k .
- Prop: \cup on H^* is graded commutative. Proof skipped, require the map that maps to mirror-identity in simplices

- Thm: $r \sim 1_{C_*(X)}$ (This finishes the proof for graded commutativity)
- **Defn:** pairs using \mathbb{Z} coefficients: $C^*(X, A)$
- Prop: what can you say about $C^*(X, A) \times C^*(X)$?
- Cor \cup descends to a map $H^*(X, A) \times H^*(X) \to H^*(X, A)$

- Cor: Generally \cup defines a map $H^*(X, A) \times H^*(X, B) \to H^*(X, A \cup B)$ Proof?
- Examples of cup products and cohomology
 - $H^0(X)$ when X is path connected
 - $H^*(S^n, G)$
 - Skipped
 - Structure of $H^*(X \coprod Y) \cong H^*(X) \oplus H^*(Y)$ as direct product of rings Proof omitted since this is better to be tested via using
 - $H^*((X, p) \lor (Y, q))$ two spaces attached at p, q.

3.4 Exterior products

Lecture 17

- **Defn: Exterior product**, defined using \times .
- Prop: properties about the exterior product
 - $H^*(X, A) \times H^*(Y) \to H^*(X \times Y, A \times Y), (a, b) \mapsto a \times b$ extends to
 - $H^*(X, A) \otimes H^*(Y) \to H^*(X \times Y, A \times Y)$
 - Distribute $(a_1 \times b_1) \cup (a_2 \times b_2)$
 - Thm: The exterior product isomorphism The proof is quite long and technical.
 - * $\overline{h}, \underline{h}$ as contravariant functors
 - Compute the following:
 - * Ring structure of $H^*(T^2)$
 - * (group structure of) $H^*(S^2 \times S^2)$
 - * Deduce $S^2 \times S^2$ is not homotopic equiv to $S^2 \vee S^2 \vee S^4$ despite having same homologies.
 - $* \ H^*(\Sigma_g)$
 - Convention for computing using exterior product or cup product:
 - * Write (a_1, \ldots, a_n) be generators H^i of some space
 - * Then, write $a, b = (0, 0, ..., a_1)$, or something like that, etc.
 - $\ast\,$ Write the dimension chart
 - $* (a_1 \times b_1) \cup (a_2 \times b_2)$

Lecture 18

• Focused on proving the isomorphism for exterior product

Lecture 19

4 Vector bundles

- Defn: *n*-diml vector bundle
- Complex vector bundle
- Defn: Morphism

- Defn: bundle isomorphism
- Defn: sub-bundle
- Defn: section, non-vanishing section, trivial bundle
- Example: trivial bundle
- Prop: equivalent condition of being a trivial bundle
- Example: mobius bundle
- Example: tautological bundle and tangent sphere bundle Unfamiliar with this one
- Def: pullbacks of vector bundles. What are local trivialisations in this case?
- Lemma: pullback of vb can be composed
- Def: restriction to a smaller base of vector bundles
- Lem: non-vanishing sections can be pulled back
- Example: \mathbb{RP}^n is nontrivial
- Defn: product of two vector bundles
- Defn: Whiteney sum
- Defn: supp of a function
- Defn: Partition of unity subordinate to a cover, admits PoU
- Thm: Big theorem: $E \mid_{B \times 0} \simeq E \mid_{B \times 1}$
- ٠

- Set of lemmas to prove big theorem
 - If $E \mid_{B \times [0,1/2]}$ and $E \mid_{B \times [1/2,1]}$ are trivial, then is E
 - For each $b \in B$, there exists an open nbd U_b such that $E \mid_{U_b \times I}$ is trivial.
 - This proves the theorem
- Cor: $\pi: E \to B$ is a v.b. If $g_0, g_1: B' \to B$, and $g_0 \sim g_1$ via $h: B' \times I \to B$, then $g_0^* \sim g_1^*$
- Cor: If B is contractible and admits PoU then it is trivial.

4.1 Riemannian metrics, Thom Iso, Euler class, etc

- Riemannian Metric
- Defn: unit disk, unit sphere bundle: note: they are not vector bundles. Along with map π restricted on there. $\pi: D_g(E) \to B, \pi: S_g(E) \to B$.
- Prop: the choice of Riemannian metrid doesn't matter
- Example: if two bundles are trivial, what is an R-metric? $S(B \times \mathbb{R}^n) B \times S^{n-1}$ if it were trivial. This shows the real tautological and complex tautological bundles are nontrivial.

- Prop: Given a vector bundle, if *B* has a PoU then it has a R metric (proof: the riemannian metric is given by sum of R-metric at each of the member of the open cover of the local trivialisation)
- Defn: the Thom class
 - Maps s_0, i_b , spaces $E_b, E_b^{\#}, E^{\#}$
 - Definition of thom class U

- Example: relating $H^*(B)$ to $H^*(E, E^{\#})$
- Construction: Let $\pi: E \to B$ be a bundle. Let $B' \to B$ be a map. There is a bundle isomorphism between E and $f^*(E)$
- Lemma: If U is a R Thom class for E then F^*U is a R thom class for $f^*(E)$.
- Lemma: $B = B_1 \cup B_2$. $U \in H^n(E, E^{\#})$. Then what condition makes U a TC for E?
- Thm: the Thom Isomorphism Theorem
- Note: $E^{\#} \sim S(E)$
- Def: Gysin sequence
- Def: Euler class
- Remark: The LES you're supposed to remember

Lecture 22

- Defn: admits an orientation
- Thm: Properties of *e*
 - -e behaves naturally under pullback
 - If E is trivial and n > 0 then e(E) = 0
 - $e(E_1 \oplus E_2) = e(E_1) \oplus e(E_2)$
 - If E has a non-vanishing section then e(E) = 0

Two things to remember: E is trivial \iff it is the pullback of the trivial bundle over a point. If S is a nonvanishing section then $E = \langle s \rangle \oplus \langle s \rangle^{\perp}$

- Thm: solving $H^*(\mathbb{RP}^n; \mathbb{Z}/2)$
- Cor: $\pi_3(S^2) \neq 0$

4.2 Manifolds

- Def: n-manifold, smooth manifold, transition functions
- Defn: $(M \mid A)$. What is $H_*(M \mid x)$? What is $H^*(M \mid x; R)$?
- Defn: R fundamental class
- Thm: if $A \subset M$ is compact then $(M \mid A)$ admits a unique $\mathbb{Z}/2$ fundamental class

- Defn: Orientable
- Defn: submanifold
- Defn: normal bundle
- Thm: Tubular neighbourhood theorem
- Prop: $E = E_1 \oplus E_2$. Comment on orientatbility.
- Thm: M orientable \iff its normal bundle is

- Below is on poincare duality
- Work in fields
- Thm: Poincare duality
- Defn: cap product, intersection pairing, algebraic PD, geometric PD

5 Formula Sheet

5.1 Possible *R*-modules of a topological space

• $C^U_*(X, A)$

5.2 Tools to compute homology groups

- Snake lemma / LES of a pair / LES of a triple
- Deformation retraction
- Excision
- Collapsing of a pair
- Universal coefficient theorem: $H^i(X;G) \cong Hom(H_i(X;G)) \oplus Ext^1(H_{k-1}(X);G)$
- Cohomology of wedge sums
- Cohomology of disjoint unions
- Isomorphism on exterior product

5.3 Some rules going from Ho to Co

•
$$d^*(\alpha)(\sigma) = \alpha d_*(\sigma)$$

•
$$f^{\bullet}(\alpha)(\sigma) = \alpha f_{\bullet}(\sigma)$$

5.4 Topological spaces

- T^k
- ΣX where $H_k(\Sigma X) = H_{k+1}(X)$
- •

5.5 You should know

- Cellular decomposition of \mathbb{CP}^n , S^n
- Homologies:
 - $-S^n$
 - $-T^n$
 - $-\Sigma_n$
 - \mathbb{CP}^n
 - \mathbb{RP}^n
 - $S^2/\{N,S\}$
 - $-S^1 \times S^1/S^1 \times 1$
 - Manifold (M, M x)
- Cohomologies:

- $H^*(\Sigma_g)$
- \mathbb{CP}^n
- $H^*(\mathbb{RP}^n;\mathbb{Z}/2).$
- Attention: $H^*(\mathbb{RP}^n; \mathbb{Z}/2)$ vs $H^*(\mathbb{RP}^n; \mathbb{Z})$
- Ring structures of
 - $H^*(S^n)$, write it in terms of $\mathbb{Z}[\alpha]/\alpha^2$
 - $H^*(S^2 \vee S^2 \vee S^4)$
 - $H^{*}(T^{2})$
 - (group structure of) $H^*(S^2 \times S^2)$
 - $-\Sigma_g$