

Week 1 eec 1.

Convatien $I, I^{n}, S^{n}, D^{n}, D^{n} / S^{n-1} \cong S^{n}$
deft homotopic maps
let x, y be space, $f_{0}, f_{1}: x \rightarrow Y$ are homotopic if \exists

$$
F: x \times I \rightarrow \psi \text { s.t. } F(x, 0)=f_{0}(x), F(x, 1)=f_{1}(x) \quad \forall x \in X
$$

and F is a homotopy.
$f_{t}(x)=F(x, t), f_{t}: X \rightarrow Y$. f_{t} is a path from fo to f_{1} in $\operatorname{map}(x, y)$
example of homotopic maps

1) $\mid \mathbb{R}^{n}, \quad O \mathbb{R}^{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ honotopic via $F(x, t)=x(1-t)$
2) $s^{\prime} \rightarrow s^{\prime}$,
$A_{1}: V \mapsto-V$
$A_{1} \sim I_{s^{\prime}}$ via $f_{t}(z)=e^{i \pi t} z$
1_{s} : $V \mapsto v$
lemma homotopy is an u
lemma 2 if for $f_{0} \sim f_{1}: x \rightarrow \psi$ then $g_{0} \cdot f_{0} \sim g_{c} \cdot f_{1} \quad x \rightarrow z$.

$$
g_{0} \sim g_{1}: y+z
$$

def $[x, y]=\operatorname{maps}(x, y) / \sim$
Prop $\left[x, \mathbb{R}^{n}\right]$ has one elenet
let $f: x \rightarrow \mathbb{R}^{n}$

$$
f=\left.\right|_{\mathbb{R}^{n}} \circ f \backsim 0_{\mathbb{R}^{n}} \circ f=0
$$

deft n contractible spores
A space X is contractible if $1_{x} \sim c_{p} \not{ }^{\text {constant map that }}$ maps to a port.
Prop Y is contractible $\Leftrightarrow[x, y]$ has lelent. \forall spue X.
\Rightarrow let $f \in[x, y]$. Then $f=I_{x} \circ f \sim c_{p}$ of $=c_{p}$.
$\Leftrightarrow \quad[y, y]$ has only one lent so \sim to $c p$.
def Space $x, 4$ are ham equiv if $\exists f: x \rightarrow 4, g: 4+x$,
Sit $\quad f \circ g=14 \quad g \circ f=1 x$.
ex $\mathbb{R}^{n} \sim\{0\}, \quad$ contracible spae $\sim 304, \quad \mathbb{R}^{n} \backslash\{0\} \sim S^{n-1}$
def pairs of spaces
Le Pair of spaces: $(X, A), A C X$.
Le map of pairs: $f:(X, A) \rightarrow(Y, B)$ cts map, $f(A) \subset B$.
Le maps of pairs $f_{0}, f_{1}:(x, A) \rightarrow(Y, B)$ is homotopic if $f_{0}, f_{1}: x \rightarrow y$ are homotopic via

$$
H:(x \times I, A x I) \rightarrow(Y, B)
$$

$$
\begin{aligned}
L f:(x, A) \rightarrow(y, B) & g:(y, B) \rightarrow(z, C)
\end{aligned} \quad \Rightarrow \quad g \circ f:(x, A) \rightarrow(z, c)
$$

dit homotopy groups
If x is a space, $p \in X_{1}$ then the homotopy grasp

$$
\begin{aligned}
\pi_{n}[x, p) & =\left[\left(I^{n}, \partial I^{n}\right),(x, p)\right] \\
& =\left[\left(D^{n}, S^{n-1}\right),(x, p)\right] \\
& =\left[\left(S^{n}, x\right),(x, p)\right] .
\end{aligned}
$$

Prop. Properties of homotopy groups
note: $\pi_{0}(x, p)=\{$ path comets of x)
$\pi_{r}(x, p)$ is a group.
$\pi_{n}(x, p)$ is an akelion great. when $n>1$.

Prop. $\pi_{n}(x, p)$, is a gram.
(1) addition $\varphi, \psi:\left(I^{n}, \partial I^{n}\right) \rightarrow(x, p)$

$$
\varphi+\psi:\left(z^{n}, \partial z^{n}\right) \rightarrow(x, p)
$$

(2) Identity map

$$
\begin{aligned}
e:\left(I^{n}, \partial I^{n}\right) & \rightarrow(x, p) \\
x & \mapsto p
\end{aligned}
$$

Life]

(3) abelian ness for $n>1$.

φ	ψ	4	ψ

(4)

$$
\begin{aligned}
\varphi^{-1}= & \varphi \cdot r \quad \text { Where } \quad r=I^{n} \rightarrow I^{n} \\
& \left(t_{1}, \cdots t_{n}\right) \mapsto\left(1-t_{1}, \ldots t_{n}\right] \\
& \left(\varphi+\varphi^{-1}\right)\left(s_{1}, s_{2}, \cdots s_{n}\right) \\
= & \left\{\begin{array}{ll}
\varphi\left(2 s_{1}, s_{2}, \cdots s_{n}\right) & s_{1} \in[0,1 / 2] \\
\varphi^{-1}\left(2 s_{1}-1, s_{2}, \cdots\right. & \left.s_{n}\right)
\end{array} \quad s_{1} \in\left[1_{2}, 1\right]\right. \\
= & \varphi\left(2-s_{1}, s_{2}, \cdots s_{n}\right) \quad \text { "live undo } H^{\prime \prime}
\end{aligned}
$$

functorialy

$$
\left(I^{n}, \partial I^{n}\right) \quad f \circ \varphi
$$

$$
(x, p) \xrightarrow{f^{v}}(\psi, q)
$$

homotopy invarioul
If $f_{0}, f_{1}:(x, p),(y, q)$, and for f_{1}, then fo* $=f_{1 *}$
as $f \circ *[[\varphi])=\left[f_{0} \circ \varphi\right]=\left[f_{1} \circ \varphi\right]=f_{(*}[[\varphi])$

$$
\varphi:\left(I^{n}, \partial Z^{n}\right) \rightarrow(x, p) \quad \in \pi_{n}(x, p) .
$$

lecture 2
I) singular homology.

Def the n-simplex $A^{n}=\left\{\left(t_{0}, t_{1}, \cdots t_{n}\right) \in \mathbb{R}^{n} \quad \mid t_{i} \geqslant 0, \Sigma_{i} t_{i}=1\right\}$.
Def faces: if IC $\{0,1,-n\}$,

$$
f_{I}=\left\{\vec{t} \in \Delta^{n} \quad \mid t_{i}=0 \quad \text { if } i \notin \tau\right\}
$$

$$
f_{12}=\left\{\vec{t} E \Delta^{n}, t_{0}=0\right\}
$$

fol 2 : whole fling

$$
\begin{aligned}
& f:(x, p) \rightarrow(y, q) \text { indues } f_{*}: \pi_{n}(x, p) \rightarrow \pi_{n}(y, q) \\
& f_{*}([\varphi])=[f \circ \varphi] \\
& \text { (cheek) }(f \circ g)_{\psi}=f_{k} \circ g_{*} \\
& f:(x, p) \rightarrow(y, q) \quad f_{\psi}: \pi_{n}(x, p) \rightarrow \pi_{n}(Y, q) \\
& g * \circ f_{*}([\varphi]) \\
& g:(y, q)+(z, c) \quad g_{x}: \pi_{n}(y, q) \rightarrow \pi_{n}(z, c) \\
& f \circ g:(x, p) \rightarrow(z, c) \\
& =[g \circ f \cup \varphi] \\
& =(g \circ f) \times([\varphi])
\end{aligned}
$$

det fave maps if $I=\left\{i_{1}<i_{1}<\ldots<i k\right\} \leq\{0, \ldots n\}$

$$
F_{I}: \Delta^{|I|-1} \longrightarrow f_{ \pm} C \Delta^{n}
$$

$$
F_{z}(\vec{t})=\vec{x} \quad \text { wher } \quad x_{i}= \begin{cases}0 & i \notin 1 \\ t j & i=i j\end{cases}
$$

$$
\begin{aligned}
F_{12}: \Delta^{\prime} & \rightarrow f_{12} \\
\left(t_{0}, t_{1}\right) & \mapsto\left(t_{0}, t_{1}, 0\right) \\
F_{02}: \Delta^{\prime} & \rightarrow f_{02} \\
\left(t_{0}, t_{1}\right) & \mapsto\left(t_{0}, 0, t_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& F_{I}: \Delta^{|I|-\mid} \rightarrow f_{ \pm} C \Delta^{n} \Delta^{n} \text { is typicdly a } n \operatorname{dim} \\
& \text { homeormarphism. } \\
& F_{I} \text { is a map } \Delta^{\text {smaller.dim }} C \Delta^{\text {biggor.dim }}
\end{aligned}
$$

det chain complex
R be a commutatire ing. A chan $c x$ orer $R(c, d)$ is

1) R modules $C i, i \in \mathbb{Z} \quad C=\bigoplus_{i \in \mathbb{Z}} C_{i}$
2) R-linear maps $d i: C_{i} \rightarrow C_{i-1} d=\bigoplus_{i \in \mathbb{Z}} d i$
sit.

$$
\left\{\begin{array}{l}
d: c \rightarrow C \\
d\left(C_{i}\right) \subset C_{i-1}
\end{array}\right.
$$

3) $d i \cdot d t+1: C_{i H}+C_{i}=0 \forall i$.
det. $i^{\text {th }}$ homology greup.

$$
d_{i} \cdot d i+1=0 \quad \Rightarrow \quad\left(m(d i+1) \operatorname{ker}\left(d_{i}\right)\right.
$$

the $i^{\text {th }}$ hom grap $H_{i}(c)=\frac{\operatorname{ker}(d i)}{\operatorname{lm}(d+i)}$ its an R.module.

$$
H x(c)=\underset{i}{\oplus} H_{i}
$$

det: $x \in \operatorname{ker}(d), x$ is closed/cycle
$x \in(m(d), x$ is exact/boundey.
If $d x=0$, $[x]$ be its image in $H x(c)$.
deft. The chain complex of the n-simplex is $\left(S_{*}\left(\Delta^{n}\right), d\right)$
$S_{k}\left(\Delta^{n}\right)$ is the free module generated by k-dine faces.

$$
\begin{aligned}
& \left.S_{k}\left(\Delta^{n}\right)=\left\langle f_{ \pm}\right||I|=k H\right\rangle \quad S_{k}\left(\Delta^{n}\right)=0 \text { for } k<0 . \\
& d\left(f_{\Sigma}\right)=\sum_{j=0}^{k}(-1)^{j} f_{I \backslash\left\{i_{j}\right\}}
\end{aligned}
$$

Pop $d^{2}=0$
enoann to check $d^{2}\left(f_{I}\right)=0$ sine f_{I} is a basis.
index hiupp! Core back later.

Note: No face maps. just fixed Δ^{n}. get k-dime fore.

Example : chain complex of α-simplex
$\left\langle\right.$ faftif $\left.f_{2} 7 /<f_{f} f_{1}, f_{1}-f_{1}, f=f_{0}\right\rangle$

$$
\begin{aligned}
& s_{-1}\left(L^{2}\right)=\langle \rangle \quad \begin{cases}\text { do } & \text { wm }\left(d_{0}\right)=\phi \\
k \in C & \left(d_{0}\right)=\left\langle f_{0} f_{1}, f_{2}\right\rangle\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& H_{0}=\frac{\log (d)}{m(d)}=\mathbb{Z} \\
& H_{1}=\frac{\operatorname{ler}\left(d_{1}\right)}{m\left(d_{2}\right)}=0 \\
& \left.S_{2}\left(\Delta^{\Delta}\right)=\langle\text { for }\rangle\right\rangle
\end{aligned}
$$

def reduced main compere of Δ^{n}

$$
\left(\tilde{S}_{*}\left(\Delta^{n}\right), d\right) \quad \begin{cases}\text { if } k \neq-1 & \tilde{S}_{k}\left(\Delta^{n}\right)=S_{k}\left(\Delta^{n}\right) \\ \text { If } k=1 & \tilde{S}_{-1}\left(\Delta^{n}\right)=\langle f \phi\rangle \text { if }|I|=1, \quad d f_{L}=f_{\phi} . \quad d f_{\phi}<\langle\phi\rangle .\end{cases}
$$

idea: Want Ho to be trial.

$$
\begin{aligned}
& S_{-1}\left(\Delta^{2}\right)=\left\langle f_{\phi}\right\rangle \\
& S_{0}\left(\Delta^{2}\right)=\left\langle f_{0,}, f_{1}, f_{2}\right\rangle \\
& S_{1}\left(\Delta^{2}\right)=\left\langle f_{01}, f_{21}, f_{21}\right\rangle
\end{aligned} \quad\left\{\begin{array}{l}
\operatorname{ker} d_{0}=0 \\
\operatorname{kn} d_{1}=\sum a_{i} f_{i}, \Sigma_{i}=0
\end{array}\right\} \Rightarrow H_{0}=\frac{\operatorname{ker}\left(d_{0}\right)}{m\left(d_{1}\right)}=0
$$

def singular chain complex
let x be a top space. Then its singular chain complex is $\left(C_{*}(x), d\right) \quad C_{k}(x)=\left\{\gamma \cdot \Delta^{k} \rightarrow x\right.$. continues $\}$ is the free \mathbb{Z}-module generated by all $\sigma: \Delta^{k} \rightarrow X$.
def elements in $\operatorname{ck}(x)$ is with as $\sum a_{i} \sigma_{i} a_{i} \in \mathbb{Z} \quad \sigma_{i}: \Delta^{k}-x$.
singular simplex: $\Delta^{h} \rightarrow x$
al differential of singular chain complex
suffices to define d on δ sine σ are geneators.
let $\sigma: \Delta^{k} \rightarrow x, \quad d(\sigma)=\sum_{j=0}^{k}(-1)^{j} \sigma \cdot F \hat{j} \quad F_{j}: \Delta^{k-1} \rightarrow \Delta^{k}$ is the face map.
Prop $\quad d \circ \varphi_{\sigma}=\varphi_{\sigma \cdot d}$
the $\operatorname{map} \varphi_{\sigma}: \delta_{x}\left(\Delta^{k}\right) \rightarrow C_{*}(x)$

$$
f_{I} \mapsto \gamma \circ F_{I} \quad S_{k}\left(\Delta^{n}\right) \xrightarrow{d} S_{k-1}\left(\Delta^{n}\right) \stackrel{d}{\rightarrow} S_{k-2}\left(\Delta^{n}\right)
$$

satisfies $d \circ \varphi_{r}=\varphi_{\sigma} \circ d$
$\downarrow \varphi$

$$
c_{k}(x) \xrightarrow{d_{0}} c_{k-1}(x) \xrightarrow{d}\left(c_{k-2}(x)\right.
$$

Pip $d^{2}=0$ in $C_{k}(x)$
note $\sigma=\varphi_{\sigma} \circ F_{10, \cdots n 4}$ So $d^{2} \sigma=d^{2} \varphi_{0} \circ F_{i 0 \cdots n 4}=\varphi_{0} \circ d^{2} F_{10, \cdots n 4}=0$
deft. Singular hendegy on x

$H_{i}\left(C_{*}(x)\right)$

Prop. Computing $H_{*}(\{, 4)$
lack $C_{k}=\left\langle\sigma_{k}\right\rangle$ whee $\sigma_{k}: \Delta^{k} \rightarrow\{0\}$
$d\left(\sigma_{k}\right)=(-1)^{n} \sum_{j=0}^{n} \sigma_{k} 0 F_{\hat{j}}$ nate $\sigma_{k} \circ F_{\hat{j}}$ is the map send Δ^{k-1} to 1.4 so σ_{k-1}

$$
= \begin{cases}0 & \text { if } n \text { odd } \\ \sigma k-1 & \text { if } n \text { even }\end{cases}
$$

So $\quad \operatorname{lm}(d)=\left\langle\sigma_{1}, \delta_{3}, \sigma_{5}, \ldots\right\rangle$

$$
\begin{aligned}
\operatorname{ker}(d) & =\left\langle\sigma_{0}, \sigma_{1}, \sigma_{3}, \sigma_{5}, \ldots\right\rangle \\
\operatorname{ker}(d) /\left(m(d)=\left\langle\sigma_{0}\right\rangle \Rightarrow\right. & H_{i}(1.4)= \begin{cases}\mathbb{Z} & i=0 \\
0 & 0 . w_{1}\end{cases}
\end{aligned}
$$

week 1 lecture 3
def reduced singular chain $C X$

$$
\tilde{C_{k}}(x)=\left\{\begin{array}{llc}
C_{k}(x) & k \neq-1 & d \sigma=\sigma_{\phi} \text { if } \sigma \in C_{0}(x): \Delta^{0} \rightarrow x \\
\left\langle\sigma_{\phi}\right\rangle & k=-1 & d \sigma_{\phi}=0
\end{array}\right.
$$

males $\operatorname{ker}\left(d_{0}\right)=\phi$ so males $H_{0}(x)=0$.

Pop: If X is path connected then $H_{0}(x)=\mathbb{Z}=\left\langle\sigma_{p}\right\rangle \quad \sigma_{p}: \Delta^{n} \rightarrow p \in X$.
Pref: $H_{0}(x)=\frac{k e r(d o)}{i m(d)}$
do: $C_{0}(x) \rightarrow C_{-}(x)$ but $C_{-1}(x)=0$ so $\operatorname{ker}(d o)=C_{0}(x)=$ maps $\left\langle\delta: \Delta^{0} \rightarrow x\right\rangle$
$d_{1}: C_{1}(x) \rightarrow C_{0}(x)$ let $\sigma^{\prime} \Delta^{\prime} \longrightarrow x \in C_{1}(x)$ then $d \sigma=\sum_{i=0}^{n} \sigma_{0} F_{\hat{i}}(-1)^{i}$
so in $\left(d_{1}\right)=\operatorname{span}\{d \gamma \mid \gamma: I \rightarrow \times\}$
$=\operatorname{span}\left\{\delta_{p}-\sigma_{p^{\prime}}\right.$ |p, p^{\prime} are path omected $\{$.

$$
=\text { Span }\left\{\sigma_{p}-\sigma p^{\prime} \mid p, p^{\prime} \in x\right\} \text {. }
$$

$H_{0}(x)=\frac{\operatorname{ker}\left(d_{0}\right)}{\operatorname{mid}(\delta)}=\frac{\left\langle\sigma^{0}: \Delta^{0} \rightarrow p \in X\right\rangle}{\left\langle\sigma_{p}-\sigma_{p}\right\rangle} \Rightarrow$ only ore equivalue clan) of maps. so $\cong \mathbb{Z}$.
def subcomplex
If (x, d) is a chain complex over R, a subcomplex of (c, d) is

1) $A_{i} C C_{i}$ as submodules
2) $d\left(A_{i}\right) \subset A_{i-1}$

Poop. Properties of subcomplex
If (A, d) is a subcomplex of (c, d) then

1) (A, d) is a chain complex.
2) $(C / A, d)$ is a chan complex X

$$
\begin{gathered}
C / A=\underset{i}{\oplus} C_{i} / A_{i} \\
\operatorname{di}\left(A_{i}\right) C A_{i-1} \text { so di descend: di: } C_{i} / A_{i} \rightarrow C_{i-1} / A_{i-1}
\end{gathered}
$$

def. quotient complex
(x, d) defined as above, $(C / A, d)$ is the quotient complex.

Prop. $A \subset X \Rightarrow C_{*}(A)$ is subcemplex of $C_{*}(x)$
let $\sigma: \Delta^{n} \rightarrow A$ then $d \sigma=\Sigma_{i}(-1)^{i} \sigma \circ F_{\hat{i}}$ with image in A.
def. Singular chain complex of a pair of spaces.
let $[X, A)$ be pair of space. then singular chain $c x$ is

$$
C_{*}(X, A)=C_{*}(X) / C_{*}(A)
$$

Prop. direct sums of chain complexes are also $c x$.
let $\left(C_{\alpha}, d \alpha\right)$ be chain complexes. Then so is $(\oplus)(\alpha, \oplus d \alpha)$

$$
H\left(\oplus_{\alpha}^{\oplus}(\alpha) \cong \bigoplus_{\alpha} H((\alpha)\right.
$$

$H_{k}(x)=\oplus_{\alpha} H(x \alpha)$ where x_{α} are path componets of x.

Poe f. Let $\sigma \in C_{k}(x), \delta=\Delta^{k} \rightarrow X$ since Δ^{k} is connected,

$$
\begin{gathered}
\operatorname{map}\left(\Delta^{k}, x\right)=\frac{11}{\alpha} \operatorname{map}\left(\Delta^{k}, x_{\alpha}\right) \\
C_{k}(x)=\oplus_{\alpha}^{\oplus} C_{k}\left(x_{\alpha}\right) \Rightarrow H_{k}(x)=\oplus_{\alpha}^{\oplus} H_{k}\left(x_{\alpha}\right)
\end{gathered}
$$

Eunctoiality \& indeed maps
detn (Category)
a rategong is

1) a collection of objects.
2) for each pair of objects, A, B, a set of morshisms $f: A \rightarrow B$ with composition rule: $f: A \rightarrow B, \quad g: B \rightarrow C, \quad g \circ f: A \rightarrow C$.
st. 1) $h \circ(g \circ f)=(h \circ g) \circ f$
3) for each objet, $\mid A: A \rightarrow A, B: B \rightarrow B$ st. $f: A \rightarrow B, f=\left.f \circ\right|_{A}$
$\left\{\begin{array}{l}\text { objects } \\ \text { morphisms. }\end{array}\right.$
examples: $\left\{\begin{array}{l}\text { R.modues } \\ R \text {-lin.maps }\end{array}\right\} \quad\left\{\begin{array}{l}\text { spaces } \\ \text { cts maps }\end{array}\right\} \quad\left\{\begin{array}{l}\text { pairs of spars } \\ \text { mops of pairs }\end{array}\right\}$
deft functor
let V_{1}, C_{2} be categories, functor $F: C_{1} \rightarrow C_{2}$ assigns
4) $A \in \sigma_{b j}\left(\varphi_{1}\right)$ to $F(A) \in \sigma_{b j}\left(\varphi_{2}\right)$
5) femur $\left(\varphi_{1}\right)$ to morphism of $\zeta_{2}, f: A \rightarrow B$ to $F(f): F(A) \rightarrow F(B)$ st.
6) $F(f \circ g)=F(f) \circ F(g)$
7) $F(\mid A)=\mid F(A)$

Let Chain maps
let $(c, d),\left(c^{\prime}, d^{\prime}\right)$ be chain $c x s$ over R, chain maps $f=(c, d) \rightarrow-\left(c^{\prime}, d^{\prime}\right)$ is 1) R-linear maps $f_{i}: C_{i} \rightarrow c_{i}^{\prime} \quad f=\oplus_{i} f_{i}, \quad f: c+c^{\prime}, f\left(c_{i}\right) \subset c_{i-1}$
2) $d^{\prime} f=f d \quad c_{i} \stackrel{d i}{t} C_{i-1} \quad d_{i} \circ f_{i-1}=f_{i} \circ d_{i}^{\prime}$

$$
\stackrel{f_{i} \downarrow}{c_{i}^{\prime} \underset{d_{i}^{\prime}}{ } \underset{c_{i-1}^{\prime}}{\downarrow}+f_{i-1}}
$$

Prop
$\left\{\begin{array}{c}\text { chain conplesxes } \\ \text { chain maps }\end{array}\right\}$ is a cateyay
poof: 1) $\mid(c, d):(C, d) \rightarrow(C, d)$ is a chain map
2) If $f:(c, d) \rightarrow\left(c^{\prime}, d^{\prime}\right) \quad g: c\left(1, d^{\prime}\right) \rightarrow\left(c^{\prime \prime}, d^{\prime \prime}\right)$ are chan maps, so is got.

the. Homology defines a functor. $\left\{\begin{array}{c}\text { chain } C x \text { over } \mathbb{Z} \\ \text { Chain maps }\end{array}\right\} \xrightarrow{H_{*}}\left\{\begin{array}{l}\text { R-modles } \\ \text { R-liner mops }\end{array}\right\}$
There's a Steps

1) $f:(C, d) \rightarrow\left(C^{\prime}, d^{\prime}\right)$ descends to $f_{x}: H_{f}(c) \rightarrow H_{c}\left(c^{\prime}\right)$

If $x \in \operatorname{ker}(d), \quad d x=0, \quad f(d x)=d^{\prime} f(x)=0$ so $f(x) \in \operatorname{Ker}\left(d^{\prime}\right)$
If $x \in \operatorname{mim}(d), \quad x=d y . \quad f(x)=f(d y)=d^{\prime} f(y)$ so $f(x) c$ im(d')
so $\quad f:$ ker(d) \rightarrow kerd')
desunds to $\left.f_{*}: \operatorname{ker}(d) / \min (d) \rightarrow \operatorname{ker}\left(d^{\prime}\right] / \operatorname{mi}\left(d^{\prime}\right)\right)$

$$
f_{*}: H_{x}(c) \rightarrow H_{x}\left(c^{\prime}\right) \quad f_{x}([x])=[f(x)]
$$

2) finctoriality.

$$
C \longmapsto H_{x}(C)
$$

and if $\left.\right|_{c}:(c, a) \rightarrow(c, d)$ then $\left(I_{c}\right)_{*}=\left.\right|_{H_{*}(c)}$
If $\left.\begin{array}{l}f:(c, d) \rightarrow\left(\left(c^{\prime}, d^{\prime}\right)\right. \\ g:\left(c^{\prime}, d^{\prime}\right) \leftarrow\left(c^{\prime \prime}, d^{\prime \prime}\right)\end{array}\right\}$ then $\quad(g \circ f)_{*}=g_{*} \circ f_{*}$

Proof: remainder: $1 d x(x)=[x] \quad 1 d x: C \rightarrow H(C)$

$$
\begin{aligned}
& \text { 1) }\left(I_{c}\right)_{*}=l_{H^{*}(c)} \\
& f:\left(c \rightarrow c \quad f_{*}: H^{*}(c)+H^{*}(c)\right. \\
& \text { If } x \in c_{1} \quad(I c(x))_{*}=(x)_{*}=[x] \\
& \text { 2) }(g \circ f)_{*}=g_{x} \circ f_{*} \\
& f: c \rightarrow c^{\prime} \quad \\
& g: c^{\prime}+c^{\prime \prime} \quad f_{*}: H(c) \rightarrow H\left(c^{\prime}\right) \\
& \\
& \left.(g \circ f \circ f)_{*}(x)=[g \circ f(x)]=g_{*}\right)+H\left(c^{\prime}\right)
\end{aligned}
$$

$$
\left\{\begin{array}{c}
\text { chain complex over } R \\
\text { chain maps }
\end{array}\right\} \stackrel{H_{k}}{\longrightarrow}\left\{\begin{array}{l}
R \text { - nodules } \\
R \text {-liner maps }
\end{array}\right\}
$$

$$
\left\{\begin{array}{l}
\left(c_{1} d\right) \\
f: c \rightarrow c^{\prime}
\end{array}\right\} \longrightarrow\left\{\begin{array}{c}
H_{*}(c) \\
f_{x}: H_{x}(c) \rightarrow H_{*}\left(c^{\prime}\right)
\end{array}\right\}
$$

NOTE: at this point, $\{$ chain as $\} \rightarrow\{$ R-moous $\}$ is abstract. there's no fopebyicel spaces at all.

Def gives $f: x \rightarrow y$, what $f \#$?
let $f: x \rightarrow y$ be as maps, define $f_{\#}: C_{T}(x) \rightarrow C_{\#}(Y)$
$\sigma \mapsto \operatorname{fo\sigma } \in \operatorname{map}\left(\Delta^{k}, y\right)$
Lemma $f \#$ is a chain map
proof $\sigma \in C_{k}(x)$ then

$$
\begin{aligned}
& f_{\#} \cdot d(\sigma)=f_{\# 1} \cdot\left(\sum_{i=0}^{n}(-1)^{i} \sigma \circ F_{\hat{j}}\right)=\sum_{i=0}^{n}(-1)^{i} f \circ \sigma \circ F_{\hat{j}} \\
& d \cdot f_{\#}(\sigma)=d\left(f_{\circ} \sigma\right)=\sum_{i=0}^{n}(-1)^{i} f_{0} \circ \sigma_{\hat{j}}
\end{aligned}
$$

$$
\binom{\text { spares }}{\text { cts maps }} \rightarrow\left(\begin{array}{cc}
\text { chain } & \text { cvs } \\
\text { chain maps }
\end{array}\right)
$$

WIS: $\left(I_{x}\right)_{\#}=I_{d} \operatorname{crc}(x)$ and $(g \circ f)_{\#}=g_{\#}$ 林

1) $\left(I_{x}\right) \#=I_{d x}(x)$

Let $\sigma \in C_{\infty}(x)$ then, $I_{x}: X \rightarrow X$

$$
\begin{gathered}
(J x) \neq: C(x) \rightarrow C(x) \\
\sigma \mapsto \sigma .
\end{gathered}
$$

$$
\text { So }\left(I_{x}\right) \#(\sigma)=\sigma \quad \text { so }\left(I_{x}\right) \#=1 d c_{*}(X)
$$

2) $(g \circ f) \#(\theta)=g \circ f \circ \sigma=g_{\#}(f \circ \sigma)=g_{\#} \circ f \neq \sigma$

So this gins a functor

Remark: Big picture of a finetors.

$$
\begin{aligned}
\left\{\begin{array}{c}
\text { spaces } \\
\text { maps }
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { chain } C x \\
\text { chain map }
\end{array}\right\} & \left\{\begin{array}{l}
R-\text { modes } \\
R-\operatorname{lin} \text { mes }
\end{array}\right\} \\
x & C_{*}(x) \\
f: x \rightarrow Y & f_{\#}: C_{*}(x) \rightarrow C_{x}(Y)
\end{aligned}
$$

$$
\begin{aligned}
& f: x \rightarrow Y \quad f_{\#}: c+(x) \\
& \text { to show } \\
& \text { 1. \# gives a chain map }
\end{aligned}
$$

2. functoriality
3. functionality
4. $f_{\#}$ descends to f_{*} is a category

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { species } \\
\text { cts maps }
\end{array}\right\} \rightarrow\left\{\begin{array}{l}
\text { chan } \mathrm{exs} \\
\text { chain maps }
\end{array}\right\} \\
& \left\{\begin{array}{lll}
x & \longmapsto & c_{*}(X) \\
f: X \rightarrow Y & \longmapsto & f_{*}=C_{*}(X) \rightarrow C_{*}(Y)
\end{array}\right.
\end{aligned}
$$

week 2 lee 1
Pop Maps of Pairs functorially
let $f:(X, A) \rightarrow(Y, B)$ be maps of pairs. Then. $f_{x}: X \rightarrow Y$, have If $\sigma \in\left[x(X), \quad \sigma: \Delta^{k} \rightarrow A\right.$ have $f_{\#}(\sigma) C B \Rightarrow f_{A}\left(C_{*}(A)\right) \subset C \in(B)$. f \# desuds to a mop

$$
f \#: C_{+}(X, A) \longrightarrow C+(Y, B)
$$

get functoriality between categories

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { Pairs of paw } \\
\text { map if pairs }
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { chain cis of } \mathbb{Z} \\
\text { chain maps }
\end{array}\right\} \rightarrow\left\{\begin{array}{l}
\mathbb{Z} \text {-models } \\
\mathbb{Z} \text {-line ops }
\end{array}\right\} \\
& (X, A) \longmapsto C *(X, A) \longmapsto H_{r}(X, A) \\
& f:(X, A) \rightarrow(Y, B) \longmapsto f_{\#}: C_{*}(X, A) \rightarrow C_{+}(Y, B) \longmapsto f_{x}: H_{*}(X, A) \rightarrow H_{4}(Y, B) .
\end{aligned}
$$

Homotopy invariance
deft. Chain nomotopic
Let $g_{0}, g_{1}: c \rightarrow c^{\prime}$ be chain maps.
then, g_{0} is homotopic to $g_{1} \quad\left(g_{0} \sim g_{1}\right)$ if there exist R - linear maps $h_{i}: c_{i} \rightarrow C_{i+1}^{\prime}$

$$
\begin{array}{ll}
\text { St. } d^{\prime} h+h d=g_{1}-g_{0} . \\
C_{i+1} \rightarrow C_{i} \xrightarrow{d}(i-1 & \\
C_{i+1} \xrightarrow[d^{\prime}]{\longrightarrow} C_{i} \rightarrow C_{i-1}^{\prime} & h_{d}+d^{\prime} h=g_{1}-g_{0}
\end{array}
$$

Lem: chain homotopy is an u
def Chain homotopic equiralat
Chain complexes C, C' are Chain hay equiralat if \exists chain mps

$$
\left.f: c \rightarrow c, \quad g: c^{\prime} \rightarrow c, \text { s.t. } \quad f \circ g \underset{\nsim}{\sim} \mid c\right), \quad g \cdot f \sim \mid c .
$$

chain maps
lena: chain ht is an ~

Pup if $g_{01} g_{1}: c \rightarrow c^{\prime}$ are chain maps, $g_{0} \sim g_{1}$

$$
g_{0 *}=g_{1 *}: H_{*}(c) \rightarrow H_{t}\left(C^{\prime}\right)
$$

Pref note: $g_{0 x}: H_{*}(C) \rightarrow H_{*}\left(C^{\prime}\right)$
let $[x] \in H_{x}(C)$ then $d x=0$

$$
\begin{aligned}
g_{0 *}([x])-g_{1 *}([x])= & {\left[g_{0}(x)-g_{1}(x)\right] } \\
= & {\left[\left(g_{0}-g_{1}\right)(x)\right] } \\
= & {\left[\left(h d+d^{\prime} h\right)(x)\right] } \\
= & {[h d(x)]+\left[d^{\prime} h(x)\right]=0 \quad \in C_{x}^{\prime}(x) . } \\
& d(x)=0 \quad \text { : }
\end{aligned}
$$

Cor: $\left[\sim C^{\prime} \Rightarrow H_{x}(c) \cong H_{x}\left(c^{\prime}\right)\right.$
If $\left(\sim C^{\prime}, \quad \exists f: c \rightarrow c^{\prime}, \quad g: c^{\prime} \rightarrow c, \quad f \circ g \sim I_{d} c^{\prime} \quad g \cdot f \sim I_{d} c\right.$

$$
\begin{aligned}
f_{*} \cdot g_{y}: & H *(C) \\
& \rightarrow H *(C) \\
\Rightarrow & H *(C) \rightarrow H *\left(C^{\prime}\right) \rightarrow H \times(C) \\
\Rightarrow & \text { SO. }
\end{aligned}
$$

Hear If $f_{0} \sim f_{1}: x \rightarrow Y$ via $H: x \times I \rightarrow Y$, Idea for incoming
If $\sigma: \Delta^{k} \rightarrow x, \quad g_{0}(\sigma)=f_{0 x}(\sigma) \quad g_{i}^{\prime}: C_{x}(x)+C_{x}(y)$

$$
g_{1}(\sigma)=f_{1} \times(\sigma)
$$

get $h(\bar{\sigma})=H(\delta \times I)$
hieup: grupthica arg don't quite get
universal chain homotopy
deft $\varphi_{c i}, \varphi_{c 1}$ as maps. $\Delta^{n} \rightarrow \Delta^{k} \quad \Delta^{n} \rightarrow x$
let $\sigma: \Delta^{k} \rightarrow x$, then there is chain map $\varphi_{\sigma}: S_{:}\left(\Delta^{k}\right) \rightarrow C_{f}(X)$ gives by $f_{I} \mapsto \sigma_{0} F_{I}$.
$C_{0}, C_{1}: \Delta^{n}+\Delta^{n} \times I$
$c_{0}: \quad x \mapsto(x, 0)$
$c_{1}=x \mapsto(x, 1)$
get $\varphi_{c 0}, \varphi_{c 1}: S_{r}\left(\Delta^{n}\right) \rightarrow C_{*}\left(\Delta^{n} \times I\right)$
unfamitar ul proof Detuils

Idea of universal chain homotopy:
ida: tringulate ($\Delta^{n} \times I$) \& use chain horotopic maps
4 uniesal chan honotopy

$$
U_{n}: \delta_{*}\left(\Delta^{n}\right) \rightarrow C_{*+1}\left(\Delta^{n} \times I\right)
$$

$\rightarrow \quad d u_{n}+u_{n d}=\varphi_{c 1}-\varphi_{c 2}$ is chain honotopy.
L proet is index magic.
Δ Digrexn of $S o\left(\Delta^{n}\right)$
wreka leed

As corollong of uniesal chain homotopy:
cor. $f_{0}, f_{1}: x \rightarrow Y$, $f_{0} \sim f_{1}$, then $f_{0} *=f_{1}$
cor. If $f: x \rightarrow Y, \quad g: y \rightarrow x$ indues howtriy equivalace,

$$
\left\{\begin{array}{l}
f_{x}: H(x) \rightarrow H(Y) \text { is an } \cong . \\
g_{x}: H(Y) \rightarrow H(x) \text { is an } \cong .
\end{array}\right.
$$

cor. If X is contractible $\quad H_{\theta}(x)= \begin{cases}\mathbb{l} & i=0 \\ 0 & \text { o.w. }\end{cases}$
come buck to aniesed chan hity later.
1.4) Subdiüsions
det: exact sequnce, exact at a module,
Remark: a Sequace is excet \Leftrightarrow it's a chain complex uith $H_{i}=0 \forall_{i}$

Examples)

1) $0 \rightarrow A \rightarrow 0$ exact $\Rightarrow A=0$
2) $D \rightarrow A \xrightarrow{f} B \rightarrow 0$ exact $\Rightarrow f$ is iso
3) $O \rightarrow A^{i} \rightarrow B^{\pi} \rightarrow C \rightarrow 0$ is SES,
$i: A+B$ iñjectine $\pi: B+C$ surjective

$$
\begin{gathered}
B / / m(i)=B / \operatorname{ker}(\pi) \cong \operatorname{n} m(\pi)=C \\
B / i(A) \cong C
\end{gathered}
$$

detn SES of chain exS

Let A, B, C be chain $C X S$.
then $0 \rightarrow A \xrightarrow{i} B \xrightarrow{\pi} C \rightarrow 0$ is a SES of $C X$ if
$i) ~ i, \pi$ are chain maps
i7) each i, $\quad 0 \rightarrow A_{i} \rightarrow B_{i} \rightarrow C_{i} \rightarrow 0$ is SES $\forall i$.

Eg of SES
Consider $A C X$. consior $C_{*}(A), C_{*}(X), C_{*}(X, A)$

$$
0 \rightarrow C_{k}(A) \xrightarrow{\dot{i}} C_{k}(x) \xrightarrow{\pi} C_{k}(x) / C_{k}(A) .
$$

thm: Snale lemna
let $0+A^{i} \rightarrow B^{\pi}+C \rightarrow 0$ be a SES of chain $C X S$.
then there is a LES on hanoloyy

$$
\overbrace{H_{i-1}(A) \xrightarrow{i *} H_{i-1}(B)}^{H_{i}(A) \xrightarrow{i_{4}} H_{i}(B) \xrightarrow{\pi_{*}} H_{i}(C)}
$$

∂ is the bounday rop on LES.

Proof scheme

- dearie $\partial, \quad \partial[c]=[a]$
- show exactness) at $H_{x}(A), H_{x}(B), H_{x}(C)$

define $\partial: H_{i}(c) \rightarrow H_{i-1}(A):$ let $[c] \in H_{i}(C)$-have $d c=0$. π surjective, so $\exists b \in B_{i}$, $\pi(b)=C$.

$$
d b \in B_{i-1} \quad \pi(d b)=d \pi(b)=d(c)=0 \quad \Rightarrow \quad d b \in \operatorname{ker} \pi=i m i \Rightarrow \exists a \in A_{i-1}, \quad i(a)=d b
$$

claim $d a=0$ So $[\alpha] f H_{i-1}(A)$. indeed $\quad i(d a)=d i(a)=d d b=0 \Rightarrow d a \in k e r i, \Rightarrow d a=0$
(2) Show exactness.

$$
H_{i}(A) \xrightarrow{2 *} H_{i}(B) \xrightarrow{\pi_{*}} H_{i}(C)
$$

$$
H_{i-1}(A) \xrightarrow{i *} H_{i-1}(B)
$$

4 exaltress at $H_{i(A)}$ WiS $\operatorname{ker}\left(2_{*}\right)=\operatorname{im}(\partial)$
let $[a] \in \operatorname{Ker}\left(\tau_{*}\right)$ so $\dot{\tau}_{*}[a]=0 \in H_{i}(B)$
$\Leftrightarrow i(a)=d b$ for some $b \in B_{i}$ as $\quad(i(a)) y=0$ so $i(a)=d b$. for $B \in B i$
$\Leftrightarrow[a]=\partial[c]$, where $c=\pi(b)$ by constinution of ∂.
$\Leftrightarrow \quad[a] \in i m d$.
L exact ness at $\quad H i(B)$ wTs $\operatorname{ker}\left(\pi_{*}\right)=1 m\left(i_{*}\right)$
let $[b] \in \operatorname{lm}(i k)$ so $\exists a \in A i$, $i(a)=b$ exactnes: $\pi(b)=0 \in C$
So $\pi, b=0 \in H_{i+1} C \quad[b]$ Eker $\left(\pi_{t}\right)$
\rightarrow exautnes at $H_{i}(c)$ wis $\operatorname{ker}(\partial)=\left(m\left(\pi_{*}\right)\right.$
let $[c] \in i m\left(\pi_{*}\right)$ so $\pi_{*}([b])=[c]$ for some $b \in B_{i}$
$\pi b=c$ for some $\quad \Rightarrow \exists a, \dot{7}(a)=d b$.
$[c]=\partial[a]$ as construction above.
cordlany Apply snake lem to pair of spaces

$$
H i+1(X, A)
$$

$$
H_{i}(A) \xrightarrow{i k} H_{i}(x) \xrightarrow{\pi} H_{i}(x, A)
$$

Plop Write $H_{i}(X, P)$ in tans of $H_{i}(x)$
Les of ($x, 1 p i$) is:

Let $H_{i}(i p h)= \begin{cases}0 & i \neq 0 \\ \mathbb{Z}_{1} & i=0, \text { gen. by }\left[\sigma_{p}\right]\end{cases}$
$\left.\operatorname{Hifl}_{1}(x) \cong \operatorname{Hich}^{(x, \text {, ph }}\right)$

$$
H_{i}(\{p\})^{=0} \longrightarrow H_{i}(x) \longrightarrow H_{i+1}(x, 1 p h)
$$

note that i* $\left(\left[\sigma_{p}\right]\right)=\left[\sigma_{p}\right] \neq 0$ in $H_{o}(x)$
So infusive so map $j=0$

$$
\begin{array}{r}
\stackrel{d=0}{\mathbb{L}} \rightarrow H_{0}(x) \rightarrow H_{0}\left(x_{1}|p|\right) \rightarrow 0 \\
A
\end{array}
$$

week 2 lee 3

Real that $H_{*}(x)= \begin{cases}\left.H_{*}(x, 1 p\}\right) & x \neq 0 \\ \left.H_{0}(x,<p\}\right) \oplus \mathbb{Z} & x=0\end{cases}$
But we claim $\left.\left.\tilde{H}_{x}(x)=H_{*}(x\} p,\right\}\right) \quad \forall *$.
Proof: define $\tilde{C_{i}}(x, p)={\tilde{C_{x}}}_{x}(x) \mid \tilde{C}_{x}(p)$

$$
\begin{aligned}
& \simeq C_{x}(x) \int(x \mid p) \\
& =C x(x, p)
\end{aligned}
$$

$$
\Rightarrow \tilde{H}_{k}(x, p)=H_{*}(x, p)
$$

get SES $0 \rightarrow \tilde{C}_{x}(p) \rightarrow \tilde{C}_{*}(x) \rightarrow \tilde{C}_{*}(x, p) \rightarrow 0$
snake lemagies horwinge
$\begin{array}{lll}11 & \tilde{H_{x}}(x) \cong \tilde{H}_{x}(x, p) & 11\end{array}$
So $\tilde{H}_{*}(x) \cong \tilde{H_{t}}(x, p) \cong H_{+}(x, p)$

Subduision (mainy used to show MUS)
detn $C_{k}^{u}(x)$
let $\left\{u_{\alpha} \mid a \in A\right\}$ be an oper care of x.
$C_{k}^{u}=\left\{\sigma: \Delta^{k} \rightarrow x\right.$ st. $\sigma\left(\Delta^{k}\right) \subset u_{a}$ for sone $\left.\alpha\right\}$.
pop. $\left(C_{k}^{u}(x), d\right)$ is a subcomplex
let $\sigma \in C_{k}^{u}(x)$ so im $(\sigma) C U_{\alpha}$ for sone α. Ther, $d \sigma=\sum_{i=0}^{k} \sigma 0 F_{\hat{i}}$ also has inage inva. So it's a subcomplex.
thm Subdiusion Lema
Let $i: c_{k}^{u}(x) \hookrightarrow c_{k}(x)$ be inclsion
thm states that if u is an open care for x, we hare
$i_{*}: H_{k}^{u}(x) \rightarrow H_{k}(x)$ is an isomerphious
Prouf is Jkipped in clas) \because
maybe tale a look of proof iden?
det. Mayer vietoris sequane - commutative diagrom of inelesias
suppore $u_{1}, u_{2} \subset X_{1}$ and $X \subset \cup_{1} \cup U_{2}$, get $\left\{u_{1}, u_{2}\right\}$ is an open cover of X.
Hare commutation diagram of ineluas)

$$
\underset{i_{2}}{\dot{i}_{1} \cap u_{1} \stackrel{j_{1}}{j_{1}} u_{2} u_{1} \cup u_{2} \quad \text { hare } \quad j_{1} \cdot \dot{i}_{1}=j_{20} \cdot i_{2}}
$$

Pop The MVS SES
the below chain complex is a sES

$$
\begin{equation*}
0 \longrightarrow c_{*}\left(u_{1} \cap u_{2}\right) \stackrel{i}{\longrightarrow} c_{*}\left(u_{1}\right) \oplus C_{*}\left(u_{2}\right) \xrightarrow{j} C_{*}\left(u_{1} v u_{2}\right) \longrightarrow 0 \tag{3}
\end{equation*}
$$

where $i=\left[\begin{array}{l}i_{1} \neq \\ i_{2} \#\end{array}\right] \quad j=\left[j_{1 \text { 米 }}-\dot{j}_{\text {24 }}\right]$

WTS exact at (1), (2), (3)
(1) Show i is injective note that both $i_{1} \neq C_{*}\left(U_{1} \cap U_{2}\right) \subseteq C_{*}(U)$ are ingatice
$i_{2} \#: C_{*}\left(U_{2} \cap v_{2}\right) \subseteq C_{r}\left(v_{2}\right)$
so $\left[\begin{array}{l}i_{1 \#} \\ i_{2} \#\end{array}\right]$ is injective
(2) Show that j is surjectire
let $c \in C_{*}^{u}\left(v_{1} \cup v_{2}\right)$ (isomarphic to $C^{u}\left(U_{1} \cup v_{2}\right)$
So $\quad C=\sum_{i} a_{i} \sigma_{i}+\sum_{j} b_{j} z_{j}$ where im $\sigma_{i} \subset U_{1}$) im $z_{j} \subset U_{2}$
Write $\quad a=\sum_{i} a_{i} \theta_{i}, \quad b=\sum_{j} b_{j} z_{j}$
then, $\left(a_{1}-b\right) \in C_{*}\left(a_{1}\right) \oplus C_{+}\left(u_{2}\right)$ is the elenet s.t $J\left(a_{1}-b\right)=a \neq b=C$.
So j is surjective.
(3) show that af (2) is exact.

WTS $\quad \operatorname{lm}(i)=\operatorname{ker}(y)$
$m(i) \subset \operatorname{ker}(j)$ becure that the diagram commtes.
$m(i)>\operatorname{ker}(j)$ let $\left(a_{1} b\right) \in \operatorname{ker}(j)$ write $\left\{\begin{array}{l}a-\sum_{i} a_{i} \sigma_{i}, \quad \operatorname{m}\left(\sigma_{i}\right) c u_{1} \\ b=\sum_{j} b_{j} z_{j}, \quad \mid m\left(z_{j}\right) c u_{2}\end{array}\right.$
L the $a_{i s}, b_{j s}$, ois, zjs pw. distinet
so $a \in C_{x}\left(u_{1}\right) \quad b \in C_{x}\left(u_{2}\right)$
$\dot{j}(a, b)=0 \Leftrightarrow j_{1 A}(a)=\dot{j} 2 \neq(b)$ so $\sum a_{i} \theta_{i}=\sum b_{j} z_{j}$ so rearrengiy reples that $a_{i}=b_{j}, \gamma_{i}=u_{j} \quad \operatorname{im}(a) \subset u_{1} \cap u_{2}, \quad \operatorname{mn}(b) \subset u_{i n} u_{2}$.
$\Rightarrow C=\sum a_{i} \theta_{i} f\left[\left(u_{1} a_{2}\right)\right.$, so $\left(a_{1} b\right) \in \operatorname{lm}[\bar{i})$ so $\mathrm{kor} j=(\mathrm{mi}$.
Cor MVS SES \rightarrow Snake Semma \rightarrow MVS
$U_{1}, U_{2} C x$ and $u_{1} \cup U_{2}=x$, ther's a LES

$$
H_{i}\left(u_{1} \cap u_{2}\right) \xrightarrow{\dot{\tau}} H_{i}\left(u_{1}\right) \oplus H_{i}\left(u_{2}\right) \xrightarrow{\stackrel{j}{\rightarrow}} H_{i}\left(u_{1} \cup u_{2}\right) \xrightarrow{\partial} H_{i-1}\left(u_{1} \cap u_{2}\right)
$$

Proof : By molucties $n \quad n$
Base case: $n=0$

$$
\begin{aligned}
S^{0}=\left\{-1,+14 . \quad H_{x}\left(S^{0}\right)\right. & =H_{*}\left(\{-14) \oplus H_{x}(\{+1\})\right. \\
& =\left\{\begin{array}{cl}
\mathbb{Z} \oplus \mathbb{Z} & \text { if } x=0 \\
0 & \text { if } * \neq 0
\end{array} \Rightarrow H_{0}\left(S^{0}\right)=\mathbb{Z}\right.
\end{aligned}
$$

$$
\text { Recall } \quad H_{0}(x)= \begin{cases}H_{x}(x, p) \quad i \neq 0 & =\widetilde{H_{*}}(x) \\ H_{0}(x, p) \otimes \mathbb{Z} \quad i=0 & =\widetilde{H_{0}}(x)\end{cases}
$$

inductive step: $n>0$
compute $\mathrm{H}_{7}\left(S_{n}\right)$
write $\delta_{n}=u_{t} \cup u_{-} \quad u_{t}=S^{n} \backslash\left\{(1,0, \cdots\right.$ os $\} \cong D^{n}$

$$
\begin{aligned}
u_{-} & \left.=S^{n} \backslash\{-1,0, \cdots-0)\right\} \cong D^{n} \\
u_{+} \cap u_{-} & =S^{n} \backslash\{(1,0, \cdots 0),(-1,0, \cdots 0)\} \cong I \times S^{n-1} \sim S^{n-1}
\end{aligned}
$$

By MV:

$$
\begin{aligned}
& \widetilde{H_{i}}\left(u_{+} \cap u_{-}\right) \longrightarrow \widetilde{H_{i}}\left(u_{+}\right) \oplus \widetilde{H_{i}}\left(u_{-}\right) \rightarrow \widetilde{H_{i}}\left(u_{+} \cup u_{-}\right) \\
& \widetilde{H_{i}}\left(S^{n-1}\right)
\end{aligned}
$$

So $\tilde{H_{i+1}}\left(s^{n}\right)=\widetilde{H_{i}}\left(s^{n-1}\right)$

$$
\tilde{H}_{*}\left(s^{n}\right)= \begin{cases}z & \text { if } x=n \\ 0 & \text { ow. }\end{cases}
$$

deft. notation we can generate $H_{n}\left(S^{n}\right)$ by $\left[S^{n}\right]$

$$
p=u_{+} \cap u-\rightarrow s^{n-1} \quad\left(x_{1}, \cdots x_{n+1}\right) \mapsto\left(x_{2},-x_{n-1}\right) \Rightarrow p_{x} d\left[S_{n}\right]=\left[S_{n-1}\right]
$$

reek 3 lecture 1
Lemma: turn 2 SES into 2 LES
suppose that we hare a conntiy diagram of chain $c x s$, chain maps, rows are SES.

fore you got a commuting diagram of LES

Proof: Prose the commutativity of red square.
let $[c] \in H_{i}(c)$ so $d c=0$.
L first find a ib. π surjective, $b \in B$, have $\pi(b)=C . \quad \pi d b=d \pi b=d(c)=0$ so $\quad d b \in k e=\pi=1 m(i)$ So $\exists a \in A, \quad i(a)=d b$. Set $\partial[c]=[a]$.

Lo let $a^{3}=f_{A}(a), \quad b^{\prime}=f_{B}(b), \quad c^{\prime}=f_{c}(c)$
4 show $\pi^{\prime}\left(b^{\prime}\right)=c^{\prime}$
indeed $\pi^{\prime}\left(b^{\prime}\right)=\pi^{\prime}\left(f_{B}(b)\right)=f_{c}(\pi(b))=f_{C}(C)=c^{\prime}$
Lo show $i^{\prime}\left(a^{\prime}\right)=d b^{\prime}$
Index, $i^{\prime}\left(a^{\prime}\right)=i^{\prime}\left(f_{A}(a)\right)=f_{B}(i(a))=f_{B}(d b)=d f_{B}(b)=d b^{\prime}$
4 so to find $\delta\left(\left[c^{\prime}\right]\right)$, have b^{\prime} for $c^{\prime}=\pi^{\prime}\left(b^{\prime}\right)$ and $i^{\prime}\left(a^{\prime}\right)=d b^{\prime}$ so that $\delta\left(\left[c^{\prime}\right]\right)=\left[a^{\prime}\right]$.
Lo then, $\quad \partial^{\prime} f_{C *}[C]=\partial^{\prime}[c]=\left[a^{\prime}\right]=\left[f_{A}(a)\right]=f_{A} * \partial[c]$.
so the square comets

Proof scheme

$$
\begin{aligned}
& \rightarrow A \rightarrow B \rightarrow C \rightarrow \\
& \rightarrow V^{\prime} \rightarrow B^{1} \rightarrow C^{\prime} \rightarrow
\end{aligned} \quad \text { get } \quad \begin{gathered}
H(B) \rightarrow H(C) \xrightarrow{d} \rightarrow H(A) \\
\\
\\
\\
\\
\end{gathered}
$$

Set $\partial[c]=[a]$
L Show $\pi^{\prime}(b)=C^{\prime}$ and $i^{\prime}(a)=d b^{\prime}$
$L \circ \partial^{\prime}\left[c^{\prime}\right]=[a '] \Rightarrow$ comma.
Idea: look at the other unprorn boxes.

Example two short MVS into tho long MVS
let $f: x \rightarrow 4$ with $y=u_{1} \cup u_{2}, u_{1}, u_{2}$ open.
then, $\quad v_{1}=f^{-1}\left(u_{1}\right), v_{2}=f^{-1}\left(u_{2}\right)$ and $x=V_{1} \cup V_{2}$. Then $f \#$ indues

$$
\begin{array}{rlrl}
0 \rightarrow C_{*}\left(v_{1} \cap v_{2}\right) & \rightarrow C_{*}\left(v_{1}\right) \oplus c_{*}\left(v_{2}\right) & \rightarrow c_{*}^{v}\left(v_{1} \cup v_{2}\right) & \downarrow 0 \\
\downarrow f_{*} & \downarrow f_{\#} \\
0 \rightarrow C_{*}\left(v_{1} \cap v_{2}\right) & \rightarrow c_{*}\left(u_{1}\right) \oplus C_{*}\left(v_{2}\right) & \rightarrow C_{*}^{u}\left(u_{1} \cup v_{2}\right) \rightarrow 0
\end{array}
$$

then, we can get the LES of this above using the above pops.

Prop: $\quad r_{n+}: \tilde{H}_{n}\left(S^{n}\right) \rightarrow \tilde{H_{n}\left(S^{n}\right)} \begin{gathered}1 S^{n} \\ \left\langle\left[S^{n}\right]\right\rangle \\ \left\langle\left(S^{n}\right]\right\rangle\end{gathered}$ is defined by $\left[s^{n}\right] \rightarrow-\left[s^{n}\right]$.

$$
\begin{aligned}
& r n=s^{n} \rightarrow s^{n} \\
& \left(x_{1}, x_{2}, \cdots, x_{n+1}\right) \mapsto\left(x_{1}, \cdots x_{n},-x_{n+1}\right) \quad s^{n}=u_{+} v v_{-}, r: u_{f} \rightarrow u_{+}, u-u_{-}
\end{aligned}
$$

Proof: induction on n :

$$
\begin{array}{ll}
n=0, \quad\left[s^{0}\right]=\left[\sigma_{1}-\sigma_{-1}\right] \quad \sigma_{1}-\sigma_{-1}+\operatorname{ker}(d) \\
& r_{0 *}\left[s^{\circ}\right]=r_{0}\left[\frac{\left.\sigma_{1}-\sigma_{-1}\right]}{}\right]=\left[-\sigma_{1}+\sigma_{-1}\right]=-\left[s^{\circ}\right] .
\end{array}
$$

$n>0$.
now, consider the map frat r_{n} indues on $\left(S_{1}^{n}, u_{t}, u_{-}\right)$
fir SES is:

$$
\begin{aligned}
& 0 \rightarrow \tilde{C}_{*}\left(u_{+} \cap u_{-}\right) \rightarrow \tilde{C_{*}}\left(u_{+}\right) \oplus \tilde{C}_{*}\left(u_{-}\right) \rightarrow \widetilde{C_{*}}\left(u_{+} u^{u_{-}}\right) \rightarrow 0
\end{aligned}
$$

get the LES by the above puposition

$$
\begin{aligned}
& \rightarrow \tilde{H_{i}}\left(u_{+}\right) \oplus \tilde{H}_{i}\left(u_{-}\right) \rightarrow \widetilde{H_{i}}\left(u_{+}+u_{-}\right) \stackrel{\cong}{\partial} \widetilde{H}_{i-1}\left(u_{+} \cap u_{-}\right) \rightarrow \widetilde{H}_{i-1}\left(U_{+}+\right)^{(1)} \tilde{H}_{i-1}\left(U_{-}\right) \rightarrow
\end{aligned}
$$

insider $p: u+n u-\rightarrow s^{n-1}$

$$
\left(x_{1}, \cdots x_{n+1}\right) \mapsto\left(x_{2}, \cdots, x_{n+1}\right)
$$

has $p_{0} r_{n}=r_{n-1} 0 p . \quad$ (fly plost, cut $1^{\text {st }}$ vs cut $1^{\text {st }}$, flip $2^{\text {ad }}$ last)
so pelted it to

$$
\begin{aligned}
& \widetilde{H_{i}}\left(u+u u_{-}\right) \xrightarrow{\frac{\partial^{n}}{\rightarrow}} \widetilde{H}_{i-1}\left(u_{+} \cap u_{-}\right) \xrightarrow{s^{n-}} \xrightarrow{\sim} H_{i-1}\left(s^{n-1}\right)
\end{aligned}
$$

cor. let $r \in S^{n}$, let $r_{V}: S^{n} \rightarrow S^{n}$ be refection across the plane 1 to U.

$$
\Rightarrow \quad r_{v *}\left(\left[S^{n}\right]\right)=-\left[S^{n}\right]
$$

$(0,0,-, 0,1)$
Proof: S^{n} is P.C. If δ is path from r to $e_{n+1}, V_{j(v)}$ is a
homotopy foo for so r_{v} to $r_{\text {ens }}=r_{n}$. so $r_{n *}$.

Excision + Collapsing of a pair
def. Deformation retrout
let $A \subset Z$ then A is a dir. of Z if $\exists p:(Z, A) \rightarrow(Z, A)$
ShA. $\quad P_{0} \dot{i}:(A, A) \longrightarrow(A, A)=\mid(A, A) \quad \quad i=(A, \mid) \rightarrow(X, A)$ is inching

$$
\text { Top: }(Z, A) \rightarrow(Z, A) \underset{\sim}{\sim} I_{(Z, A)}
$$

homutopy map of pairs

$$
\Rightarrow Z \sim A .
$$

def geod pair
let (X, A) be pair of spaces. It's a geod pair if $\exists V C X$ open s.l. (U, A) is a dir.

e.g. Submanifod is a geod pair but \mathbb{Z}, Q is not.

Thu The geod pair isomorphism
Suppose (X, A) is a geod pair, $\pi:(X, A) \rightarrow(X / A, A / A)$ then

$$
\begin{array}{r}
\pi_{x}: H_{t}(X, A) \rightarrow H_{t}(X A A, A / A) \cong \tilde{H}_{*}(X / A) \quad \text { is ain isomorphism } \\
\text { b/c } H_{x}(X, \mid P Y)=\tilde{H}_{*}(X)
\end{array}
$$

Example 1 of computing using geod pair how.

$$
x=s^{2}, \quad A=3 n, s 4 . \quad z=X \angle A
$$

Tum states $H(X, A)=H(X / A, A(A)=\tilde{H}(X / A)$

so, using LES, get
note LES of pair works on all $\sim\left(w_{y}\right)$

$$
\tilde{H}_{0}(A) \rightarrow \tilde{H}_{4}(X) \rightarrow \widetilde{H}_{0}(X, A) \rightarrow 0
$$

map is 0
so $\quad H_{4}(z)=H_{f}(X / A) \cong H_{t}(X, A) \cong \tilde{H}_{*}(x, A)= \begin{cases}Z & \text { if } *=1,2 \\ 0 & \text { ow. }\end{cases}$
Ex. $Y=s^{\prime} \times s^{\prime}, \quad B=s^{\prime} \times 1$

hon equiv to Z inexl.
we know $H_{\&}(B), H_{2}(Y, B) \cong H_{*}(Z)$, wis $H_{*}(Y)$.
two Steps

1) Show $\dot{\tau}_{1} *: S^{\prime} \rightarrow S^{\prime} \times S^{\prime}$ is injective (Which helps with computation for LES)
2) show that $Y / B \subseteq Z$.
3) let $\left\{\begin{array}{r}\dot{\tau}_{1}: s^{\prime} \rightarrow s^{\prime} x s^{\prime} \\ x \mapsto(x, 1) \\ \dot{z}_{2}: s^{\prime} \rightarrow s^{\prime} x s^{\prime}\end{array}\right.$

$$
\begin{aligned}
& \tilde{H}_{1}(A) \rightarrow \tilde{H}_{1}(x) \rightarrow \tilde{H}_{1}(x, A)
\end{aligned}
$$

using LES of pair $\quad H_{x}\left(T^{2}\right)$. have $0 \rightarrow C_{*}(B) \rightarrow C_{*}\left(T^{2}\right) \rightarrow \operatorname{Gr}_{*}\left(T^{2} / B\right) \rightarrow 0$

So breakup into two

$$
\begin{aligned}
& 0 \rightarrow \tilde{H}_{2}\left(T^{2}\right) \rightarrow \mathbb{Z} \rightarrow 0 \\
& =\mathbb{Z} \\
& 0 \rightarrow \mathbb{Z} \rightarrow \tilde{H_{1}\left(T^{2}\right)} \rightarrow \mathbb{Z} \rightarrow 0 \\
& =\mathbb{Z} \oplus \mathbb{Z}
\end{aligned}
$$

so $\quad \tilde{H}_{i}\left(T^{2}\right)=\left\{\begin{array}{ll}\mathbb{z} & i=2 \\ z^{2} & i=1 \\ 0 & 0 . w .\end{array} \quad\right.$ or $\quad \tilde{H}_{i}\left(T^{2}\right)= \begin{cases}\mathbb{z} & i=0,2 \\ z^{2} & i=1 \\ 0 & 0 . w .\end{cases}$
week 3 lecture 2
tom: the fire lemma Whelps to prove excision).
Gives commutative diagram of R modules.

1) each row are exact
2) $f_{i \pm 1}$, fits are so

$$
\begin{aligned}
& \rightarrow A_{i-2} \rightarrow A_{i-1} \longrightarrow A_{i} \rightarrow A_{i+1} \rightarrow A_{i+2} \longrightarrow \\
& \downarrow f_{i-2} \quad \|_{i-1} \quad f_{i} \quad f^{f_{i+1}} \quad \downarrow f_{i+2} \\
& \longrightarrow \mathrm{Bi}_{\mathrm{i}} \longrightarrow \mathrm{Bi}_{i-1} \longrightarrow \mathrm{Bi}_{i} \longrightarrow \mathrm{Bi}_{i+1} \longrightarrow \mathrm{Bi}_{i+2} \longrightarrow
\end{aligned}
$$

def $C_{*}^{u}(x, A)$
let $u=\left\{u_{j} \mid j \in J\right\}$ be an open cow for X.
then If $A \subset X_{1}, u_{A}=\left\{v_{j} \cap A \mid j \in J\right\}$ is an open cover of A. and $C_{x}^{u_{A}}(x) \subset C_{F}^{u}(x)$
define $C_{x}^{u}(x, A)=C_{x}^{u}(x) / C_{x}^{u}(x)$
the map $i: C_{t}^{n}(x) \rightarrow C_{r}(x)$
indues $i: C_{x}^{n}(X, A) \rightarrow C_{*}(X, A)$
lemma: $\dot{\tau}_{x}: H_{x}^{u}(X, A) \dashv H_{x}(X, A)$ is an isomorphism moues by $i: C_{x}^{u}(X, A)+C_{x}(X, A)$
we hare

$$
\left.\begin{array}{rlr}
0 & \rightarrow C_{x}^{u}(A) & \longrightarrow C_{*}^{u}(x) \\
\downarrow^{i} & \downarrow^{i} & C_{x}^{u}(x, A)
\end{array}\right) \not \downarrow^{i}
$$

so we get commaty diagram of LES

$$
\begin{aligned}
& \rightarrow H_{x}^{u}(A) \rightarrow H_{x}^{u}(x) \rightarrow H_{x}^{u}(x, A) \rightarrow H_{*-1}^{u}(A) \rightarrow H_{x}^{u}(C) \longrightarrow \\
& \downarrow^{i x} \quad \downarrow_{i c} \quad \downarrow^{\text {ix }} \quad \downarrow^{\text {ix }} \quad \downarrow^{\text {ix }} \quad \text { pink are iso } \Rightarrow \text { the is iso. } \\
& \rightarrow H_{x}(A) \rightarrow H_{x}(x) \rightarrow H_{x}(x, A) \rightarrow H_{*-1}(A) \rightarrow H_{x}(C) \longrightarrow
\end{aligned}
$$

Tum (Excision)
Suppose $B C A C X$ and $\bar{B} \subset \inf (A)$. Letting $\dot{j}:(x-B, A-B) \rightarrow(x, A)$ hare
$j_{x}: H_{x}(x-B, A-B) \rightarrow H_{x}(x, A)$ is an \cong
Proof: $\quad x$ note that $U=\{\operatorname{int}(A), X-\bar{B}\}$ is an op. col. for x.
notation: If $\sigma: \Delta^{k} \rightarrow x$, write $\sigma \Delta u$ if $\operatorname{im} \sigma c u_{j}$ for sene j.
then $c_{x}^{u}(x)=\langle\sigma \mid \sigma \Delta u\rangle$

$$
\begin{aligned}
& =\langle\sigma \mid \operatorname{im}(\sigma) \cap B=\phi\rangle \oplus\langle\sigma \mid \operatorname{m}(\sigma) \cap B \neq \phi\rangle \\
& \left.=C_{*}^{4}(X-B) \oplus M_{B} \quad M_{B}=\langle\sigma| \text { imp }(\sigma) \subset A \text { and in }(\sigma) \cap B \neq \phi\right\rangle .
\end{aligned}
$$

Smilary: $\quad C_{*}^{u_{A}}(A)=C_{t}^{u}(A-B) \oplus M_{B} \mid$ either imp) $C x-B$ or

$$
(m(\sigma) \nsubseteq x-B
$$

$$
\begin{gathered}
\exists x \in \lim (\sigma) \text { st. } x \notin X-B \text { so }(m(0) \cap B \neq \varnothing \\
\Rightarrow x \in B
\end{gathered}
$$

note: If $c^{\prime} \subset C$, then the inulin is an iso

$$
\frac{c}{c^{\prime}} \rightarrow \frac{C \oplus M}{C \oplus M} \text { is an iso }
$$

$$
u \leq x-\bar{B} \subseteq \times B \text { so } \quad(m(\sigma) \cap B=\phi \text {. }
$$

so that $\begin{aligned} C & =C_{*}^{u}(x-B) \\ C^{\prime} & =C_{*}^{u_{A}}(A-B)\end{aligned}$ then $g_{H}: \frac{C_{x}^{u}(x-B)}{C_{*}^{u_{A}}(A-B)} \rightarrow \frac{C_{x}^{u}(x B) \oplus M_{B}}{C_{x}^{u_{A}}(A-B)\left(O M_{B}\right.}=\frac{C_{x}^{u}(x)}{C_{x}^{u_{A}}(A)}$ is an iso
so $j \neq H^{(} C_{x}^{u}(x-B, A-B) \rightarrow C_{*}^{u}(x, A)$ is an iso
$j^{*}: H_{*}^{u}(K B, A-B) \rightarrow H_{x}^{u}(x, A)$ is an iso (becure H departs on C)
now, $\quad H_{*}^{u}(x-B, A-B) \xrightarrow{j x^{n} z} H_{*}^{u}(x, A)$
By our prev comma, which is

$$
\downarrow^{i_{*}} \downarrow^{Z_{k}}
$$ equal to fire lemma + subdiv lemma.

$$
H_{*}(x-B, A-B) \xrightarrow[4]{\stackrel{j^{k}}{4}} H_{x}(x, A)
$$

here, $j_{*}: H_{x}(X-B, A-B) \rightarrow H_{r}(X, A)$ is an iso,

Proof scheme:
Lots: $H_{4}(X-B, A-B) \cong H_{4}(X, A)$ when $B C A C X, \overline{B C i n t}(A)$
4 note that $u=\{\ln t(A), x-\bar{B})$ is an open cover
4 wite $\left.\quad c_{x}^{u}(x)=C_{x}^{u}(x-B) \oplus N_{B} \quad\right\} \quad c \subset c^{\prime} \Rightarrow \frac{C^{\prime}}{C} \cong \frac{C^{\prime} \oplus M_{B}}{C \oplus M_{B}}$

$$
\begin{aligned}
& C_{*}^{u}(A)=C_{k}^{u}(A-B) \oplus M_{B} \\
& 4 \quad \frac{C_{f^{u}}^{u}(x-B)}{C_{x}^{u}(A-B)} \cong \frac{C_{x}^{u}(x)}{C_{x}^{u}(A)} \\
& \left.\left.4 \quad C_{*}^{u}(x-B, A-B) \cong C_{x}^{u}(X, A) \Rightarrow \text { use lemma, get } \quad H * C\right) \cong H+C\right)
\end{aligned}
$$

Prop (LES of a triple)
Suppose $x<y c z$ then there's a LES: to reenter, each $(a, b) c(c, d) a c c, b c d$.

$$
H_{*}(y, x) \stackrel{\dot{j}_{1}^{*} *}{\rightarrow} H_{*}(z, x) \stackrel{j_{2}+*}{\longrightarrow} H_{k}(z, y) \xrightarrow{\partial_{0}} H_{z-1}(\quad) \rightarrow \ldots
$$

proof group theory says below is a SES

$$
\begin{aligned}
& 0 \rightarrow \frac{C_{k}(y)}{C_{*}(x)} \rightarrow \frac{C_{x}(z)}{C_{*}(x)} \rightarrow \frac{C_{*}(z)}{C_{*}(Y)} \rightarrow 0 \rightarrow C_{E}(Y / A \\
& 0 \rightarrow C_{k}\left(Y_{1} x\right) \rightarrow C_{k}\left(Z_{1} x\right) \rightarrow C_{k}\left(Z_{1}, y\right) \rightarrow 0
\end{aligned}
$$

then use snake lemma to get the result.
lemma: detormaties refraction induces iso on homology.
let A be a dir. of U. let $i:(x, A) \rightarrow(X, u)$ be the inclusion map.
then i* $H_{*}(X, A) \rightarrow H_{+}(X, U)$ is an iso.
Proof. using LES of (U, A) then LES of triple (x, U, A).

$$
\ldots \longrightarrow H_{x}(A) \underset{=}{\underset{=}{i v}} H_{*}(u) \stackrel{f_{*}}{\longrightarrow} H_{r}\left(u_{1} A\right) \stackrel{g_{*}}{g_{x-1}(A)} \underset{\cong}{i_{*}} H_{x-1}(u) \rightarrow \ldots
$$

$\left.\operatorname{ker}\left(f_{*}\right)=\min \left(H_{*}\right)=H_{x} / u\right)$ so f_{x} is the 0 map.
$\operatorname{lm}\left(g_{*}\right)=\operatorname{ker}(i f)=0$ so g_{*} is the 0 map.
$\Rightarrow f_{x}, g_{x}$ are the 0 map, so $H_{*}(u, A) \simeq 0$

$$
\begin{aligned}
& (x, u, A) \quad A C U C X
\end{aligned}
$$

$$
\begin{aligned}
& \text { So } H_{F}(X, A) \cong H_{x}(X, U)
\end{aligned}
$$

def good pair:

$$
(X, A) \text { is good pair if }\left\{\begin{array}{l}
\exists u \subset x \text { open } \\
\bar{A} \subset U \\
A \text { is a d.r. of } U .
\end{array}\right.
$$

excisien is inclisios $\quad H_{*}(X-B, A-B) \xrightarrow{i \pi} H_{*}(X, A)$
collapsing is quotient $H_{r}(X, A) \xrightarrow{\pi_{r}} H_{*}(X A, A / A)$ thm collapsing of a pair.

$$
\widetilde{H}_{2}(X / A)
$$

suppose (X, A) is a good pair, and let $\pi_{*}: H_{*}(X, A)-H_{*}(X / A, A / A)$ is an iso.

Proet iden: extend the comntatice dlagren dounwardS

$$
\begin{aligned}
& H_{*}(X-A, U-A) \xrightarrow{\dot{j}_{*}} H_{*}(x, u) \stackrel{i_{*}}{\underbrace{i}} H_{*}(X, A) \\
& \dot{J}_{s}, i_{s}, \pi s, \quad \text { exision } \Rightarrow \cong \text { d.r. } \Rightarrow \cong \\
& \text { Proef: } H_{*}(x-A, U-A) \stackrel{\dot{J}^{*}}{\longrightarrow} H_{*}(x, U) \xrightarrow{\text { i* }} H_{*}(x, A)
\end{aligned}
$$

$$
\begin{aligned}
& \text { excisios } \Rightarrow \cong \quad \text { d.r. } \Rightarrow \cong
\end{aligned}
$$

π_{1} is a homeo $\Rightarrow \pi_{2}$ is $\Rightarrow \pi_{3}$ is.
$\pi_{1}:\left(X-A_{1} U-A\right) \rightarrow(X / A-A / A, U / A-A / A)$ is a homeo. youlcan reeor LHS fron RHS.
bet. Manifold
A space X is a manifold if it's

1) metrisable (Hausdorff, Seced comntable)
2) ever $x \in X$ has un open nbhd $u_{x} \simeq \mathbb{R}^{n}$
thm $H *$ of manifold If x is a manis and $x \in X$ then $H_{*}(X, X-x)= \begin{cases}\mathbb{Z} & *=n \\ 0 & 0 . w .\end{cases}$

Proof scheme: - use excision: $\Rightarrow H_{*}(x, x-1 p 4) \cong H_{x}\left(D^{n}, D^{n}-l P h\right)$

- Use LES of pair to fid att what RHS really is.

Poof. Pick $U_{x} \subset x$ as above, then $U_{x} \cong \mathbb{R}^{n} \quad D^{n} \subset \mathbb{R}^{n} \cong U_{x} \subset x$

$$
x \mapsto 0
$$

By excision, $\left(B C A C X, \bar{B} C \inf (A) \Rightarrow H_{k}(X-B, A-B) \rightarrow H_{k}(X, A)\right.$ is \cong

$$
\begin{aligned}
A & =x-\{p\} \\
B & =x-D^{n} \\
\Rightarrow \quad H_{*}\left(D^{n}, D^{n}-p\right) \rightarrow H_{*}(x, x-\{p q) \text { is } & =
\end{aligned}
$$

le. excision with $\left\{\begin{array}{l}X=x \\ A=x-L P 4 \\ B=x-D^{n}\end{array}\right.$
get $H_{*}(x, k p) \cong H_{*}\left(D^{n}, D^{n}-1 p i\right)$

$$
\cong H \times\left(D^{n}, S^{n-1}\right)
$$

use LES of pair on $H_{*}\left(D^{n}, S^{n-1}\right)$, and using \tilde{H}_{*}, and note $\tilde{H}_{x}\left(D^{n}\right)=0$

$$
\underset{=0}{\tilde{H}_{*}\left(D^{n}\right)} \stackrel{\pi_{*}}{\xrightarrow[H]{H}}\left(D^{n}, S^{n-1}\right) \xrightarrow{\check{\partial}} \tilde{H_{x-1}}\left(S^{n-1}\right) \xrightarrow{i} \tilde{H}_{k-1}^{\sim}\left(D^{n}\right)
$$

So $\begin{array}{ll} & \tilde{H_{0}}\left(D^{n}, S^{n-1}\right) \\ & H_{*}\left(D^{n}, S^{n-1}\right)\end{array} \begin{cases}\mathbb{z} & *=n \\ 0 & 0 . w .\end{cases}$

Cor if M^{m}, N^{n} are m and n manifolds and $M \cong N$ then $m=n$.
week $3 \operatorname{lec} 3$
(II) Cellular homology.
recall $\quad H n\left(S^{n}\right) \cong \mathbb{Z}$ generated by $\left[S^{n}\right]$.
then, if $f: S^{n} \rightarrow S^{n}$ has $f_{*}:\left[S^{n}\right] \mapsto k\left[s^{n}\right] k \in \mathbb{Z}$, then its degree is k.

Properties

1) $\operatorname{deg}(\operatorname{ls} n)=1$,
2) $\operatorname{deg}(f \circ g)=(\operatorname{deg} f)(\operatorname{deg} g)$
3) $f_{0} \sim f_{1} \Rightarrow \operatorname{deg}\left(f_{1}\right)=\operatorname{deg}\left(f_{0}\right)$
4) $f: S^{n} \xrightarrow{\sim} S^{n}$ then $\operatorname{deg}(f)=\left\{\begin{array}{ccc}1 & \text { orientation preserving } \\ \text { or } & \text { orientation revising }\end{array}\right.$
5) If $r_{*}: s^{n}+s^{n}$ is reflection v^{\perp}, 并 $r_{v}=-1$
6) If $A: S^{n}+S^{n}$ antipodal map, then $\operatorname{deg}(A)=(-1)^{n+1}$ cor: Antipodal map $\psi 1 s^{n}$ if n even.

Local degree
If $p \in S^{n}, S^{n}-p \cong D^{n}$ which is contractible
then, $\pi_{*}: H_{n}\left(s^{n}\right) \rightarrow H_{n}\left(s^{n}, s^{n}-p\right)$ is \simeq for $n \geqslant 1$.
de tn: $\left[s^{n}, s^{n}-p\right] \&[u, u-p]$
define $\left.t s^{n}, s^{n}-p\right]$ by $\pi_{*}\left[s^{n}\right]=\left[s^{n}, s^{n}-p\right]$: elemart in $H_{n}\left(s^{n}, s^{n}-p\right)$ induced by $\pi_{*}\left[s^{n}\right]$.
Similarly if $u \subset S^{n}$ is open, if $p \in U$, let $B=S^{n} \backslash u$, B is closed.
$\bar{B} \subset\left(n+\left(s^{n}-p\right) \Rightarrow\left(s^{n}-B, s^{n}-B-p\right)=(u, u-p) \quad\right.$ (recall excision: $\bar{B} C i n t(A) \Rightarrow(x-B, 1-B) \rightarrow(x, A)$ is iso
So we can use excision $j_{y}: H_{n}(u, u-p) \rightarrow H_{n}\left(s^{n}, s^{n}-p\right)$ is an \cong.
define $[u, u-p]$ by $[u, u-p] \rightarrow\left[s^{n}, s^{n}-p\right]$
deft. $\quad\left[u^{\prime}, u^{\prime}-p\right] \rightarrow\left[u_{1} u-p\right]$ is an \cong.
If $P \in U^{\prime} \subset U$, we have a commutative diagram

Beaune the tho other ones are \simeq by excision, i_{*} is an iso.
den Local degree of a map
If $f: s^{n} \rightarrow s^{n}$, let $p f s^{n}$, and $f^{-1}(p)=\left\{q_{1}, \cdots q_{n}\right\}$ is finite, then
S^{n} Handderff: fad $u_{i} C S^{n}$ open, s.t. $u_{i} n_{j}=\phi_{1}$, if $i \neq j$ and $q_{i} \in u_{i}$ and $f_{i}:\left(u_{i}, u_{i}-q_{i}\right) \longrightarrow\left(s^{n}, s^{n}-p\right)$ (not neeosoriy inclusion, it can do weird stuff)
so $\quad f_{i k}\left[u_{i}, u_{i}-q_{i}\right]=k_{i}\left[s^{n}, s^{n}-p\right]$
So k_{i} is the local degree of f at q_{i}. denoted $\operatorname{deg}_{q_{i}} f=k_{i}$
remember: $\quad i_{n}:\left[u_{i}, u_{i}-q\right] \leftrightharpoons[s, s-q]$

$$
f \circ i:\left[u_{i}, u_{i}-q\right] \longleftrightarrow \operatorname{leg}_{q_{i}}\left[s_{1} s-q\right]
$$

lemma: $\operatorname{leg}_{q i} f=k_{i}$ does not depend on the choice of u_{i}

Proof: suppose that $M_{i}\left(M_{i}, q_{i} \in M_{i}\right)$ then

$$
\begin{gathered}
H_{n}\left(u_{i}, u_{i}-q_{i}\right) \xrightarrow{f_{*}} \operatorname{Hn}\left(s^{n}, s^{n}-q\right) \\
H_{n}\left(u_{i}^{\prime}, u_{i}^{\prime}-q_{i}\right) \\
i_{*}\left[u_{i}, u_{i}^{\prime}-p\right]=\left[u_{i}, u_{i}-p\right] \text { so } \operatorname{deg} f_{*}=\operatorname{deg} f_{x}^{\prime} .
\end{gathered}
$$

generally, given u_{i}, u_{i}^{\prime} two soph nohd of p_{i}, so is $u_{i} n u_{i}^{\prime}$ so $u_{i} n u_{i}^{\prime}, u_{i}, u_{i}^{\prime}$ gives the the same degree.

Rink. homology on the union of open sets.
let $V=\frac{11}{i} u_{i} c s^{n}$. if's open. By excision, $\begin{gathered}\left(s^{n}-\left(s^{n}-V\right), s^{n}-\rho^{-1}(p)-\left(s^{n}-v\right)\right) \&\left(s^{n}, s^{n}-f^{-1}(p)\right) \\ V\end{gathered}$
get $\dot{J}_{+}: H_{n}\left(v, r-f^{-1}(p)\right) \xrightarrow{\varrho} H n\left(s^{n}, s^{n}-f^{-1}(p)\right)$
is

$$
\oplus H_{n}\left(u_{i}, u_{i}-P_{i}\right) \cong \mathbb{z}^{r}
$$

So that $\left[u_{i}, u_{i}-p_{i}\right]$ form a basis for $\operatorname{Hn}\left(s^{n}, s^{n}-f^{-1}(p)\right)$.
Lem. map $\mathrm{H}_{n}\left(s^{n}\right) \longrightarrow \mathrm{H}_{n}\left(s^{n}, s^{n}-f^{-1}(p)\right)$
let map $H_{n}\left(s^{n}\right) \rightarrow H_{n}\left(s^{n}, s^{n}-f^{-1}(p)\right) \backsim \oplus H_{n}\left(u_{i}, u_{i}-q_{i}\right)$
gin by $\left[s^{n}\right] \longmapsto \sum_{i=1}^{r}\left[u_{i}, \mu_{i}-q_{i}\right]$
proof. there's a commutative diagram
note that $\underbrace{H_{n}\left(V, V-q_{j}\right)}_{\text {all }} \cong H_{n}\left(u_{j}, u_{j}-q_{j}\right)$
all components are contractive
except for the $\dot{y}^{\text {th }}$

$$
\begin{aligned}
& H_{n}\left(s^{n}, s^{n}-f^{-1}(p)\right) H_{n}\left(s^{n}, s^{n}-q_{j}\right) \\
& \simeq \underbrace{\infty}_{\text {(excision above) }} \simeq \approx j_{*} \quad \text { (by excision also) } \\
& H_{n}\left(v, v-f^{-1}(p)\right) \longrightarrow H_{n}\left(v, v-q_{j}\right) \cong H_{n}\left(u_{j}, u_{j}-q_{j}\right)
\end{aligned}
$$

Vertical mops are Isomorphisms. so we reverse the two vertical arrow and add things to diagram.

Proof scheme
4 start with square $\left(s^{n}, s^{n}-f^{-1}(p)\right) \longrightarrow\left(s^{n}, s^{n}-q_{i}\right)$

4 reverse vertical arrows, add $\left[s^{n j}\right.$ on top and two isos.
L commutativity shows desired result.

Tum. degree of f as sum of local degrees
Spore $\quad f i s^{n} \rightarrow s^{n}, \quad f^{-1}(p)=\left\{q_{1}, q_{2}, \cdots\right.$ qr $\}$.
then, $\operatorname{deg} f=\sum_{i=1}^{r} \operatorname{deg}_{q i} f$.
Proof

$$
\begin{aligned}
\alpha:\left[s^{n}\right] & \rightarrow \operatorname{deg} f\left[s^{n}\right] \rightarrow \operatorname{deg} f\left[s^{n}, s^{n}-p\right] \\
\gamma:\left[s^{n}\right] & \rightarrow \sum_{i=1}^{r}\left[u_{i}, u_{i}-q_{i}\right] \\
& \rightarrow \sum_{i=1}^{r}\left(\operatorname{deg}_{q_{i}} f\right)\left[s^{n}, s^{n}-p\right]
\end{aligned}
$$

so $\quad \operatorname{deg} f=\sum_{i=1}^{r}\left(\operatorname{deg}_{q i} f\right)$
example about homeomorphism not undertend!!!

Motivation section is missed!

To remember for local degree stuff.

1. define local degre:

$$
i:\left[u_{i}, u_{i}-q_{i}\right] \longleftrightarrow\left[s^{n}, s^{n}-q_{i}\right] \quad \text { excision }
$$

degree is degree of fo
2. lemma: show $H_{n}\left(\left[s^{n}\right]\right) \cong \bigoplus_{7} H_{n}\left(\left[u_{i}, u_{i}-q_{i}\right]\right)$
this pant, nothing to do with H.
expand on

$$
\begin{aligned}
H_{n}\left(s^{n}, s^{n}-f^{-1}(p)\right) & \longrightarrow H^{n}\left(s_{1}^{n} s^{n}-q_{i}\right) \\
\downarrow & \downarrow \\
H_{n}\left(v, v-f^{-1}(p)\right) & \longrightarrow H^{n}\left(v, v-q_{i}\right)
\end{aligned}
$$

3. Include the f now, show that

week 4 lee 1
The cellular chain complex.
def. attaching along a function
let $B \subset Y$, assume $f: B \rightarrow X$. Then $x v_{f} y=x \Perp y / \sim$ where \sim is the smallest equivalace relation st $b \sim f(b) \quad \forall b \in B$. So this space is obtained by gluing x to Y along f.
def Attaining a K-cell
$(Y, B)=\left(D^{k}, S^{k-1}\right)$ then $x v_{f} D^{k}$ is altering a $k \cdot a l l$ to X.
def. finite cell complex
A finite call complex $(f c c)$ is a space x equipped with closed subsets

$$
\phi=x_{-1} c x_{0} \subset x_{1} c \cdots c x_{k-1} c x_{k} \cdots c x_{n}
$$

where X_{k} is obtained fum X_{k-1} by attaining finite k cells. St.

$$
\begin{aligned}
& \text { (} x_{k} \text { is called } \quad \text { k-sheleton.) where } \\
& \qquad \begin{array}{l}
x_{k} \simeq x_{k-1} \quad U_{F} \frac{\|}{\alpha \in A_{k}} D^{k} \\
\\
\\
F: \frac{\| 1}{\alpha \in A_{k}} S^{k-1} \rightarrow x_{k-1} \quad, F=\frac{\|}{\alpha \in A} F_{\alpha}, F_{\alpha}: S^{k-1} \rightarrow x_{k-1}
\end{array}
\end{aligned}
$$

def open sets of infinite conctitios
$X=U_{i=1}^{\infty} x_{i}$ then $u \subset x$ open $\Leftrightarrow U \cap x_{k}$ is open for all k.

Examples of fec complex constructions
L graph: $\left\{\begin{array}{l}v \text { of } 0 \cdot \text { cells, } \\ e \text { of } 1 \text {-cells. } \\ 1 \text { of } 0 . \text { ell }\end{array}\right.$
$4 S^{k}: \begin{cases}1 & \text { of } 0 \text { cell } \\ 1 & \text { of } k \text {-cell }\end{cases}$

$$
\longrightarrow D^{k+1}:\left\{\begin{array}{llc}
1 & \text { of } 0-e l \\
1 & \text { of } k-c e l \\
1 & \text { of } k+1-c e l l
\end{array}\right.
$$

\triangle smplicial $C x$: 1 -k-cel for each k-dime face.

$$
\rightarrow T^{2}\left\{\begin{array}{lll}
1 & \text { of } & 0 . \text {.ell } \\
2 & . & 1 \\
1 & . & 2
\end{array}\right.
$$

LI f x is a spore of $\left\{\begin{array}{l}1 \text { - cell } \\ n \text { - } k \text {-cell. }\end{array}\right.$

$$
x \cong V_{i=1}^{n} S^{k}
$$

let $\left(X_{i}, x_{i}\right), i \in I$ are pointed spaces, the wedge product is

$$
\bigvee_{i \in \tau}\left(x_{i}, x_{i}\right)=11 x_{i} / \Perp x_{i}
$$

Projective Spaces
deft. The n-dime projective space $\mathbb{C} \mathbb{P}^{n}$

$$
\mathbb{C} \mathbb{P}^{n}=\mathbb{C}^{n+1}-304 / \mathbb{C}^{*}
$$

Where \mathbb{C}^{*} acts by $\lambda \cdot \vec{z}=\lambda \vec{z}$

$$
\left[\begin{array}{rl}
Z: \mathbb{C}^{n+1}-\{04 & \longrightarrow \mathbb{P}^{n} \\
\left(x_{0}, \cdots x_{n}\right) & \longmapsto\left[x_{0}: x_{1}: \cdots: x_{n}\right] .
\end{array}\right.
$$

Prop. $\overparen{U P^{n}}$ is compact Hansdor ff \& $\mathbb{A} P^{n} \cong s^{2 n+1} / s^{1}$
have $\quad \mathbb{C}^{x}=\mathbb{R}>0 \times s^{\prime}$

$$
\begin{aligned}
&\left\{\begin{aligned}
\mathbb{C}^{n+1}-304 / \mathbb{R}_{>0} & \simeq S^{2 n+1} \\
z & \mapsto z / \mid 121
\end{aligned}\right. \\
& \mathbb{C} \mathbb{P}^{n} \cong \mathbb{C}^{n+1}-104 / \mathbb{R}_{>0} \times s^{\prime} \\
& \cong S^{2 n+1} / s^{\prime} \quad \Rightarrow \text { compact \& Hausdos } f f .
\end{aligned}
$$

Deft the Hoof map
$P_{n}: S^{2 n+1} \rightarrow \mathbb{C} \mathbb{P}^{n}$ is the projection
Prop. Using Hope map to inductively constraint $\mathbb{C} \mathbb{1}^{n}$

$$
\mathbb{C} \mathbb{P}^{n} \backsim \mathbb{C} \mathbb{P}^{n-1} U_{P_{n-1}} D^{2 n} \quad \text { where } P_{n-1}: S^{2 n-1} \rightarrow \mathbb{C} \mathbb{P}^{n-1}
$$

Two steps. $I^{\text {st }}$ step: $\mathbb{C} \mathbb{P}^{n-1} U_{p_{n-1}} D^{2 n}$ glues to $\mathbb{C} \mathbb{P}^{n}$
$2^{\text {nd }}$ step: Show isomorphism

$$
\mathbb{C}_{11}^{n} \mathbb{R}^{2 n} / \mathbb{N}
$$

Step 1: $\quad i_{1}: \mathbb{C} \mathbb{P}^{n-1} \quad \rightarrow \mathbb{C} \mathbb{P}^{n}$

$$
[\vec{z}] \mapsto[\stackrel{\rightharpoonup}{z}: 0]
$$

$$
\left\{\begin{aligned}
& i_{2}: \quad D_{\|}^{2 n} \rightarrow \mathbb{C} \mathbb{P}^{n} \\
& z \in \mathbb{C}^{n}, n \bar{z} \|<1 \\
& \vec{z} \mapsto\left[\vec{z}: \sqrt{1-\|\vec{z}\|^{2}}\right]
\end{aligned}\right.
$$

note: $i_{1} s^{2 n-1}=i_{1} 0 P_{n-1} \quad$ so i_{1}, i_{2} agree on $\partial D^{2 n}=S^{2 n-1}$ and P_{n-1} attain $S^{2 n-1}$ to $\mathbb{C} \mathbb{P}^{n-1}$
combining i_{1}, i_{2}, define $i^{:} D^{2 n} U_{P_{n-1}} \mathbb{C} \mathbb{P}^{n-1} \rightarrow \mathbb{C} \mathbb{P}^{n}$

Step 2: Cheek bijection.

$$
i=D^{2 n} U_{P_{n-1}} \mathbb{C}_{\mathbb{P}^{n-1}} \longrightarrow \mathbb{C} \mathbb{P}^{n}
$$

Inverse of i is given by

$$
i^{-1}\left[z_{0}: z_{1}: \cdots: z_{n}\right]= \begin{cases}\text { if } z_{n} \neq 0 & \text { then }\left(z_{0}, z_{1}, \cdots, z_{n-1}\right) \in D^{2 n} \\ \text { if } z_{n}=0 & \text { then } \quad\left[z_{0}: z_{1}: \cdots: z_{n-1}\right] \in \mathbb{C} \mathbb{P}^{n-1}\end{cases}
$$

Proof scheme:
\triangle goal: $\mathbb{C} \mathbb{P}^{n-1} \cup_{P_{n-1}} D^{2 n} \simeq \mathbb{C} \mathbb{P}^{n}$

$$
\begin{aligned}
& L i_{1}: \\
&\left.\mathbb{C} \mathbb{P}^{n-1} \rightarrow \mathbb{C} \mathbb{P}^{n} \quad i_{1}\right|_{s^{n-1}}=P_{n-1} \quad \text { so glue } \\
& {[\vec{z}] } \rightarrow[\vec{z}: 0] \\
& i_{2}: \quad D^{D^{2 n}} \rightarrow \mathbb{C} \mathbb{P}^{n} \\
& \vec{z} \rightarrow\left[\vec{z}: \sqrt{1-1(12)^{2}}\right]
\end{aligned}
$$

L revere of i exists

Prop. The cellular construction of $\mathbb{C P}^{n}$
$\mathbb{C} \mathbb{P}^{n}$ is a fcc with one cell of dim $2 i, 0 \leq i \leq n$, and no other cells.
EX $\mathbb{C} \mathbb{P}^{1} \simeq S^{2}$ is a Remann speer.
a 0.cell and a deal \Rightarrow only cutachiry map is $S^{1} \rightarrow D^{0}$. get S^{2}.
def. $\mathbb{R} \mathbb{P}^{n}=\left(\mathbb{R}^{n+1}-304\right) / \mathbb{R}^{x} \cong S^{n} /(\mathbb{x} / 2 \tau) \quad$ where $\mathbb{Z} / 2 \mathbb{Z}: x \rightarrow-x$
and similar drgumats show $\mathbb{R} \mathbb{P}^{n} \cong \mathbb{R}_{\mathbb{P}^{n-1}} U_{\mathbb{P}_{n-1}} D^{n}$
\mathbb{R}^{n} is a fer with 1. cell of $\operatorname{dim} i$, $0 \leq i \leq n$.

Prop computing $H_{x}\left(\mathbb{C P} \mathbb{P}^{n}\right)$

$$
H_{k}\left(\mathbb{C} \mathbb{P}^{n}\right)= \begin{cases}\mathbb{Z} & \text { if } \quad *=0,2, \cdots, 2 n \\ 0 & 0 . w .\end{cases}
$$

Proof: consider LES of pair $H+\left(\mathbb{C} \mathbb{P}^{n}, \mathbb{C} \mathbb{P}^{n-1}\right)$
note that $\mathbb{C} \mathbb{P}^{n} / \mathbb{C} \mathbb{P}^{n-1} \cong S^{2 n}$ whee $S^{2 n}$ has $\begin{cases}1 & 0 \text {-cell } \\ 1 & 2 n \text {-cell }\end{cases}$

$$
H_{x}\left(\mathbb{C} \mathbb{P}^{n}, \mathbb{\mathbb { P } ^ { n - 1 }) \underset { 4 } { \sim } \tilde { H } (S ^ { 2 n }) = \{ \begin{array} { l l }
{ \mathbb { z } } & { \text { if } \quad * = 2 n } \\
{ 0 } & { 0 . w . } \\
{ \text { collapsing pair } }
\end{array}}\right.
$$

using LES of pair gieds

note that all $\partial=0$. $H_{i+1}\left(\in \mathbb{P}^{n}, \mathbb{C} \mathbb{P}^{n-1}\right) \rightarrow H_{i}\left(\mathbb{C} \mathbb{P}^{n-1}\right)$, when $i \neq 2 n-1$, domain is 0 . when $i=2 n-1$, $H_{2 n-1}\left(C \mathbb{P}^{n-1}\right)$ is 0 . So 2 always 0 .

$$
\left.\begin{array}{rl}
0 \rightarrow H_{i}\left(\mathbb{C} \mathbb{P}^{n-1}\right) \rightarrow H_{i}\left(\mathbb{C} \mathbb{P}^{n}\right) \rightarrow H_{i}\left(\mathbb{C} \mathbb{P}^{n}, \mathbb{C} \mathbb{P}^{n-1}\right) \rightarrow 0 \\
\uparrow \\
\text { free }
\end{array}\right] \begin{aligned}
\Rightarrow \quad & H_{i}\left(\mathbb{C} \mathbb{P}^{n}\right)=H_{i}\left(\mathbb{C} \mathbb{P}^{n-1}\right) \oplus H_{i}\left(S^{2 n}\right)= \begin{cases}\mathbb{Z} & \text { when } i \text { even } \\
0 & 0 . w .\end{cases}
\end{aligned}
$$

think about computing $H_{i}\left(\mathbb{R} \mathbb{P}^{n}\right)$.
week 4 eec 2

Prop $\quad H_{k}\left(D^{k}, S^{k-1}\right) \stackrel{\cong}{\cong} H_{k-1}\left(S^{k-1}\right)$
Proof: in the LES of $\left(D^{k}, S^{k-1}\right), \quad \tilde{H}_{k}\left(D^{k}\right)=0$
define $\left[D^{k}, S^{k-1}\right] \stackrel{\cong}{\cong}\left[S^{k-1}\right]$

Prop: $\left(x_{k 1}, x_{k-1}\right)$ is a geod pair
Let x be a f.c.c.
let $\quad A_{k}=$ set of K cells of X

$$
x_{k}=X_{k-1} U_{\Perp f_{\alpha}} \quad\left(\frac{11}{\alpha \in A_{k}} D^{k}\right) \quad f_{\alpha}: S^{k-1} \rightarrow x_{k-1}
$$

let $u_{k}=x_{k-1} U_{\Perp \not P_{\alpha}}\left(\frac{\Perp}{\alpha \in A_{k}} D^{k}-0\right) *$ note: still legal. just remove the center point S^{k-1} is a dir. of $D^{k}-D$
X_{k-1} is a dr. of $U_{k} \Rightarrow X_{k-1}$ is a dr. of $U_{k} C_{\text {open }} X_{k}$
$\Rightarrow\left(x_{k}, x_{k-1}\right)$ is a good pair.

We can do it
Prop. impatart properties \quad because it's a geod pair.

$$
\begin{aligned}
& L x_{k} / x_{k-1} \simeq V_{\alpha \in A k} S^{k} \\
& \qquad H_{k}\left(x_{k}, x_{k-1}\right) \simeq H_{k}\left(V_{\alpha \in A_{k}} S^{k}\right) \\
& \quad 1 S \\
& \\
& \quad H_{k}\left(\frac{11}{\alpha \in A_{k}} D^{k}, \frac{11}{\alpha \in A k}, S^{k-1}\right)=\underset{\alpha \in A_{k}}{\oplus} H_{k}\left(D^{k}, S^{k-1}\right)=\left\langle e_{\alpha} \mid \alpha \in A_{k}\right\rangle
\end{aligned}
$$

where $e \alpha=\tau_{\alpha *}\left[0^{k}, S^{k-1}\right]$.
def. P_{β} map
have $p_{\beta}: V_{\alpha \in A_{k}} S^{k} \longrightarrow V_{\alpha \in A_{k}} s^{k} / \bigvee_{\alpha \neq \beta} s^{k}$ projection onto the $\beta^{\text {th }}$ cell.

$$
\rho_{\beta}>{ }_{S^{k}}^{1 S}
$$

l.g. $\quad p_{\beta}(e \alpha)=\left\{\begin{aligned} {\left[s^{k}\right] } & \alpha=\beta \\ 0 & \alpha \neq \beta .\end{aligned}\right.$
del d_{k} (dell for cellular homology)
d_{k} is the boundary map $d_{k}=H_{k}\left(x_{k}, x_{k-1}\right) \rightarrow H_{k-1}\left(x_{k-1}, x_{k-2}\right)$
In the LES of triple $\left(x_{k}, x_{k-1}, x_{k-2}\right)$.
Lemming $\quad d_{k}=\left(\pi_{k-1}\right)_{*} \cdot \delta_{k}$

$$
d_{k}=\left(\pi_{k-1}\right)_{*} \cdot \delta_{k}
$$

Where $\delta k: H_{k}\left(X_{k}, X_{k-1}\right) \rightarrow H_{k-1}\left(X_{k-1}\right)$ is the bounder map in the LES of pair $\left(X_{k}, X_{k-1}\right)$ $\left(\tau_{k-1}\right)_{2}: H_{k-1}\left(X_{k-1}\right) \rightarrow H_{k-1}\left(X_{k-1}, X_{k-2}\right)$ is the homology indued by projection. (or $\pi_{k-1}:\left(x_{k-1}, \phi\right) \rightarrow\left(x_{k-1}, x_{k-2}\right)$ as a map of pairs)

Proof: $\quad d_{k}: H_{k}\left(X_{k}, X_{k-1}\right) \rightarrow H_{k-1}\left(X_{k-1}, X_{k-2}\right) \quad \delta_{k}: H_{k}\left(x_{k}, x_{k-1}\right) \rightarrow H_{k-1}\left(x_{k-1}\right)$
Kinda confused.
$[c] \in H_{k}\left(X_{k}, X_{k-1}\right)$. let $c \in C_{k}\left(X_{k}\right)$ so $d c \in C_{k-1}\left(X_{k}\right)$
then $\quad \partial_{k}[c]=[d c] \in H_{k-1}\left(x_{k-1}\right)$

$$
d_{k}[c]=[d c] \in H_{k-1}\left(x_{k-1}, x_{k-2}\right) \text { so } \pi_{k-1} \partial_{k}[c]=d_{k}[c]
$$

cor $\quad d_{k} d_{k+1}=0$
Proof: $\quad d_{k 0} 0 d_{k+1}=\left(\pi_{k-1}\right)_{*} \partial_{k} 0\left(\pi_{k}\right)_{*} \cdot \partial_{k+1}$
$=\left(\pi_{k-1}\right)_{*}\left(\partial_{k} \circ\left(\pi_{k}\right)_{k}\right){ }^{\circ} \partial_{k+1}$ since $\partial_{k} \circ\left(\pi_{k}\right)$ are α cosec map in LES of $\left(X_{k}, X_{k-1}\right)$

$$
H_{k}\left(x_{k}\right) \xrightarrow{\pi_{k}} H_{k}\left(x_{k}, x_{k-1}\right) \xrightarrow{\partial_{k}} H_{k-1}\left(x_{k-1}\right)
$$

Proof scheme :
Le $d: H(\ldots) \rightarrow H(\ldots)$ is bd map of LES of finpe
ω Write $d=\pi \cdot \delta$
$4 \quad d \circ d=\pi\{j \cdot \pi) \cdot \delta \quad \neq 0$ in LES.

Let the cellular chain complex of x
let x be a $f \subset c$. Then $C_{i}^{\text {cell }}(x)=H_{i}\left(x_{i}, x_{i-1}\right) \quad d^{\text {ell }}$ is bd map in LES of triple. then the celeb chain $c x$ of x is $\quad\left(c^{\operatorname{col}}(x), d_{0}^{\text {cell }}\right)=\left(\oplus H_{k}\left(x_{k}, x_{k-1}\right), \oplus d k\right)$

Thy (Big thy of $H_{*}^{\text {cell }}(x)$)

1) $\quad H_{x}^{\text {cell }}(x)=H_{*}\left(C_{*}^{\text {cell }}(x)\right) \simeq H_{x}(x)$
2) computing $H_{x}^{\text {cell }(x) \text { works as fellows: }}$

$$
\begin{aligned}
& C_{k}^{\text {cell }}(x)=H_{k}\left(x_{k}, x_{k-1}\right) \text { y }\left\langle e_{\alpha} \mid \alpha \in A_{k}\right\rangle \\
& d_{k}^{\text {cull }:} C_{k}^{a \mu}(x) \rightarrow C_{k-1}^{c a l l}(x) \\
& d_{k}^{\text {cell }}\left(e_{\alpha}\right)=\sum_{\beta \in A_{k-1}} n_{\alpha \beta} e_{\beta} \quad \text { where } n_{\alpha \beta}=\operatorname{deg} P_{\beta} \text { of } \alpha
\end{aligned}
$$

Proof

$$
\begin{aligned}
d_{k}(e \alpha) & =\left(\pi_{k-1}\right) * 0 \partial_{k}\left(\tau_{\alpha *}\left[D^{k}, s^{k-1}\right]\right) \\
& =\left(\pi_{k-1}\right) * 0 \tau_{\alpha *}\left(\partial_{k}\left[D^{k}, s^{k-1}\right]\right) \\
& =\underbrace{}_{\left.\begin{array}{c}
\text { iodide } \\
\text { corresponds to } \\
s^{k-1} \text { into } x_{k-1} \\
\left(\pi_{k-1}\right) * 0 \tau_{\alpha}
\end{array}\right)}=\underbrace{}_{\alpha^{k-1}}\left[s^{k-1}\right]
\end{aligned}
$$ corresponds to the attaching map

So $\quad d k(e \alpha)=f a x\left[S^{k-1}\right]$
now, coefficient of e_{β} in fax $\left[S^{k-1}\right]$
Don't get this part!

$$
\begin{aligned}
& =\text { coefficiat of }\left[S^{k-1}\right] \text { in }\left(\rho_{\beta} \circ f_{\alpha}\right)_{\phi}\left[S^{k-1}\right] \\
& =\operatorname{deg}\left(\rho_{\beta} \circ f_{\alpha}\right)
\end{aligned}
$$

rest of the prot is Shown later.

Ext. Compute $H_{*}^{\text {cell }}\left(\mathbb{C} \mathbb{P}^{n}\right)$
©1Pn has I cell of $\operatorname{dim} \alpha_{i}$ for each $0 \leq i \leq n$.

$$
\underset{\mathbb{Z}}{2 n} \longrightarrow_{0}^{2 n-1} \rightarrow \mathbb{Z}^{2 n-2} \rightarrow 0 \rightarrow \cdots \rightarrow 0 \rightarrow \mathbb{Z}
$$

So each $d^{\text {cell }}=0$

$$
\Rightarrow \quad H_{x}\left(\mathbb{Q}^{n}\right) \simeq c_{x}^{\operatorname{can}}\left(\mathbb{\mathbb { P } ^ { n }}\right)= \begin{cases}\nless & \text { if } x \text { is } 0,2, \cdots 2 n \\ 0 & \text { ow. }\end{cases}
$$

Ex 2. $\mathbb{R} \mathbb{P}^{n}$
$\mathbb{R} \mathbb{P}^{n}$ has 1 cell of dim k for each $0 \leq k \leq n$.

$$
C_{k}^{\text {all }}\left(\mathbb{R} P^{n}\right)=\left\langle e_{k}\right\rangle
$$

key to understand this:
L understand the map $d: C_{k}^{o u}\left(x_{k}\right) \rightarrow C_{k-1}^{\text {our }}\left(x_{k-1}\right)$
L wite $g_{k-1}=$ composition of \log chain of maps
4 pick $q_{1} \quad n_{k-1}(q) \in \mathbb{R}^{k-1} \backslash \mathbb{R} \mathbb{R}^{k-2}$, open nad $\Rightarrow 7 \dot{y}= \pm 1$
Le write as sum
4 odd $\rightarrow 0$

$$
\text { ever } - \pm 2
$$

beget result.
$4 h_{k-1}=h_{k-1} \cdot A$ since h_{k-1} identifies antipodes points
lemma that helps to prose $H_{0}^{\text {cell }}(x)=H_{*}(x) \quad \tilde{H}_{*}(x)=0 \quad *<m_{1} \quad *>M$
If X is a fcc with one Icel, all other cells have dim d, $m \leq \operatorname{din} x \leq M$ then $\tilde{H_{0}}(x)=0$ when $x<M$ or $*>M$

Proof: By induction on $M-m$
base case: $\quad M-m=0 \Rightarrow M=M$
then X has 1 cell in $\operatorname{dim} 0$. all other cell with $d m n ~ m=M$.

$$
x \cong V_{\alpha \in A} s^{n} \text { so } \tilde{H}_{i}(x)=0 \text { for } \quad i \neq m
$$

Inductive step:
Suppose statemat holds when $M-m<K$. let $M-m=K$.
Suppose x has cell of dim $M \leq \operatorname{dim} \leq m+k$, Then X_{m+k-1} has cell between m and $m+k-1$. inductive hypothesis apply to $x_{m}+k-1$,
Consider LES of pair $\left(x_{1} x_{m+k-1}\right)$. His a god pair. $\quad x=x_{m+k}, \quad x / x_{m+k-1}=V_{Q \in A} S^{m+k}$

$$
\begin{array}{llll}
\Rightarrow & H_{*}\left(X_{1} X_{m+k-1}\right)=0 \quad \text { unless } & *=m+k \\
\Rightarrow & \tilde{H}_{x}\left(X_{m+k-1}\right)=0 \quad \text { unless } \quad m \leqslant t \leq m+k-1 \\
\text { nets: } & \tilde{H_{*}}\left(x_{m+k-1}\right) \rightarrow \widetilde{H_{x}}(X) \rightarrow H_{*}\left(x_{1} X_{m+k-1}\right)
\end{array}
$$

unless $*=m+k$ or $* \in[m, m+k-1]$, both are 0 . so when $* \notin[m, m+k]$, we will have they both 0 so $\tilde{H_{x}}(x)$ is 0 .

Proof scheme:
inductive process: $\left\{\begin{array}{lll}H_{*}\left(x_{1} x_{m+k-1}\right)=0 & \text { unless } & k=m+k \\ \widetilde{H_{*}}\left(x_{m+k-1}\right)=0 & \text { unless) } & m \leqslant * \leqslant m+k-1\end{array}\right.$
then use $\tilde{H_{x}}\left(x_{m+k-1}\right) \rightarrow \tilde{H_{x}}(x) \rightarrow H_{*}\left(x_{1} x_{m+k-1}\right)$
week 4 eec 3
(Recall lemma) (all cells $m \leq \operatorname{dim} \leq M$) $\widetilde{H_{x}}(x)=0 \quad * \&[1 n, M]$.
lemma If X is a $f\left(c, \quad\left(x_{1} x_{k}\right)\right.$ is a good pair
where did you prove this?

$$
\text { for } \quad H_{k}\left(x_{k+1}\right)=H_{k}(x)
$$

Propel: LES of $H\left(x, x_{k+1}\right)$

$$
H_{k+1}\left(x, x, \begin{array}{c}
=0 \\
k+1
\end{array}\right) \rightarrow H_{k}\left(x_{k+1}\right) \xrightarrow{i \not} H_{k}(x) \rightarrow H_{k}\left(x, x_{k+1}^{=}\right)
$$

By collapsing a pair,

$$
H_{k}\left(x, x_{k+1}\right) \simeq \tilde{H}_{k}\left(x / x_{k+1}\right)
$$

X / X_{k+1} has one 0 -cell, all other cell with dim $\geqslant k+2$.
So by lemma, $\quad H_{k}\left(x / x_{k+1}\right)=H_{k+1}\left(x / x_{k+1}\right)=0$

Thu. If x is a $f\left(c\right.$, then $H_{x}^{\text {cell }}(x) \simeq H_{k}(x)$.

Proof. to reconstruct the "cellular net", start with the How horicental. Then the two Δs to get $d=\pi \cdot \delta$. Then, work it out.

Proof:

so π_{k-1}, π_{k} are injections, i is surjectire.

$$
\begin{aligned}
& \operatorname{ker}\left(d_{k-1}\right)=\operatorname{ker}\left(\pi_{k-1} \circ \delta_{k}\right)=\operatorname{ker}\left(\delta_{k}\right) \\
&=1 m\left(\pi_{k}\right) \\
& \xlongequal{\uparrow} \xlongequal{\uparrow} H_{k}\left(x_{k}\right) \\
& \pi_{k-1} \text { is } \\
& \text { injective } \quad \text { exact ness } \quad \pi_{k} \text { bijection. }
\end{aligned}
$$

$$
H_{k}^{\infty e l}(x)=\frac{\operatorname{ker}\left(d_{k-1}\right)}{1 m\left(d_{k}\right)}=H_{k}\left(X_{k+1}\right)=H_{k}\left(X_{k}\right)
$$

2.3. Homology wI coefficients
def. tensor product
If M, N are R-modules, then
$M \otimes N$ is the R module $\langle m \otimes n$ I meM, $n \in N\rangle / \sim$ where \sim is $\left\{\begin{array}{l}\text { component-wise distributivity }\end{array}\right.$ solar prod with coefficient in R.

Properties $\quad 10 M \otimes N \simeq N \otimes M$ (2) $R \otimes M \simeq M$ (3) $\left(M_{1} \oplus M_{2}\right) \otimes M_{3} \simeq M_{1} \otimes M_{3} \oplus H_{2} \otimes M_{3}$.

Examples $D \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z} / n \mathbb{Z}=0$ as $q \otimes K=q / n \otimes n k=(q / n) \otimes 0=0$
2) $\mathbb{Z}\left|a \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}\right| b \mathbb{Z}=\mathbb{Z} \operatorname{lgcd}(a, b) \mathbb{Z}$ (see pref)
let. $\otimes M$ functor
QM gives a functor

$$
\begin{gathered}
\left\{\begin{array}{l}
R \text { modules } \\
R \text { linear maps }
\end{array} \underset{f \rightarrow N \otimes M}{f \rightarrow f \otimes l} \rightarrow\left\{\begin{array}{l}
R \text { - nodus } \\
R \text {-liner mos }
\end{array}\right\}\right. \\
f \otimes 1(n \otimes m)=f(n) \otimes m
\end{gathered}
$$

So if (C, d) is a chain $c x, \quad\left(C \otimes M, d^{\prime} \otimes 1\right)$ is another chain $c x$.
deft. Singular chain $C X$ with coefficient in G.
If G is a \mathbb{Z}-module / abelion gap,
$C_{*}(x ; G)=C_{+}(x) \otimes G$ is singular chain $C x$ with coefficant in G.
$H *(X, G)$ is its homdgy.

Ex. Chain ox ore R to chain $C x$ over R^{\prime}
let R ' be a ring that's also an R-module. then there's a functor $\left\{\begin{array}{l}R-\bmod \\ R \cdot l \operatorname{lin} m p s\end{array}\right\} \begin{aligned} & \underset{M \rightarrow M \otimes R^{\prime}}{ }\end{aligned}\left\{\begin{array}{l}R^{\prime} \text { modules } \\ R^{\prime} \text { linear maps }\end{array}\right\}$
indues a functor $\quad\left\{\begin{array}{c}\text { chain } a x \text { over } R \\ \text { chain maps }\end{array}\right\} \xrightarrow{\otimes R^{\prime}}\left\{\begin{array}{l}\text { chain } c x \text { are } R^{\prime} \\ \text { chain } \mathrm{mps}\end{array}\right\}$
Lemma: $f, g: c \rightarrow c^{\prime}$ are chain homotopic via h
then $f \otimes 1, g \otimes 1: C \otimes M \rightarrow c^{\prime} \otimes M:$ are homotopic vic $h \otimes 1$.

Example: tensoring with R^{\prime}. on R module.

$$
\begin{aligned}
& E x: C=C_{*}^{\text {cell }}\left(\mathbb{R} \mathbb{P}^{3}\right) \\
& C_{*}^{\text {call }} \mathbb{Z} \xrightarrow{\cdot 0} \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \xrightarrow{\cdot 0} \mathbb{Z} \\
& \begin{array}{llll}
3 & 2 & 1 & 0
\end{array} \\
& \begin{array}{lllll}
H_{*}(C) & \mathbb{Z} & 0 & \mathbb{Z} / 2 & \mathbb{Z}
\end{array} \\
& C * \otimes \mathbb{Q} \xrightarrow{\circ} \mathbb{Q} \xrightarrow{2} \mathbb{Q} \xrightarrow{\circ} \mathbb{Q} \\
& \begin{array}{lllll}
H_{*}(C * \otimes \mathbb{Q}) & \mathbb{Q} & 0 & 0 & \mathbb{Q}
\end{array}=H_{x}(C) \otimes \mathbb{Q} \\
& C_{*} \otimes \mathbb{Z} / 2 \quad \underset{\sim}{\mathbb{Z}} \xrightarrow{\circ} \mathbb{O} / 2 \xrightarrow{\circ} \mathbb{O} \xrightarrow{\circ} \mathbb{Z} / 2 \\
& H_{*}\left(C_{k} \otimes \mathbb{Z} / 2\right) \quad \mathbb{Z} / 2 \quad \mathbb{Z} / 2 \quad \mathbb{Z} / 2 \quad \mathbb{Z} / 2 \quad \neq H_{*}(C) \otimes \mathbb{Z} / 2
\end{aligned}
$$

def. Euler char
let C be a f.d. chain C_{x} over a field. let $C_{k}=\operatorname{dim}\left(C_{k}\right) \quad$ let $h_{k}=\operatorname{dim}\left(F_{k}\right)$.
then $\quad x(C)=\sum_{k} \quad(-1)^{k} C_{k}$
the $\quad x(C)=x\left(H_{v}(C)\right)=\sum(-1)^{k} h_{k}$
If: let $Z_{k}=\operatorname{dimker}\left(d_{k}\right) \quad b k=\operatorname{dim} i m\left(d_{k}\right)$

$$
\begin{aligned}
& c_{k}=z_{k}+b_{k} . \\
& H_{k}(c)=\frac{k e r d k}{m d k+1} \text { so } h_{k}=z_{k}-b_{k+1} \\
& x(c)=\sum(-1)^{k} z_{k}+(-1)^{k} b_{k} \\
& x(h)=\sum(-1)^{k}\left(z_{k}-b_{k+1}\right)=\sum(-1)^{k} z_{k}-(-1)^{k} b_{k+1} \\
&=\sum(-1)^{k} z_{k}+(-1)^{k} b_{k}
\end{aligned}
$$

The Eilenberg Steen rod Axioms
def. an ordinary homology theory $w /$ celt in G (abelian group) is a functor $\left\{\begin{array}{r}\text { Pair of spaces } \\ m p \text { of pairs }\end{array}\left\{\begin{array}{l}(x, A) \underset{f \rightarrow f_{*}}{\rightarrow H(x, A)}\end{array}\left\{\begin{array}{l}\mathbb{Z} \text { modules } \\ \mathbb{Z} \text {-linermps }\end{array}\right\}\right.\right.$

Satisfying 1) homotapy invariance
2) LES of a pair \& mp of pairs induces a mp of LES.
3) Excision tho
4) Dimersios axiom: $\quad H * h \cdot\}= \begin{cases}G *=0 \\ 0 & \text { ow. }\end{cases}$

Thy. If X is a fec, and H_{*} is any functor satistying above,

$$
\text { then } \quad H_{*}(x) \simeq H_{*}\left(C_{f}^{\text {cell }}(x) \otimes G\right) \cong H_{*}(x ; G)
$$

in particular, $H *(X ; G)$ satisfy the od axions.
(means can tenor any R^{\prime}, as long as R^{\prime} is a R module) any fac's ham with

Week 5 eec 1
def. frae resolution
M is a M-module. Then A is a free res, of M if A is a free chain complex sit.

1) $A_{k}=0$ for $k<1$
2) $H_{0}(A)=M$

$$
H x(A)=0 \text { for } x \neq 0 \text {. }
$$

egg. If R is a PZD

deft. Tori (M, N) for N, N modules.
let $M_{1} N$ be modules. $\operatorname{Tori} i(H, N)=H_{i}(A \otimes N)$ where A is a free.res of M.
Tor measures the failure of $H_{*}(A \otimes N)$ to be $H *(A) \otimes N$. (at $0=M \otimes N$).
Prop. Tori (M, N) is well defined
fact: any α free-resoluties of M are chain http equivalent.

$$
A \sim A^{\prime} \Rightarrow A \otimes N \sim A^{\prime} \otimes N \Rightarrow H_{*}(A \otimes N)=H_{x}\left(A^{\prime} \otimes N\right)
$$

fact $\quad T O S_{0}=M \otimes N$.
example of $\operatorname{Tor} x(z / a, z)$ and $\operatorname{Torx}(z / a, \mathbb{z} / b)$
recall any \mathbb{Z} module $R_{1} \mathbb{\mathbb { Z }} \otimes_{\mathbb{Z}} R=R$.
fact tor k $(\mathbb{Z} / 2, \mathbb{Z} / 2)$ explains the extra $\mathbb{Z} / 2$. in $H_{k}\left(C_{x}^{\text {cell }}\left(\mathbb{R} \mathbb{P}^{2}\right)\right)$
deft short injective
a chain $c x$ is short injective if

1) $C_{k}=0$ for $\not \not \neq k, K H, \quad C_{k}, C_{k H}$ is free over R
2) $d: C_{k+1} \rightarrow C_{k}$ is infective

The Stuetwe the for chain complex orr a PID.
a free chain $C X$ over a PID is a direct sum of short infective $C X$ s.

Pref
fact If R is a PDD and M is a free module are R. Then all M's submadles are free. actual pret

We hare a s ES

$$
0 \rightarrow k e r d k \rightarrow c k \longrightarrow 1 m d k \rightarrow 0
$$

4 mdk is free
ind $C C_{k-1,} \quad C_{k-1}$ is free, so $1 m d x$ is free. so the chain splits.
\square So $\quad C_{k}=\operatorname{ker} d_{k} \oplus B_{k} \quad$ where $\quad B_{k} \stackrel{d_{k}^{k}}{\leftrightharpoons}\left(m d_{k} \quad d^{2}=0 \Rightarrow \operatorname{lmak} C \operatorname{ker} d_{k-1}\right.$
So we get a map $B_{k} \rightarrow \operatorname{ker} d_{k-1}$ where the map is injective
Lo each $0 \rightarrow B_{k} \rightarrow k_{e r d}+\rightarrow \rightarrow 0$ is a chan $c x$, injectic
4 $C=\oplus\left(B_{k} \rightarrow\right.$ herd $\left.k-1\right)$

cor. If two fie chain $C x$ over a PID hare \simeq homology, then they ire \sim equivant.
Poof: each free chain $C X$ is a direct sum of free resolution of their homology. By fact that any tho free resolutions of same module are hey equivalent, so is the time chang,
chain n ty equivalut
Cor If c is a chain $c x$ over a field $\mathbb{F}_{\text {, then }}^{c \stackrel{\downarrow}{\sim}\left(H_{x}(c), 0\right)}$
poof: c is chain $c x$

$$
\left(\mathrm{H}_{x}(\mathrm{c}), 0\right) \text { is } \cdots \rightarrow \mathrm{H}_{5}(\mathrm{c}) \stackrel{.0}{\longrightarrow} \mathrm{H}_{4}(\mathrm{c}) \xrightarrow{0} \xrightarrow{\square} \mathrm{H}_{3}(\mathrm{c}) \stackrel{.0}{\rightarrow} \cdots
$$ have same homology. H is free ore \mathbb{F} as eva mode ore \mathbb{F} is free. always free here they're chain hity equivalat

Cor (universal coefficient thu)
a frons of M.
let (be a free chain $C X$ over a PID, then

$$
\begin{aligned}
H_{k}(C \otimes N) & =H_{k}(C) \otimes N \oplus \operatorname{Tor}_{1}\left(H_{k-1}(C), N\right) \\
& =\operatorname{Tor}_{0}\left(H_{k}(C), N\right) \oplus \operatorname{Tor}_{1}\left(H_{k-1}(C), N\right)
\end{aligned}
$$

Prof: Cis a ret sum of short injunctive $C X$.
Saltire to cheek on a short infective $c x$.
no idea how to show for S.I.CX.

$$
O \otimes N \rightarrow C_{1} \otimes N \xrightarrow{i} \stackrel{0}{\rightarrow} C_{0} \otimes N \rightarrow O \otimes N
$$

$$
\text { wis } \quad H_{k}\left((\otimes N)=\left(H_{k}(C) \otimes N\right) \oplus \operatorname{tor},\left(H_{k-1}(C), N\right)\right.
$$

$C_{1} \rightarrow L_{0}$ is a free res of $H_{0}(C)$.

$$
=H_{k-1}(C \otimes N)
$$

$$
\begin{aligned}
& K=1, \quad L H S=0 \quad R H S=J \oplus H_{0}(C \otimes N) \\
& K=0 \quad L H S=H_{0}(C \otimes N), R H S=H_{0}(C) \otimes N
\end{aligned}
$$

as a result of universal coefficient tum, $H_{k}(x ; G)$ is determñed by $H *(x) \oplus$ Tor.
III) Conomology \& Products.

Let M, N are R models, then $\operatorname{Hom}(M, N)$ is R-module def f^{*}

Let $f: M_{1} \rightarrow M_{2}$, then $f^{*}: \operatorname{Hom}\left(M_{2}, N\right) \rightarrow \operatorname{Hom}\left(M_{1}, N\right)$

$$
\alpha \mapsto \quad \alpha \circ \circ
$$

f^{*} is R-linear
def. Contravainent functor almost same as a functor except. $F(f \circ g)=F(g) \cdot F(f)$

$$
F: \varphi_{11} \rightarrow \varphi_{22}
$$

objects: $x \rightarrow F(x) \quad$ morphism $: f: x \rightarrow y \rightarrow F(f): F(y) \rightarrow F(x)$
satisfying $\quad F(1 x)=I_{F(x)} \quad F(f \circ g)=F(g) \circ F(f)$

Prop: \& detries a contravanout functor.

$$
\begin{aligned}
(f \circ g)^{*} \alpha=\alpha \circ(f \circ g) & =f^{*}(\alpha) \circ g=g^{*}\left(f^{*}(\alpha)\right) \\
\left\{\begin{array}{l}
R \text {-modules } \\
R-l i n e r ~ m o p s ~
\end{array}\right\} & \rightarrow\left\{\begin{array}{l}
R \text {-modes } \\
R-l i n e r \text { maps }
\end{array}\right\} \\
M & \rightarrow \operatorname{Hon}\left(M_{1}, N\right) \\
f & \longmapsto f^{*} \\
\left(f: M_{1} \rightarrow M_{2}\right) & \left(f^{*}: \operatorname{Han}\left(M_{2}, N\right) \rightarrow \operatorname{Hon}\left(M_{1}, N\right)\right)
\end{aligned}
$$

def (Hon $\left.(C, N), d^{*}\right)$ cochain complex
let (C, d) be a chain $C X$.
then $\quad\left(\operatorname{Hom}(C, N), d^{*}\right)=\oplus_{k} \operatorname{Hom}(C k, N)$

$$
d_{k}^{*}: \operatorname{Hom}\left(C_{k-1}, N\right) \rightarrow \operatorname{Hom}\left(C_{k}, N\right) \quad \text { satisfy } \quad\left(d^{*}\right)^{2}=0
$$

this is a cochain complex.
Let covariant functors $=$ finctors.
def covariant functors $($ chain $(x) \rightarrow($ cochain (X) :

$$
\begin{aligned}
&\left\{\begin{array}{c}
\text { chain }(x \text { over } R \\
\text { chain maps }
\end{array}\right\} \longrightarrow\left\{\begin{array}{l}
\text { cochain } C X \\
\text { cochain mps }
\end{array}\right\} \\
&(C, d)\left(\operatorname{Hom}(C, N), d^{*}\right) \\
& f:(C, d) \rightarrow\left(C_{1}^{\prime}, d^{\prime}\right) \longrightarrow \quad f^{*}:\left(\operatorname{Hom}\left(C^{\prime}, N\right), d^{\prime *}\right) \rightarrow(\operatorname{Hom}(C, N), d)
\end{aligned}
$$

def Cohomolegy
let $\left(C^{*}, d_{k}^{*}\right)$ be cochain $(x$. Then

$$
H^{*}(c)=\frac{\operatorname{ker} d_{k}^{*}}{\operatorname{lm} d_{k-1}^{*}}
$$

def. Singular cochain complex with coefficients in G
let X be a top space. Then its singular cochain $C x$ wi ceeffin G is

$$
\begin{gathered}
\left(\operatorname{Hom}\left(C_{*}(x), G\right), d^{*}\right) \\
C^{*}(x ; G)
\end{gathered}
$$

Its $K^{\text {th }}$ singuler cohomology is

$$
H^{*}\left(C^{*}(X ; G)\right)=H^{*}(X ; G)
$$

Prop. extend the contravaricunt functor for pairs of spaces

$$
\begin{aligned}
H^{*}(X ; G):\left\{\begin{aligned}
\text { pair of spas } \\
m p \text { of pours }
\end{aligned}\right\} & \longrightarrow\left\{\begin{array}{l}
\mathbb{T} \text { mods } \\
\mathbb{Z}-\text { (in imps }
\end{array}\right\} \\
\text { space }(X, A) & \longmapsto H^{*}(X, A ; G) \\
f:(X, A)+(Y, B) & \longmapsto f^{*}:\left(H^{*}(Y, B ; G)\right) \rightarrow\left(H^{*}(X, A ; G)\right)
\end{aligned}
$$

f^{*} is map on the conorndryy indues by cochin mp $\left(f_{\#}\right)^{*}$

$$
\left\{\begin{array}{r}
\text { pairs of } s c \\
m p \text { of prs }
\end{array}\right\} \xrightarrow{i_{x}}\left\{\begin{array}{l}
\text { chain }(x \\
\text { chain amps }
\end{array}\right\} \xrightarrow{\text { Hon }(-, G)}\left\{\begin{array}{l}
\text { wchaincx } \\
\text { won mp }
\end{array}\right\} \rightarrow\left\{\begin{array}{l}
\mathbb{E}-\bmod \\
\mathbb{E} \text { iñormps }
\end{array}\right\} .
$$

week 5 lee 2
note: $C^{+}(X ; G)$ conneroly:

$$
\begin{aligned}
C^{*}(x ; G) & =\operatorname{hom}\left(c_{*}(x), G\right) \\
C^{k}(x ; G) & =\operatorname{hom}\left(C_{k}(x), G\right) \\
& =\left\{\alpha: C_{k}(x) \rightarrow G \mid \text { is } \mathbb{Z} \text {-linear }\right\}
\end{aligned}
$$

$\alpha \in C^{k}(x, G)$ is uniquely specified by $\alpha(\sigma)$ for $\delta: \Delta^{k} \rightarrow x$
note: $\left(d^{k}\right)^{2}=0$

$$
d_{k}^{*}: C^{k}(X ; G) \rightarrow C^{k+1}(X ; G)
$$

let $\alpha \in C^{k}(x ; G)$. Then $d^{*} k(\alpha) \in C^{k+1}(x ; G)=$ hon $\left(C_{k+1}\right)$

$$
\begin{aligned}
& d^{*} k(\alpha)(\sigma)=\alpha_{\phi} \quad d_{k} \quad \sigma \\
& d_{k}^{*}(\alpha)(\sigma)=\alpha d_{k} \sigma \\
& C_{k} \rightarrow G C_{k+H}+C_{k} C_{k+1} \\
& d_{k+1}^{*} \cdot d_{k}^{*}(\alpha)=\alpha_{0}(d k+1 \cdot d k)=0^{*}=0
\end{aligned}
$$

def cochain maps

$$
\begin{aligned}
& \text { If } f: x \rightarrow y, \quad f^{\#}: C^{k}(y ; G) \rightarrow C^{k}(x ; G) \\
& \left.f_{A}: C_{k}(x) \rightarrow C_{K}(y) \quad \text { ham } C_{K}(Y) ; G\right) \rightarrow \text { han }\left(C_{k}(x), G\right)
\end{aligned}
$$

$$
\begin{aligned}
& E C^{k}(y) \quad C_{k}(x) \quad C_{k} y \rightarrow G C_{k} x+C_{k} y C_{k}(x) \quad \underbrace{x \rightarrow y \Delta^{n} \rightarrow x}_{C_{k}(Y)}
\end{aligned}
$$

$f^{\prime} \alpha(\sigma)=\alpha f_{0}(\sigma)$ and C^{k} eat snth in C_{k} spit et G.

Pop. $f^{\#}$ is a cochain map

$$
\begin{aligned}
& d^{*} f^{\#}=f^{\#} d^{*} \\
& d^{*}: C^{k}\left(x_{i} G\right) \rightarrow C^{k+1}(x ; G) \quad, C^{k}(Y ; G) \rightarrow C^{k+1}(Y ; G) \\
& f^{\#}: C^{k}(Y ; G) \rightarrow C^{k}(x ; G)
\end{aligned}
$$

let $\alpha \in C^{k}(Y ; G) \quad \sigma \in C_{k}(Y)$

$$
\begin{aligned}
& \omega_{\sim}^{d} \underbrace{f \#}_{\pi}(\alpha)(\sigma)=f^{\#}(\alpha)(d \sigma) \\
& =f_{A}^{\#}(\alpha)\left(\sum_{j}(-1)^{j} \sigma \circ F_{I I j-j}\right) \\
& =\alpha \circ f\left(\sum_{j}(-1)^{\dagger} \sigma \circ F_{z(\dot{j} h}\right) \\
& =\alpha\left(\sum_{j}(-1)^{j} f \circ \sigma \circ F_{I \backslash j h}\right) \\
& =\sum_{j}(H)^{j} \alpha_{0} f_{0} \sigma \circ F_{\text {e }}(j-j) \\
& \left.=\sum_{j}(-1)^{j} \alpha_{0} f_{\sharp}\left(\sigma \cdot F_{j}\right)\right) \\
& \left.=\Sigma_{j}(-1)^{j} f^{\#} \circ \alpha\left(\sigma \circ F_{j}\right)\right) \\
& =f^{\#}\left(Z(-1)^{j} \cdot(\alpha \cdot \sigma) \circ F_{j}\right) \\
& =f^{\#} d(\alpha(\sigma))
\end{aligned}
$$

the pret is
note don't work?

Cor. Since $f^{\#}$ is a cochain map. $f^{\#}$ indoors $f^{*}: H^{*}(Y ; G) \rightarrow H^{*}\left(X_{j} G\right)$

$$
f^{*}([a]) \mapsto\left[f^{\#}(\alpha)\right]
$$

deft. Cornain homotopies
let c, c^{\prime} be corhains, $f, g: c \rightarrow c^{\prime}$, are cochain maps.
then fig are cochain honotopic if $f-g=d^{*} h+h d^{*}$ for some $h: C^{k} \rightarrow\left(C^{\prime}\right)^{k-1}$ is R-liner
lemma: if $f \sim g$ then $f^{*}=g^{*}$
lemma: if $f, g: C \rightarrow C^{\prime}($ just chain, not whens)
$f \sim g$ via h_{1} then $f^{*}, g^{*}: \operatorname{Hom}\left(C^{\prime} ; N\right) \rightarrow \operatorname{Han}(C i N)$ via h^{*}
note. flings true for nom is true for coho.
Eilenterg Steennod:
$H^{*}(-; G)$ defines controviarant finctors:

$$
\begin{aligned}
& \left\{\begin{array}{c}
\text { pairs of spares } \\
m p \text { of pairs }
\end{array}\right\} \longrightarrow\left\{\begin{array}{l}
\mathbb{r}-\operatorname{md} \\
\mathbb{r}-\ln m p
\end{array}\right\} \\
& C^{*}\left(X, A_{;} G\right) \rightarrow\left\{f: C_{k}(x) \rightarrow G \mid f(s) \cdot \sin , f(\sigma)=0 \text { if }(m(\sigma) \subset A\}\right.
\end{aligned}
$$

Prop. Properties of cohomolagy

1) If $f_{0}, f_{1}:(x, A) \rightarrow(4, B)$, $f_{1} \sim f_{0}$, as mp of pairs, then

$$
f_{0}^{*}=f_{1}^{*}=H^{*}(y, A) \cong H^{\star}(x, A)
$$

Pref: $f_{0} \neq$, fi\#t are chain hip, so $f_{0}^{\ddagger}, f_{1}^{\#}$ are cochain hwy.
2) LES of pair

$$
\begin{aligned}
& \text { ES of pair } \begin{array}{c}
\text { functions vanish on } \\
\text { simplico in } A
\end{array} \\
& 0 \rightarrow C^{*}(X, A) \xrightarrow{*}(X) \rightarrow C^{*}(A) \rightarrow 0 \\
& \text { Get LES } \rightarrow H^{k}(X, A) \xrightarrow{\pi^{*}} H^{k}(X) \xrightarrow{2^{*}} H^{*}(A) \xrightarrow{\delta} H^{*+1}(X, A) \rightarrow \cdots
\end{aligned}
$$

3) excision: $B C A C X, \bar{B}($ int $C A)$, then

$$
z^{*}: H^{*}(x, A) \rightarrow H^{*}(x-B, A-B) \text { is an } \underline{\Omega}
$$

Pret require ex shat
4) dirasion $H^{*}(3.4, G)=\left\{\begin{array}{ll}G & x=0 \\ 0 & \text { a.w. }\end{array} \quad\right.$ haw to shew?
nate: work b / c nonobgy over PID \mathbb{Z}, free $\Rightarrow \sim$ equiculat.
Thy. Any functor satisfying above axioms for $\left\{\begin{array}{l}\text { pair spae } \\ \mathrm{mp} . \text { paris }\end{array}\right\}$ z. mod $\left\{\begin{array}{l}\text { z.linmps. }\end{array}\right\}$ Is given by Hell $^{*}(x, G)$

Where $C_{\text {cere }}^{*}(X ; G)=\operatorname{Hom}\left(C_{*}^{\text {cell }}(X) ; G\right)$

$$
H_{\text {cere }}^{*}(x ; G)=H^{*} \text { cell }\left(C_{\text {cell }}^{*}(X ; G)\right)
$$

Thu: H^{*} ear $\left(x_{j} G\right)=H^{*}\left(x_{j} G\right)$ if x is a $f(c$
Ex. $\quad H^{*}$ cal ($\left.\mathbb{R} \mathbb{P}^{3}, \geq 2 / 2\right)$

$$
\begin{aligned}
& C_{*}^{\text {cell }}\left(\mathbb{R} \mathbb{P}^{3}\right)=\mathbb{Z} \rightarrow \mathbb{Z} \stackrel{.2}{\longrightarrow} \mathbb{Z} \rightarrow \mathbb{Z} \\
& C^{*} \text { cell }\left(\mathbb{R P}^{3}\right)=\mathbb{Z} \longleftarrow \mathbb{Z} \longleftarrow \mathbb{Z} \leftarrow \mathbb{Z} \\
& H^{*} \text { cell }\left(\mathbb{R} \mathbb{P}^{3}\right)= \begin{cases}\mathbb{Z} & d=0,3 \\
z / 2 & x=2 \\
0 & 0 . \omega .\end{cases}
\end{aligned}
$$

Ext and UCT
def. Ext ${ }^{i}(M, N)$
M, N are A-modules. Then $E_{x t} \dot{l}(M, N)=H^{i}(A, N), A$ is a free res of M.

$$
\text { Tor i } \begin{aligned}
(M, N)=H_{i}(A \otimes N) \quad \text { nate } E_{x+}^{0}\left(H_{k}(x) ; G\right) & =H^{0}(A ; G) \\
& =H_{o m}\left(H_{k}(x) ; G\right)
\end{aligned}
$$

Ex Ext $(\mathbb{Z} / n, \nless<)$.

$$
A: \mathbb{Z} \xrightarrow{n} \mathbb{Z} .
$$

$$
\begin{aligned}
& \text { Ext }{ }^{\circ}\left(\mathbb{U} / n_{1} \mathbb{Z}\right)=0
\end{aligned}
$$

$E x T^{7}(Z / n, Z / n)=\left\{\begin{array}{ccc}Z / n & x=0.1 \\ 0 & 0 . w .\end{array}\right.$ as $H^{0}(A, Z / n)=Z / n$ by the prop above. (4 Eilecrbey, $\begin{array}{l}\text { Streenced ax). }\end{array}$

Thy write H^{i} as Something \& Ext
nate we could wite $H_{i}(A \otimes N)=H_{i}(A) \otimes N \oplus$ Tor
We also write $H^{k}(X ; G)=\operatorname{Hom}\left(H_{k}(X) j G\right) \oplus E_{x+1}{ }^{\prime}\left(H_{k-1}(X) ; G\right)$

$$
=\operatorname{Ext}^{\circ}\left(H_{k}(X) ; G\right) \oplus \operatorname{Ext}^{\prime}\left(H_{k-1}(X) ; G\right)
$$

PRef Split $C_{x}^{\text {cull }}(x)$ into \oplus of short injeetre $(x s$.

Ex. let x be a fac
$H_{k}(x)=\mathbb{Z}^{b k} \oplus T_{k} \quad$ (struetre hm , $\mathbb{z}^{\text {bk }}$ free, T_{k} finite)
$H^{k}(x)=\mathbb{Z}^{b k} \oplus T_{k-1}$ does T_{k} link for to Ext?

Pairing
def $<-1,7$ biliner Paving
Let C be a $C X$ over R then we get bilinear pairry

$$
\begin{aligned}
\langle-, \rightarrow\rangle: \operatorname{Hom} C(k ; N) \times C_{k} & \rightarrow N \\
\langle\alpha, c\rangle & \mapsto \alpha(c)
\end{aligned}
$$

lena: the above pairing descent to a pair $H^{k} x H_{k}$

$$
\begin{aligned}
H^{k}(\operatorname{Hom}(C, N)) \times H_{k}(c) & \longrightarrow N \\
\langle[\alpha],[c]\rangle & \longmapsto \alpha(c)
\end{aligned}
$$

If WT S well detred. ll.

$$
\begin{gathered}
\left\langle\left[\alpha+d^{*} \beta\right],[c+d b]\right\rangle=\{[\alpha],[c]\} . \\
\Rightarrow \quad\left(\alpha+d^{*} \beta\right)(c+d b) \\
=\alpha(c)+\alpha d b+d^{*} \beta c+d^{*} \beta d b \\
=\alpha(c)+d^{*}(\alpha b)+d^{*}(\beta c+\beta d b) \\
=\alpha(c)+d^{*}(\alpha b)+\beta(d c+d d b) \\
d^{*} \alpha=0,1 * \alpha \text { coy ce } \\
d(c+d b)=0
\end{gathered}
$$

Week 5 lee 3
cup product. (R is a commutative ing $(\mathbb{Z}, \mathbb{Z} / n, \mathbb{Q}, \mathbb{R})$)
def cup product
If $\alpha \in C^{k}(x ; R) \quad \beta \in c^{l}(x ; R)$ then $\alpha \cup \beta \in c^{k+l}(x ; R)$ given by

$$
\begin{aligned}
& \underset{\substack{\Delta^{k+l} \rightarrow x}}{\alpha \cup \beta(\sigma)}=\alpha(\underbrace{\dagger}_{\Delta^{k} \rightarrow x}(\underbrace{\sigma}_{\Delta^{k} \rightarrow x \rightarrow \Delta^{k+1}} \cdot \underbrace{F_{0}}_{0, \ldots k}) \beta\left(\sigma \cdot F_{k} \ldots k+l\right) \\
& \text { where } F_{0} \ldots k: \Delta^{k} \rightarrow \Delta^{k+l} \\
& \left(x_{0}, \cdots x_{k}\right) \rightarrow\left(x_{g} \cdots x_{k}, 0, \cdots 0\right) \\
& F_{k \cdots k+l}: \Delta^{l} \rightarrow \Delta^{k+1} \\
& \left(x_{0,} \cdots x_{l}\right) \rightarrow\left(0, \cdots 0, x_{0} \ldots x_{l}\right)
\end{aligned}
$$

lemma U nares $C^{*}(X ; R)$ into a commutative ring
wi identity $1 \in C^{0}(x, R), \quad l\left(\sigma_{p}\right)=1 \in R, \quad \sigma_{p}: \Delta^{0} \rightarrow x$
(1) $\rightarrow p$

Proof cheek

1) $(\alpha \cup \beta) \cup \gamma=\alpha \cup(\beta \cup \gamma)$
2) $\left(\alpha_{1}+\alpha_{2}\right) \beta=\alpha_{1} v \beta+\alpha_{2} v \beta$

Verify this
3) $\quad \alpha u\left(\beta_{1}+\beta_{2}\right)=\alpha v \beta_{1}+\alpha u \beta_{2}$
4) $\quad \alpha v|=| v \alpha=\alpha$

Lemma Leibniz rule
If $\alpha \in C^{k}(x ; R) \quad \beta \in C^{l}(x ; R)$ then $d^{*}(\alpha \cup \beta)=\left(d^{*} \alpha\right) \cup \beta+(-1)^{k} \alpha \cup\left(d^{+} \beta\right)$
Proof note that $\alpha \cup \beta=C^{l+k}, \quad d(\alpha \cup \beta)=C^{l+k+1} \quad \sigma \in C_{l+k+1}$.

$$
\begin{aligned}
d^{k}(\alpha \cup \beta)(\sigma) & =(\alpha \cup \beta) d \sigma \\
& =(\alpha \cup \beta) \sum_{j=0}^{k+l+1}(-1)^{j} \cdot \sigma \cdot F_{j} \\
& \left.=\sum_{j=0}^{k+l+1}(-1)^{j} \alpha\left(\sigma \cdot F_{\hat{j}}^{j} \cdot F_{0 \ldots k}\right) \beta\left(\sigma \cdot F_{\hat{j}} \cdot F_{k \ldots \ldots k+l}\right)\right)_{b} \\
& =\sum_{j=0}^{k+1}(-1)^{j} \alpha\left(\sigma \cdot F_{0} \ldots \hat{j} \cdot k\right) \beta\left(\sigma \cdot F_{k+\cdots k+l+1}\right) \\
& +\sum_{j=k+1}^{k+1}(-1)^{j} \alpha\left(\sigma 0 F_{0} \cdots k\right) \beta\left(\sigma \cdot F_{k \cdots \hat{j}} \cdots \cdots+l+1\right) \\
& =(d \alpha) \cup \beta+(-1)^{k} \alpha \cup(d \beta)
\end{aligned}
$$

Cor U descends to a map

$$
\begin{aligned}
U: H^{k}(x ; R) \times H^{l}(x ; R) & \longrightarrow H^{k+l}(x ; R) \\
{[\alpha] x[\beta] } & \mapsto[\alpha \cup \beta]
\end{aligned}
$$

this mokes $H^{*}(X ; R)$ into a ring with []$=1$.
Proof cheek contecinmest then well -defined ness.
(1) check containment
let $[\alpha] \in H^{k}(x, R),[\beta] \in H^{d}[x, R]$
have $d^{*} \alpha=0$ and $d^{*} \beta=0$
then. $\quad d^{*}(\alpha \cup \beta)=d^{k}(\alpha) \cup \beta+(-1)^{l} \alpha \cup d^{*} \beta=0 \cup \beta+(-1)^{l} \alpha \cup 0=0$
So, $[\alpha \cup \beta] \in H^{k+l}(X ; R)$
(2) cheek doesn't depend on representatives

If $\left[a^{\prime}\right]=[\alpha], \quad \alpha^{\prime}=\alpha+d^{*} a$

$$
\left[\beta^{\prime}\right]=[\beta], \quad \beta^{\prime}=\beta+d^{*} \beta
$$

$$
\text { then } \begin{array}{r}
\alpha^{\prime} \cup \beta= \\
=\alpha \cup \beta+\left(d^{*} a\right) \cup \beta+\alpha \cup d^{*} \beta+d^{*} \alpha \cup d^{*} \beta \\
=\alpha \cup \beta+d^{*}(a \cup \beta)+\left(\alpha+d^{*} \alpha\right) \cup\left(d^{*} \beta\right) \\
\downarrow=0
\end{array}
$$

so $[\alpha \cup \beta]=\left[\alpha^{\prime} \cup \beta\right]$
(3) $\quad d^{*} 1=0 . \quad d^{*} 1(z)=1 \cdot d(z)=1_{\sigma_{z}(1)-\sigma_{i(0)}}=1-1=0 \quad z \neq C_{1}(x)$.

Prop Continuous maps induce ring homomorphism
If $f: x \rightarrow y$, then $f^{*}: H^{*}(Y ; R) \rightarrow H^{*}(X ; R)$ is a ring homomorphisms.
le. $f^{*}(\alpha \cup \beta)=f^{*}(\alpha) \cup f^{*}(\beta)$
Proof: $1^{\text {st }}$ Show \# works.
consider $f^{\#}: C^{*}(\varphi ; R) \longrightarrow C^{*}(X ; R)$

$$
\begin{aligned}
& f^{\#}(\alpha \cup \beta)(\delta) \\
= & \left(\alpha \cup(y) c_{k+l}^{k+l}(y) f_{0}\right. \\
& (\alpha+l(x) \\
= & \alpha \cdot\left(f \circ \sigma \cdot F_{0 \cdots k}\right) \beta\left(f \circ \sigma \cdot F_{k \cdots k+l}\right) \\
= & f^{\#}(\alpha) \cdot \sigma \cdot F_{0 \cdots k} \cdot f^{\#}(\beta) \cdot \sigma \cdot F_{k} \cdots k+l \\
= & \left(f^{\#}(\alpha) \cup f^{\#}(\beta)\right) \sigma
\end{aligned}
$$

so $f^{\#}(\alpha \cup \beta)=\left(f^{\#} \alpha\right) \cup f^{\#}(\beta)$
So $\quad f^{*}[\alpha \cup \beta]=\left[f^{\#}(\alpha \cup \beta)\right]=\left[f^{\#}(\alpha) \cup f^{\#}(\beta)\right]=f^{*}[\alpha] \cup f^{*}[\beta]$

Prop. U on $H^{*}(X ; R)$ is graded commutative
le. $a \cup \beta=(-1)^{|a||b|} \beta \cup \alpha \quad|a|=k$ of $a t H^{k}(X ; R)$
Proof consider main map $r: C_{*}(x) \rightarrow C_{+}(x)$:

$$
\rho_{n}: \Delta^{n} \rightarrow \Delta^{n} \quad \text { be liner map } \quad p_{2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

$$
e_{i} \rightarrow e_{n i}
$$

let $\varepsilon(j)=\frac{j(j+1)}{2}=\sum_{i=0}^{j} i \quad \operatorname{det} \rho_{j}=(-1)^{\varepsilon_{j}}$ define $\quad r_{j}, C_{j}(x) \rightarrow C_{j}(x)$

$$
\sigma \mapsto(-1)^{\varepsilon_{(j)}} \sigma_{0} \rho_{j}
$$

theorem $\left\{\begin{array}{l}\text { then, } 1) r: C_{x}(x) \rightarrow C_{*}(x) \text { is } \\ \text { 2) }\left.r \sim\right|_{C r}(x)\end{array}\right.$
now, back to proving the proposition,

$$
r: C^{*}\left(x_{i} ; R\right) \rightarrow C^{*}\left(x_{i} ; R\right)
$$

dudlizing $r \Rightarrow r^{*}: C^{*}(x ; R) \rightarrow C^{*}(X ; R) \quad r^{*} \sim \mid c^{*}(x) \quad$ so $\quad\left[r^{*}(\alpha)\right]=[\alpha]$.

$$
\begin{aligned}
& \text { then }(-1)^{\varepsilon(|\alpha|+(\beta))} r^{*}(\alpha \cup \beta) \\
&=(-1)^{\varepsilon|\alpha|}(-1)^{\varepsilon(\beta \mid} r^{*}(\beta) \cup r^{*}(\alpha) \\
& \text { l.e. }[\alpha \cup \beta]=\left[r^{*}(\alpha \cup \beta)\right]=(-1)^{\varepsilon(|\alpha| \beta \mid)}(-1)^{\varepsilon[|\alpha|)}(-1)^{\varepsilon(\beta \mid)}\left[r^{*}(\beta) \cup r^{*}(\alpha)\right] \text { reverse } \text { ord } \\
&=(-1)^{|\alpha| \beta \mid}[\beta] \cup[a]
\end{aligned}
$$

Proof r is a chain map

Week 6 lee 1.
thu
Proof is quite complicated here skipped. Must comeback in future!!!

One this thearan is shown, graded commutativity is come back! proven Hence $H^{*}(X ; R)$ is a graded commutative ring.

$$
\begin{aligned}
& \rho_{n \circ} F_{\hat{\jmath}}=F_{n-j}^{\wedge} \circ \rho_{n-1} \quad \text { real } r_{j}(\sigma)=(-1)^{\varepsilon(j)} \sigma \circ \rho|\sigma| \\
& \text { So, } d(r(\sigma))=(-1)^{\varepsilon(\mid \sigma 1)} \sum(-1)^{j} \sigma \cdot \rho_{(\sigma)^{\circ}} F_{\hat{j}} \\
& =(-1)^{\varepsilon(|\sigma|)} \sum(-1)^{j} \circ \sigma_{0} F_{n \hat{j}} \circ \rho_{1 \sigma \mid-1} \\
& =(-1)^{|\sigma|}(-1)^{\varepsilon(\mid \sigma 1)} \sum(-1)^{n-j} \sigma \cdot F_{n-j}^{\wedge} \rho_{n-1} \\
& =r_{n-1}(d \sigma)
\end{aligned}
$$

Pairs using \mathbb{Z} coefficients
Recall that, $C^{*}(X, A) \subset C^{*}(X), C^{*}(X, A)=\left\{\alpha \in \operatorname{hom}\left(C_{*}, R\right): \alpha(\sigma)=0\right.$ if $\left.\operatorname{im}(\sigma) \subset A\right\}$

Prop. If $\alpha \in C^{k}(x, A), \beta \in C^{l}(x)$ then $\alpha \cup \beta \in C^{*}(x, A)$
let $\alpha \in C^{*}(x, A), \beta \in C^{l}(X)$ if $\operatorname{im}(\sigma) C A_{1}$ then $\operatorname{im}\left(\theta \cdot F_{0} \ldots k\right) C A$

$$
\begin{aligned}
\operatorname{\alpha v\beta }(\sigma) & =\alpha\left(\sigma \cdot F_{0-k}\right) \cdot \beta\left(\sigma \circ F_{k \cdots k+l}\right) \\
& =0 \cdot \beta\left(\sigma \cdot F_{k \cdots k+l}\right)=0
\end{aligned}
$$

so av $\beta \in C^{*}(x, A)$.

$$
\text { cor. descends to a map } \begin{aligned}
H^{*}(X, A) x H^{*}(X) & \rightarrow H^{*}(X, A) \\
(\alpha, \beta) & \rightarrow \alpha \cup \beta .
\end{aligned}
$$

Cor. generally, U defines a map $H^{*}(X, A) \times H^{*}(X, B) \rightarrow H^{*}(X, A \cup B)$
proof: example sheet.

Examples of cup products \& colvomology

1) If X is path connected, $H_{0}(x) \simeq \mathbb{Z}$. $H^{0}(x) \simeq \operatorname{mom}\left(H_{0}(x), \mathbb{Z}\right)=\mathbb{Z}$ (sine $H_{-1}(x)=0$ by UCT) Recall $H^{k}(x ; t)=\operatorname{Hom}\left(H_{k}(X) ; G\right) \oplus \operatorname{Ext}^{\prime}\left(H_{-1}(X) ; G\right)$
$H^{\circ}(x)=\langle 1\rangle$. sine if $\sigma_{p} \in C_{0}(x),\left\langle 1,\left\langle\sigma_{p}\right\rangle\right\rangle=1$ so 1 is punitive s not a multiple of identify element in C^{*}.
2) Recall $H_{*}\left(S^{n}\right)=\left\{\begin{array}{ccc}\mathbb{Z} & x=0, n \\ 0 & 0 . w .\end{array}\right.$ is free over \mathbb{Z}.
then UCT implies $\quad H^{k}(x, G)=\operatorname{Hom}\left(H_{k}(x) ; G\right) \oplus E x+^{\prime}\left(H_{k-1}(x) j G\right)$

$$
=\operatorname{Hom}\left(H_{k}(X) ; \mathbb{Z}\right)=\left\{\begin{array}{rr}
\mathbb{Z} & x=0, n \\
0 & 0.0
\end{array}\right.
$$

$$
\left.\begin{array}{l}
H^{0}\left(S^{n}\right)=\langle 1\rangle \\
H^{n}\left(S^{n}\right)=\langle a\rangle .
\end{array}\right\} \quad \begin{aligned}
|v| & =1 \\
a v \mid & =a=1 \cup a \\
a v a & \in H^{2 n}\left(S^{n}\right)=0
\end{aligned}
$$

therefore, $H^{*}\left(S^{n}\right)=\mathbb{z}[\alpha] /\left(a^{2}\right) \quad|a|=n$. grading?
$a^{2}=0$ this is a $\quad \mathrm{n}$ g satisfying: geneated bf $1, a, a^{2}=0$,
3) If X is P.c., $P \in X$

$$
i_{*}: H_{0}(P) \cong H_{0}(X)
$$

$$
\Rightarrow H^{\circ}(x) \longrightarrow H^{\circ}(p) \quad \text { is an } \simeq \text {. so } H^{*}(x, p)=\operatorname{ker}\left(H^{*}(x) \rightarrow H^{*}(p)\right)
$$

$$
\underset{Z}{\|} \xrightarrow{\Perp}
$$

$$
\frac{H^{*}(x)}{k e r} \cong H^{*}(\rho)
$$

so $\operatorname{ker} \cong \frac{H^{*}(x)}{H^{*}(p)}=H^{*}(x, p)$
\forall at $0, H^{\circ}(x)+H^{\circ}(p)$ Kero.
at $i \neq 0 \quad H^{i}(p)=0$, eraytring in kernel.
so $\quad H^{*}(x, p) \longrightarrow H^{*}(x) \longrightarrow H^{*}(p)$ are indued by map of pairs. this is true as a ring homomuphion.
4) Prop. Structure of $H^{*}(x \Perp Y) \simeq H^{*}(x) \times H^{*}(Y)$ (direct product of rings

$$
\underline{\simeq H^{*}(x) \oplus H^{*}(y)} \quad\left(\begin{array}{l}
\left(a_{1}, b_{1}\right) \cup\left(a_{2}, b_{2}\right)=\left(a_{1} v a_{2}, b_{1} \cup b_{2}\right) \\
f H^{*}(x) \in H^{*}(y)
\end{array}\right.
$$

proof:
Show $\quad C^{*}(x \not \Perp Y)=C^{k}(X) \times C^{*}(Y)$
since $\quad C_{x}(x \Perp Y)=C_{x}(x) \oplus c_{x}(\psi)$
have $C^{*}(x \Perp y)=\operatorname{Hom}\left(C_{*}(x \Perp y), \mathbb{Z}\right)$

$$
\begin{aligned}
(\alpha) & =\operatorname{Hom}\left(C_{*}(x) \oplus C_{1}(y), \mathbb{Z}\right) \\
& =\operatorname{Hon}\left(C_{*}(x), \mathbb{Z}\right) \times \operatorname{Hom}\left(C_{*}(y), \mathbb{Z}\right) \\
& =C^{x}(x) x C^{*}(y) \\
& =\left(\alpha_{1}, \alpha_{2}\right)
\end{aligned}
$$

define α as $\alpha(\sigma)= \begin{cases}\alpha_{1}(\sigma) & \text { if } \mathrm{im} \sigma \subset X \\ \alpha_{2}(\sigma) & \text { if } \mathrm{im} \sigma \subset Y\end{cases}$

$$
d^{*}\left(\alpha_{1}, \alpha_{2}\right)=\left(d^{*} \alpha_{1}, d^{*} \alpha_{2}\right) \quad \Rightarrow \quad H^{*}(x \Perp y) \simeq H^{*}(x) \oplus H^{*}(y)
$$

$\begin{array}{ll}\text { now show } \quad\left(\alpha_{1}, \alpha_{2}\right) \cup & \left(\beta_{1}, \beta_{2}\right) \\ c^{t}(x) c^{c}(y) & c^{c}(x) c^{*}(\varphi)\end{array}=\left(\alpha_{1} \cup \beta_{1}, \alpha_{2} \cup \beta_{2}\right)$

See on simplices

$$
\begin{aligned}
\left(\left(\alpha_{1}, \alpha_{2}\right) \cup\left(\beta_{1}, \beta_{2}\right)\right)(\sigma) & =\left(\alpha_{1}, \alpha_{2}\right)\left(\delta \cdot F_{0} \ldots k\right)\left(\beta_{1}, \beta_{2}\right)\left(\sigma \cdot F_{k} \ldots k+l\right) \\
& = \begin{cases}\text { if } m(\sigma)(x, & \alpha_{1}\left(\sigma \cdot F_{0} \cdots k\right) \beta_{1}\left(\sigma \cdot F_{k} \ldots k+l\right) \\
\text { if } m(\sigma) c y_{3} & \alpha_{2}\left(\sigma \cdot F_{0} \ldots k\right) \beta_{2}\left(\sigma \cdot F_{k} \ldots k+l\right)\end{cases} \\
& =\left(\alpha_{1} \cup \beta_{1}, \alpha_{2} \cup \beta_{2}\right)(\sigma)
\end{aligned}
$$

Proof Scheme:
Statement: $\quad H^{*}(x \Perp y) \simeq H^{*}(x) \times H^{*}(y)$
proof: $\quad \omega C^{*}(x \Perp y) \simeq C^{x}(x) \times C^{*}(y)$ sine dr es in one of x, y, makes soave $w . d^{*}$.

$$
\begin{aligned}
& L \quad d^{k}\left(\alpha_{1} \beta\right)=\left(d^{k} \alpha, d^{+} \beta\right) \Rightarrow H^{*}(\quad) \simeq H^{+}() \times H^{+}() \\
& H \quad\left(\alpha_{1}, \alpha_{2}\right) \cup\left(\beta_{1}, \beta_{2}\right)=\left(\alpha_{1} \cup \beta_{1}, \alpha_{2} \cup \beta_{2}\right)
\end{aligned}
$$

Week 6 lecture 2

Recall that if X is P.C. $H^{*}(x, p)=\underset{i>0}{\left(f^{i}(x)\right.}$ is an ideal in $H^{*}(x)$.

Example \#5
5. compute $H^{*}((x, p) \vee(y, q))$
suppose $\left(X, P_{x}\right),\left(Y, P_{y}\right)$ are good pairs, and x, y are P.C.

$$
(x \vee y, p)=\pi\left(\left(x \Perp y, P_{x} \Perp P_{y}\right)\right)
$$

collapsing a pair, $\pi^{*}: H^{*}(X \vee Y, P) \xrightarrow{\cong} H^{*}\left(x \Perp Y, P_{x} \Perp P_{y}\right)$ Heal π^{*} goes opposite direction

$$
=H^{*}(x, p) \oplus H^{*}(\psi, p) \subset H^{*}(x) \oplus H^{*}(y)
$$

So, $H^{i}(X \vee Y)=\left\{\begin{array}{rl}H^{i}(X) \oplus H^{i}(Y) & i>0 \\ \langle 1\rangle \underline{u} \mathbb{Z} & i=0\end{array}\right.$
for multiplication, $\left(a_{1}, a_{2}\right) \cup\left(b_{1}, b_{2}\right)=\left(a_{1} \cup b_{1}, a_{2} \cup b_{2}\right)$ if grading of $a_{i}, b_{i}>0$

$$
H^{*}\left(s^{2} v s^{2} V s^{4}\right)=\left\langle 1, a, a^{6}, b\right\rangle \text {, write } H^{n}\left(s^{n}\right)=\left\langle a_{n}\right\rangle \text {. }
$$

have a, a^{\prime}, b defined as follows:

$$
\begin{aligned}
& a=\left(a_{2}, 0,0\right) \in H^{2}\left(s^{2}\right) \oplus H^{2}\left(s^{2}\right) \oplus H^{2}\left(S^{4}\right) \in H^{2}\left(s_{2} v s_{2} v s_{4}\right) \\
& a^{\prime}=\left(0, a_{2}, 0\right) \\
& b=\left(0,0, a_{4}\right) \in H^{4}\left(s^{2}\right) \oplus H^{4}\left(s^{2}\right) \oplus H^{4}\left(s^{4}\right) \in H^{4}\left(s_{2} V s_{2} V s_{4}\right)
\end{aligned}
$$

$a \cup a^{\prime}=\left(a_{2}, 0,0\right)\left(0, a_{2}, 0\right)=(0,0,0)=0$ no intersecting up products.

Exterior Product.
defn. Setup for projection
Setup: (x, A) pair of spaces, Y is a space.

$$
\left.\begin{array}{rr}
\pi_{1}:(x \times y, A \times y) \rightarrow(x, A) & \pi_{2}: x \times y
\end{array}\right) \rightarrow y
$$

def. Exterior Product.
If $a \in H^{k}(X, A), \quad b \in H^{\ell}(Y)$, then their exterior product is exterior product depends

$$
a \times b=\pi_{1}^{\varepsilon}(a) \cup \pi_{2}^{\ddagger}(b) \quad \in H^{k+l}(X \times Y, A \times Y)
$$

$$
\begin{array}{ccc}
x & d & 4 \\
H^{k}(x \times Y, A \times Y) & H^{l}(x \times 4) & \text { legal as proven before. }
\end{array}
$$

observations of exterior product.

1) $H^{*}(X, A) \times H^{*}(Y) \longrightarrow H^{*}(X \times Y, A \times Y)$
$(a, b) \longmapsto a \times b$ is bilinear heme it extends to

$$
\Phi: H^{*}(X, A) \otimes H^{*}(Y) \longrightarrow H^{*}(X \times Y, A \times Y)
$$

$$
a \otimes b \longmapsto a \times b
$$

2) $\left(a_{1} \times b_{1}\right) \cup\left(a_{2} \times b_{2}\right)=(-1)^{\left|b_{1}\right|\left|a_{2}\right|}\left(a_{1} \cup a_{2}\right) \times\left(b_{1} \cup b_{2}\right)$

Proof:

$$
\begin{aligned}
L H S & =\left(\pi_{1}^{*}\left(a_{1}\right) \cup \pi_{2}^{*}\left(b_{1}\right)\right) \cup\left(\pi_{1}^{*}\left(a_{2}\right) \cup \pi_{2}^{*}\left(b_{2}\right)\right) \\
& =(-1)^{\left|b_{1}\right| a_{2} \mid} \pi_{1}^{*}\left(a_{1}\right) \cup \pi_{1}^{*}\left(a_{2}\right) \cup \pi_{2}^{*}\left(b_{1}\right) \cup \pi_{2}^{*}\left(b_{2}\right) \quad \pi^{*} \text { is a ring hon writ. } \\
& =(-1)^{\left|b_{1}\right|\left|a_{2}\right|} \pi_{1}^{*}\left(a_{1} \cup a_{2}\right) \cup \pi_{2}^{*}\left(b_{1} \cup b_{2}\right) \quad \text { the multiplication } \cup . \\
& =(-1)^{\left|b_{1}\right|\left|a_{2}\right|}\left(a_{1} \cup a_{2}\right) \times\left(b_{1} \cup b_{2}\right)
\end{aligned}
$$

Thy. exterior product indued tensor gives isomorphism.
If $H^{*}(Y ; R)$ is free over $R_{1}^{\text {, mportant (ie. }}$ then

$$
\Phi: H^{*}(X, A ; R) \otimes \underbrace{H^{+}(Y ; R)} \rightarrow H^{*}(X \times Y, A \times Y ; R) \text { is an } \simeq \text {. }
$$

consequences:

1) We can use this to compute $H^{*}(X \times Y ; R)$ from $H^{*}(X ; R), H^{*}(Y ; R)$
2) gives w ring structure on $H^{*}(X \times y ; R)$, by observation 2).

Example 1. Exterior product
$T^{2}=S^{1} \times S^{\prime} \quad$ The theorem applies as $H^{*}\left(S^{\prime}\right)$ is free over \mathbb{Z}.
done

$1 \mathbb{Z}$	\mathbb{Z}^{\prime}	\mathbb{Z}^{2}
$0 \mathbb{Z}$	\mathbb{Z}^{0}	\mathbb{Z}^{1}
$H^{*}(s)$	\mathbb{Z}	\mathbb{Z}
$H^{*}(S)$	0	1

It has rank 4.
$b^{2}=0$ for similar reasons.

$$
a \cup b=\left(a_{1} \times 1\right) \cup\left(\mid \times a_{1}\right)=(-1)\left(a_{1} v \mid\right) \times\left(\mid \cup a_{1}\right)=a_{1} \times a_{1}=c
$$

$$
b v a=(-1)^{-11} a \cup b=-c \quad \text { This gie) us the ring structure of } H^{*}\left(T^{2}\right)\left\{\begin{array}{l}
\{0, a, b, c\} \\
\left\{a^{2}=b^{2}=0, a b=c, b a=-c\right.
\end{array}\right.
$$

Example. $H^{*}\left(T^{n}\right)$ as a wedge product

$$
\begin{aligned}
H^{*}\left(T^{2}\right) & =\Lambda^{*}\left(\alpha_{1}, \alpha_{2}\right), \quad \alpha_{1}=a_{1} \quad \alpha_{2}=b, \\
\alpha_{i} \alpha_{j} & =-\alpha_{j} \alpha_{i} \quad \forall i, j
\end{aligned}
$$

More genially, $H^{*}(T n)=\underbrace{H^{2}\left(S^{\prime}\right) \otimes \cdots \otimes H^{*}\left(S^{\prime}\right)} \cong \Lambda^{*}\left\langle\alpha_{1}, \cdots, \alpha_{1}\right\rangle \quad, \alpha_{i}=|x| x \cdots \underset{\substack{ \\\times 1 \times a_{1} \times 1 \times \cdots \\ \text { position } i}}{ }$

Ex 2. Group structure of $H^{*}\left(s^{2} \times s^{2}\right)$
$H_{x}\left(s^{2}\right)$ is fire so $H^{*}\left(s^{2} \times s^{2}\right)=H^{*}\left(s^{2}\right) \otimes H^{*}\left(S^{2}\right)$

yeld for $a n y ~ \alpha \in H^{\prime}\left(r^{2}\right), \alpha^{2}=0$ as ava $=-a v a$.
here $H^{*}\left(s^{\prime} x s^{1}\right), H^{*}\left(s^{2} x s^{2}\right)$ are different.

$$
\begin{aligned}
& H^{*}\left(s^{\prime} \times s^{\prime}\right)\left\{\begin{array}{llll}
\mathbb{Z} & d=2 & \left\langle\tilde{a}_{1 \times a} a_{1}\right\rangle=\langle c\rangle, \text { where }\left\langle a_{1}\right\rangle=H^{\prime}\left(s^{\prime}\right) & \text { (or }\left\langle\left[s^{\prime}\right] \times\left[s^{\prime}\right]\right\rangle \\
z^{2} & x=1 & \left.\left\langle a_{1} \times\right|,\left|x a_{1}\right\rangle\right\rangle=\langle a, b\rangle . & \left\langle\left[s^{\prime}\right] x\right|,\left|x\left[s^{\prime}\right]\right\rangle \\
\mathbb{Z} & x=0 & \langle\mid \times 1\rangle=\langle 1\rangle & \langle | x| \rangle .)
\end{array}\right. \\
& a^{2}=(a, x \mid) \cup(a|x|) \quad(a, x \mid) \cup(a, x \mid) \\
& =\left(a_{1}^{2} x \mid\right)=0 \quad(-1) \quad\left(a_{1}, v a_{1}, 1\right) \text { since } a_{i}^{2} \in H^{2}\left(s_{1}\right)=0
\end{aligned}
$$

Cor. $s^{2} \times s^{2}$ is not hon. equivalent to $s^{2} V s^{2} V s^{4}$ though they have same homology.

$$
H_{i}=\left\{\begin{array}{ll}
\mathbb{Z} & i=0 \\
z \oplus \mathbb{Z} & i=2 \\
\mathbb{Z} & i=4 \\
0 & 0 . w .
\end{array} \text { but in } H^{i}\left(S^{2} \times s^{2}\right) \quad \text { in } H^{i}\left(s^{2} \vee s^{2} \vee S^{4}\right) \text { if }|a|=|b|=\alpha, \quad a \cup b=0 .\right.
$$

Proof of the big the.
If $H^{\circ}(4 ; R)$ is free then,

$$
\Phi: H^{*}(X, A ; R) \otimes \underbrace{H^{+}(Y ; R)} \rightarrow H^{*}(X \times Y, A \times Y ; R) \text { is an } \simeq \text {. }
$$

Proof: We hare a contravariant functors:

$$
\begin{aligned}
& \bar{h}, \underline{h}:\left\{\begin{array}{c}
\text { Pairs of spaces } \\
m p \text { of pairs }
\end{array}\right\} \longrightarrow\left\{\begin{array}{l}
\text { graded } \mathbb{Z} \text {-modules } \\
\text { graded } \mathbb{Z} \text {-linear maps }
\end{array}\right\} \\
& \bar{h}(x, A)=H^{*}(X \times Y, A \times Y) \\
& f:(x, A) \rightarrow\left(x^{\prime}, A^{\prime}\right) \quad \overline{f^{*}}: H^{*}\left(x^{\prime} \times Y, A^{\prime} \times Y\right) \rightarrow H^{*}(x \times y, A \times Y) \\
& f^{*}=(f \times 1 d y)^{*} \\
& \underline{h}(x, A)=H^{*}(X, A) \otimes H^{*}(Y) \\
& f:(x, A) \rightarrow\left(X^{\prime}, A^{\prime}\right) \rightarrow \underline{f}^{*}=f^{*} \otimes I d y
\end{aligned}
$$

\bar{h}, \underline{h} Satisfy all Eilenberg steenrod axioms for cohomology except dimasion axion. \Rightarrow they're geneatized conomology.

The axioms:

1) homotopy invariance: $f_{0} \sim f_{1} \Rightarrow \underline{f_{0}^{*}}=\underline{f_{1}^{x}} \quad\left(f_{0}^{*}=f_{1}^{*}\right)$

$$
\overline{f_{0}^{*}}=\overline{f_{1}^{*}} \quad\left(f_{0} x l_{y} \sim f_{1} x \mid y \Rightarrow\left(f_{0} x \mid y\right)^{*} \backsim\left(f_{1} x l_{y}\right)^{*}\right.
$$

2) LES of pair:
for \bar{h} this is LES of $(X \times Y, A \times Y)$
h $H^{*}(y)$ is direct sum of copies of R.
So $H^{*}(x, A) \otimes H^{*}(y)$ is direct sum of copies of LES of $H^{*}(X, A)$
(note: exact (x) free is exalt)
3) Excision if $\bar{B} \operatorname{cint} A \subset A C X_{1}$
$\overline{y^{*}}: \bar{h}(X, A) \longrightarrow \bar{h}(X-B, A-B)$ is an \simeq excision for $B X Y \subset A X Y C C X Y$.
$\underline{r^{k}}=\underline{h}(x, A) \rightarrow \underline{h}(x-B, A-B) \quad$ excising for $B C A C C$
4) Collapsing a pair

If (X, A) is a ged pair,

$$
\pi:(x, A) \rightarrow(x / A, A C A)
$$

$\underline{\pi}^{k}: \underline{h}(X A, A / A) \xrightarrow{\underline{n}} \underline{h}(X, A)$, same for \bar{h}
The if x is an $f(c, \underline{\Phi} \underline{h}(x) \xrightarrow{\leftrightharpoons} \bar{h}(x)$ is an iso

Lemma: I commutes with indued maps and δ map in LES of pair.
Proof only shaw commutes cush indued maps.
to show commits with δ, see ex.
suppose that $f: x_{1} \rightarrow x_{2} \quad F: x_{1} \times y \rightarrow x_{2} \times y$
then $\bar{f}^{*}(\Phi(a \otimes b))$

$$
F=f_{x / y}
$$

unsure this

$$
\begin{aligned}
& =F^{*}(a \times b) \\
& =F^{*}\left(\pi_{1}^{*}(a) \cup \pi_{2}^{k}(b)\right)
\end{aligned}
$$

$$
\overline{f x}: \bar{h} \rightarrow H^{x}(x \times y, A x y)
$$

玉: $\underline{h} \rightarrow \bar{h}$

$$
\begin{aligned}
&=\left(F^{*} \pi_{1}^{*}(a)\right) \cup\left(F^{*}\left(\pi_{2}^{*}(b)\right)\right) \\
&=\left(\pi_{1} \circ F\right)^{*}(a) \cup\left(\pi_{2} \circ F\right)^{*}(b) \\
& \text { unsure Hos } \\
& \text { steps }=\pi_{1}^{*} \circ f^{*}(a) \cup \pi_{2}^{*}(b)=f^{*}(a) \times b=\Phi\left(f^{*}(a * b)\right)
\end{aligned}
$$

Proof of the big the: if x is an $F(C, \Phi$ is an isomorphism
let $P(x, A)$ be the statement that $\Phi: \underline{h}(x, A) \rightarrow \bar{h}(x, A)$ is an \underline{n}.
Real that $\underline{h}(X, A)=H^{+}(X, A) \otimes H^{+}(Y)$

$$
\bar{h}(X, A)=H^{*}(X \times Y, A \times Y)
$$

Proof stops
Proof skipped,
A) $p(3 \cdot 4), \quad p\left(s^{\circ}\right)$ holds
B) If $x_{1} \sim x_{2}, \quad P\left(x_{1}\right) \Leftrightarrow P\left(x_{2}\right)$
c) if tho of $P(X), P(A), P(X, A)$ hondo, the third holds
D) if (X, A) is a gob pair, $P(X, A) \Leftrightarrow P(X, A)$
E) $P\left(S^{n}\right), P\left(D^{n}, S^{n-1}\right)$ holds
F) $p(x) \Rightarrow p\left(x \cup_{f} D^{n}\right)$

Example. Compute $H^{*}(\Sigma)$

$$
\pi: \Sigma_{2} \rightarrow \Sigma_{2} / A \simeq T^{2} V T^{2}
$$

recall, $H_{2}\left(\Sigma_{2}\right) \simeq \mathbb{Z}_{1} \quad H_{2}\left(T^{2} V T^{2}\right)=H_{2}\left(T^{2}\right) \oplus H_{2}\left(T^{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$.
did we show

$$
\begin{gathered}
\pi_{*}: \mathbb{Z} \longrightarrow \mathbb{Z} \oplus \mathbb{Z} \\
1 \longrightarrow(1,1) \\
\mathbb{Z}^{4}=H_{1}\left(\Sigma_{2}\right) \xrightarrow{\Perp} H_{1}\left(T^{2} v T^{2}\right)
\end{gathered}
$$

$H_{x}\left(Z_{2}\right)$, $H_{x}\left(T^{2} \vee T^{2}\right)$ are free over Z_{1} UCT implies $H^{+}\left(Z_{2}\right)=\operatorname{hom}\left(H_{+}\left(\Sigma_{2}\right), \mathbb{z}\right)$.
same with $H^{c}\left(T^{2} V T^{2}\right)=\operatorname{Hom}\left(H_{*}\left(T^{2} V T^{2}\right), \mathbb{Z}\right)$.
let π^{*} be dual to π_{*}.
scheme: get π^{*}

$$
\begin{aligned}
\pi^{*}: H^{2}\left(T^{2} V T^{2}\right) & \longrightarrow H_{" 1}^{2}\left(Z_{2}\right) \\
H^{2}\left(T^{2}\right) \oplus H^{2}\left(T^{2}\right) & \mathbb{Z} \\
\mathbb{Z} \oplus \mathbb{Z} \xrightarrow{[i]} \xrightarrow{\left\langle c_{1}, c_{2}\right\rangle} & \mathbb{Z} \\
& \langle c\rangle
\end{aligned}
$$

$$
\pi^{x}: H^{\prime}\left(T^{2} V T^{2}\right) \stackrel{\cong}{\longleftrightarrow} H^{\prime}\left(\Sigma_{2}\right)
$$

11

$$
\begin{aligned}
& H^{\prime}\left(T^{2}\right) \oplus H^{\prime}\left(r^{2}\right) \\
&\left\langle a_{1}^{\prime}, b_{1}^{\prime}\right\rangle \oplus\left\langle a_{2}^{\prime}, b_{2}^{\prime}\right\rangle \rightarrow\left\langle a_{1}, b_{1}, a_{2}, b_{2}\right\rangle \\
& a_{i}=\pi^{*}\left(a_{i}^{\prime}\right), \quad b_{i}=\pi^{*}\left(b_{i}^{\prime}\right)
\end{aligned}
$$

so $a_{i} \cup b_{j}=\pi^{*}\left(a_{i}^{\prime}\right) \cup \pi^{*}\left(b_{j}^{\prime}\right)=\pi^{*}\left(a_{3}^{\prime} \cup b_{j}^{\prime}\right)=\pi^{*}\left(\delta_{i j} c_{i}\right)=\delta_{i j}$ c. le. ($\left.a_{1} \cup b_{1}\right)$, ($\left.a_{2} \cup b_{2}\right)$ give you c.
similarly, $\quad a_{i} \cup a_{j}=0, \quad$ bivby $=0$
this gives us the ing structure of $H^{2}\left(T^{2} \cup T^{2}\right)$.

Ex sheet 3. Same arguments show that

$$
H^{\prime}\langle\Sigma g\rangle=\left\langle a_{i}, b_{i}\right\rangle{ }_{i=1}^{g} \quad \text { with } \quad a_{i} u_{b j}=\delta_{i j} c \quad\langle c\rangle=4^{2}(\Sigma g)=\mathbb{Z} \quad a_{i} \cup a_{j}=b_{i} \cup b_{j}=0 \text {. }
$$

$\operatorname{det} n \quad E, B, \pi$
(1) fibres

IV Vector bundles
defn. n-dime real vector bundle
An n-dime real vector bundle (E, B, π) is two spaces E : total space
Sit. \quad I) $\pi^{-1}(b) \sim \mathbb{R}^{n} \quad \forall b \in B$
2) there's an open corr $\left\{u_{\alpha} \mid \alpha \in A\right\}$ of B and maps $(\pi: E \rightarrow B$. $f_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{n}$ sf.
a) $\pi^{-1}\left(U_{\alpha}\right) \xrightarrow{f_{\alpha}} U_{\alpha} \times \mathbb{R}^{n}$

commutes.
homeomorphisms.
b) $\pi_{2} \circ f_{\alpha}: \pi^{-1}(b) \rightarrow \mathbb{R}^{n}$ is an \approx of vector Spaces for all $b \in U_{\sigma}$. $f \propto$ are called local triudlisationg
def complex vector bundles.
Same thing, replace \mathbb{R} with \mathbb{C}.
def morphism
A morphism of vector bundles is a commuting square:

$$
\begin{aligned}
& E \xrightarrow{f_{E}} E^{\prime} \\
& { }^{\pi} \quad \downarrow^{\pi^{\prime}} \\
& B \xrightarrow{f_{B}} B^{\prime} \\
&
\end{aligned}
$$

* note: fibers lan be of diff dimosston
def bundle isomorphism
bundle morphism $E_{1} \rightarrow E_{2}$ with an inverse which is also a bundle hon $E_{2} \rightarrow E_{1}$ is a bundle \sim.
def. Subbundle
E is a subbundle of E^{\prime} if \exists infective morphism

$$
\begin{aligned}
& E \xrightarrow{f_{E}} E^{\prime} \\
& \downarrow^{\pi} \xrightarrow{I_{B}} B^{\prime}
\end{aligned}
$$

l.e. $\pi^{-1}(b)$ is a liner subspace of $\left(\pi^{\prime}\right)^{-1}(b)$.

Week 7 fec 1.
def. Section
a section S of E is a cts map $S B \rightarrow E$ with $\pi \cdot S=1 d B \Leftrightarrow s(b) \in \pi^{-1}(b)$
S is nonvanishing if $S(b) \neq \underbrace{}_{b} \ngtr b$
the 0 vector in $\pi^{-1}(6)$.
ret. Continues section
$S_{0}: B \rightarrow E \quad b \rightarrow D_{b}$ is the 0 section.
to cheek if a section is cts, enajn to cheek fao.

Ex. Adimb trivial bundle \& trial bundle.
$E=B \times \mathbb{R}^{n} \quad \pi: E \rightarrow B$ prog on $B \quad f: E \rightarrow B \times \mathbb{R}^{n}$ is a local tiv. $f=1 B \times \mathbb{R}^{n}$
moreover, $\pi: E \rightarrow B$ is trinal if there's a bundle $\because f: E \rightarrow B \times \mathbb{R}^{n}$.

Prop. equivalent conditions of being a trial bundle
E is trivial $\Leftrightarrow \exists$ sections $S_{1}, \cdots S_{n}: B \rightarrow E$ s.t. $\left\{S_{1}(b), \cdots S_{n}(b)\right\}$ is a basis for $\pi^{-1}(b), \forall b \in B$.
Proof \Rightarrow we can fund those sections explicitly.
\Leftrightarrow the map $F: B \times \mathbb{R}^{n} \rightarrow E$
$(b, \vec{v}) \mapsto \sum_{i=1}^{n} r_{i} S_{i}(b)$ is a bundle $\underline{\sim}$.

Ex. The Mobius Bundle
$M=[0,1] \times \mathbb{R} / \sim \sim$ is the smallest eq. rel with $(0, x) \sim(1,-x)$

$$
s^{\prime}=[0,1] / \sim
$$

A section $S: S^{\prime} \rightarrow M$ gives $f:[0,1] \rightarrow \mathbb{R}$ with $f(0)=-f(1)$.
so $f(t)=0$ for some $t \in[0,1]$. So it's not a nonvanishing section.
\square

Ex. The tautological bundle

$$
\begin{aligned}
& T_{\mathbb{R} \mathbb{P}^{n}}=\left\{([\vec{z}], \vec{V}) \in \mathbb{R} \mathbb{P}^{n} \times \mathbb{R}^{n+1} \quad \mid V \in\langle\vec{z}\rangle\right\} \\
& \begin{array}{c}
\pi \\
\mathbb{R}^{n} \\
\pi^{-1}([z])=\langle\vec{z}\rangle \subset \mathbb{R}^{n+1} \\
\mathbb{R} \\
\mathbb{R}
\end{array}
\end{aligned}
$$

hare open corer $u_{i}=\left\{\left[\stackrel{\rightharpoonup}{2} J \in \mathbb{R} \mathbb{P}^{n} \mid z i \neq 0\right\}\right.$.
have maps $f_{i}: \pi^{-1}\left(u_{i}\right) \rightarrow u_{i} \times \mathbb{R}$
$[[\vec{z}], \vec{v}) \rightarrow\left([z], v_{i}\right)$ are local trivialisation
$\mathbb{R P}^{\prime}=S^{\prime}$ and $T_{\mathbb{R}}{ }^{\prime}=M$ is nontrial.
Similarly, TCPI a r-dime $C x$ VB over $\mathbb{C} \mathbb{P}^{n}$.

Ex Tangent sphere bundles
$\bigcirc T S^{n}=\left\{(\vec{x}, \vec{r}) \in S^{n} x \mathbb{R}^{n+1} \mid \vec{v} \cdot \vec{x}=04\right.$ tangent to S^{n}

local triabation

$$
\begin{aligned}
& \pi^{-1}(x)=x^{\perp} \simeq \mathbb{R}^{n} \\
& u_{i}=\left\{x \in S^{n} \mid x_{i} \neq 0\right\} \\
& f_{i}^{-1}=\pi^{-1}\left(u_{i}\right) \rightarrow u_{i} x \mathbb{R}^{n}
\end{aligned}
$$

$(\vec{x}, \vec{v}) \rightarrow(\vec{x}, \pi \hat{i} \vec{v}) \quad \vec{v}$ is a nH dime vector, $\pi \hat{i} \vec{v}$ has one less dime.
$\longrightarrow T S^{\prime}$ has a non-valishing section $\left.s(x, y)\right)=((x, y),(-y, x)) \Rightarrow T S^{\prime}$ is trinal.
$\longrightarrow T s^{2 n}$ has no non-vansting section, so it's nontrivial.
def Pullbacks of vector bundle
E let $\pi: E \rightarrow B$ be a n-diml $r \cdot v B ., g: B^{\prime} \rightarrow B$ continuous.
∇ then the pullback of E by g is
$B^{\prime} \xrightarrow{g} B$

$$
\begin{aligned}
& g^{*}(E)=\left\{\left(b^{\prime}, b, v\right) \in B^{\prime} \times B \times E \mid g\left(b^{\prime}\right)=b=\pi(v)\right\} \\
& \pi g: g^{\prime}(E) \rightarrow B^{\prime} \quad \pi^{-1}\left(b^{\prime}\right)=\left\{\left(b^{\prime}, g\left(b^{\prime}\right), v\right) \mid \pi(v)=g\left(b^{\prime}\right)\right\}=\pi^{-1}\left(g\left(b^{\prime}\right)\right) \text { is a re space- } \\
& \left(b^{\prime}, b, v\right) \rightarrow b^{\prime}
\end{aligned}
$$

If $f_{\alpha}: \pi^{-1}\left(u_{\alpha}\right) \rightarrow u \alpha \times \mathbb{R}^{n}$ is a local fir ir for E.
let $\quad V_{\alpha}=g^{-1}\left(U_{\alpha}\right)$
then $f_{\alpha}^{\prime}: \pi^{-1} g\left(V_{\alpha}\right) \rightarrow V_{\alpha} \times \mathbb{R}^{n}$ is a local trivialisation for $g^{*}(E)$.

$$
\left(b, b^{\prime}, v\right) \mapsto\left(b^{\prime}, \pi_{2}(f a(v))\right)
$$

Lemma $(g \circ f)^{k}(E)=f^{x}\left(g^{*}(E)\right)$
def restriction to a smaller base
If $A C B$, $i: A \hookrightarrow B$, is the incursion, then, $E l_{A}:=i^{\lambda}(E)$ is the restriction of E to A.
lem. pon-Vanishing section could be "puled nock"
$S: B \rightarrow E$ a non-vanishing section. Then

$$
g^{*} s: B^{\prime} \rightarrow g^{\prime}(E)
$$

$b^{\prime} \mapsto\left(b^{\prime}, f(b), s(f(b))\right)$ is a nou-vansing section of $g^{k}(E)$.

Example : $\mathbb{R} \mathbb{P}^{n}$ restrict to $\mathbb{R} \mathbb{P}^{\prime}$
$\left.T_{\mathbb{R} \mathbb{P}}\right|_{\mathbb{R} \mathbb{P}^{\prime}} \simeq \operatorname{TR}^{\prime}$ has no non-ranisning section (ere. if if did, $\mathbb{R} \mathbb{P}^{\prime}$ would have as well.
\Rightarrow Train has no non-r section
$\Rightarrow T_{\mathbb{R} \mathbb{R}^{n}}$ is nontrivial.
detn. Products of two vector bundles
$\pi: E \rightarrow B, \pi^{\prime}: E^{\prime} \rightarrow B^{\prime}$ of $\operatorname{dim} n_{1} n^{\prime}$ respectively.
then their product is a vector bundle of dim $n+n$?,

$$
\left(\pi \times \pi^{\prime}\right)^{-1}\left(b, b^{\prime}\right)=\pi^{-1}(b) \times \pi^{\prime-1}\left(b^{\prime}\right) \subseteq E \times E^{\prime}
$$

their local tricalisatios are as follows:
If $\left\{\begin{array}{ll}f_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) & \rightarrow u_{\alpha} \times \mathbb{R}^{n} \\ f_{\beta}^{\prime}:\left(\pi^{\prime}\right)^{-1}\left(U_{\beta}\right) & \rightarrow u_{\beta} \times \mathbb{R}^{n^{\prime}}\end{array}\right\}$ are local trivialisations,
then, $\quad f_{\alpha} \times f_{\beta}^{\prime}:\left(\pi \times \mathbb{K}^{\prime}\right)^{-1}\left(u_{\alpha} \times u_{\beta}\right) \rightarrow u_{\alpha} \times \mathbb{R}^{n} \times u_{\beta} \times \mathbb{R}^{n)} \cong u_{\alpha} \times U_{\beta} \times \mathbb{R}^{n+n^{\prime}}$ is a local trinatisation of $E \times E^{\prime}$.
def whitney sum
If $\quad B=B^{\prime}, \quad E \oplus E^{\prime}=\Delta^{x}\left(E \times E^{\prime}\right)$ where $\begin{aligned} \Delta: B & \rightarrow B \times B \\ b & \mapsto(b, b)\end{aligned} \quad$ is the whitney sum of E and E^{\prime}. $b \mapsto(b, b)$
def supp

$$
\varphi: B \rightarrow \mathbb{R}, \quad \operatorname{supp}(\varphi)=\overline{|b \in B| \quad \varphi(b) \neq 0\}}
$$

def. Partition of unity. Subordinate to a corer
let $U=\left\{V_{\alpha} \mid a t A\right\}$ be an open corer of B_{1} a Poll subordinate to U is a farm of fins

$$
\varphi_{i}: B \rightarrow \mathbb{R} \quad(i \geqslant 0)
$$

sit.

1) $\quad 0 \leq \varphi_{i}(b) \leq 1$
2) $\left\{i \mid \varphi_{i}(b) \neq 0\right\}$ is finite $\forall b \in B$
3) $\operatorname{supp} \varphi_{i} \subset U_{\alpha i}$ for some dit.
4) $\sum_{i \geqslant 0} \varphi_{i}(b)=1 \quad \forall b \in B$
def. admits Pol
B admits a poll if Badmit a POV subordinate to all open covers U.
note: Compact or metrizable $\Rightarrow B$ admit Poll
para "
Thu. El $\mathrm{Bx}_{\mathrm{x}} \simeq$ El Bx|
Suppose that B admits PoM. $\pi: E \rightarrow B \times I$ is a rUB. Then ElBx0 \simeq ElBxI.
week 7 lee 3 (len 20)
lemma 1. If $\left.E\right|_{B \times[0,1 / 2]}$ and $\left.E\right|_{B \times[1 / 2,1]}$ are triual then E is trivial.
Proof proof?
lemma 2. for each $b \in B, b$ has $a n$ open none U_{0} s.t. E|ubxI is trivial.
Proof
E locally trinal \Rightarrow for each $t \in I$, we can find
$\left.\begin{array}{l}\text { Ut an open nohd of } 6 \text { in } B \\ \text { It an open nohd of } t \text { in I. }\end{array}\right\}$ st. Elu+xIt is trivial.
$\left\{I_{t} \mid t \in I\right\}$ is an open cover of I. let $\left\{I_{t 0}, \ldots I_{t n}\right\}$ be a finite subcoker. then $\exists 0=s_{0}\left\langle s_{1}<\cdots<s_{n}=1\right.$ sf $\left[s_{i}, S_{i+1}\right] \subset I_{f_{k}}$ for some k. (Lesbesque covering Lemma)

So, Elul ${d_{k}} \times\left[S_{i}, S_{i+1}\right]$ is rival.
let $U_{b}=\bigcap_{k=0}^{n} u_{+k}$ be open nbhd of b. (it's a finite intersection) and $\left.E\right|_{u_{b} \times\left[s_{i z} s i+1\right]}$ is trivial for all i.

By lemma and induction, El $u_{b} \times[0, S i]$ is trina. then use lemma l and induction, we get $E \mid u_{b \times t 0,1] ~ i s ~ t r i c i a l . ~}^{\text {a }}$ is

Proof of tam ($\left.\left.E\right|_{B \times 104} \cong E_{B \times 14}\right)$ Pol indexed by \mathbb{N} ?
let u_{b} be as in lemma 2. Pick a YoU $\left\{\varphi_{i}\right\}_{i=1}^{\infty}$ subordinate to $\left\{u_{b} \mid b \in B\right\}$.
Suppose that Supp $\varphi_{i} \subset U_{b i}$. What is U U bi?
let $g_{k}: B \rightarrow B \times I$
and define $E_{k}=g_{k}^{*}(E)=\{(b, \underbrace{\left(b, \psi_{k}(b)\right.}_{g_{k}(E)}), V) \mid \pi(v)=\left(b, \psi_{k}(b)\right)\}$
let $f_{i}:\left(U_{b} \times I\right) \longrightarrow U_{b} \times I \times \mathbb{R}^{n}$ be a trivialisation.
Define $\quad \beta_{k}: E_{k-1} \rightarrow E_{k}$ by

$$
\beta_{k}\left(\left(b, g_{k}(b), v\right)\right)= \begin{cases}\left(b, g_{k}(b), v\right) & \text { for } b \notin U_{b k} \\ \left(b, f_{k}^{-1}\left(b, g_{k}(b), v\right)\right) & \text { for } b \in U_{b k} .\end{cases}
$$

where $f_{k}(v)=\left(b, g_{k-1}(b), v^{\prime}\right)$
then $\ldots{ }^{0} \beta_{3}{ }^{\circ} \beta_{2}{ }^{\circ} \beta_{1}$ is the desired isomorphism $\left.\left.E\right|_{B \times D} \rightarrow E\right|_{B \times 1}$ (for each point, (tsfabilies.)

Proof scheme
Don't understand the proof!
$g_{k}: B \rightarrow B \times I$

$$
b \mapsto\left(b, \sum_{i=1}^{k} \varphi_{i}(b)\right)
$$

$\beta_{k}: E_{k} \rightarrow E_{k+1}$
compose $\cdots \beta_{30} \beta_{2} \circ \gamma_{0}$ E|Bx0 $t \in|B x|$.

Cor Suppose $\pi: E \longrightarrow B$ is a $V B$. go, $g_{1}: B^{\prime} \longrightarrow B$. go $\sim g_{1}$ via $h^{\prime}: B^{\prime} \times I \longrightarrow B$, and B^{\prime} admits a pol.
then $\quad g_{0}^{*}(E)=\left.h^{*}(E)\right|_{B^{\prime} \times 0} \underline{彑} h^{*}(E)\left|B^{\prime} x\right|=g_{1}^{*}(E)$.
cor: If B is contractible, and admits a Pol, then every $V B \quad \pi: E \rightarrow B$ is trivial.
Proof: $\quad I_{B} \underset{p \in B}{\sim C_{B, P}, \quad E=(1 B)^{k} E} \simeq\left((B, P)^{k} E=\frac{B \times \pi^{-1}(P)}{4} \quad\right.$ is trivial.

$$
\left.\left.\begin{array}{rlrl}
E & \text { Where copy of } B ? \\
P \underset{i_{B, p}}{ \pm} B
\end{array} \quad(z B, p)^{*} E=\left\{\left(b^{\prime}, b, v\right) \in\right\} p|\times B \times E| g\left(b^{\prime}\right)=\pi(v)=b\right\}\right\}
$$

Riemannian Metrics
Let Riemamian Metrics
suppose $\pi: E \longrightarrow B$ is a rVB (resp. (x VB)
A Riemannian (resp. Hermitian) metric on E is a continual map

$$
g: E \oplus E \rightarrow \mathbb{R} \quad(\text { resp. } E \oplus E \rightarrow \mathbb{C})
$$

s.f. $g \mid \pi_{E O E}^{-1}$ is an inner product (resp. hermitian inner product)

$$
\pi^{-1} E \oplus E(b)=\pi^{-1}(b) \times \pi^{-1}(b) \quad \text { on } \quad \pi^{-1}(b) \times \pi^{-1}(b) \text {. }
$$

Ex $T_{\mathbb{R}} \mathbb{P}^{n}=\left\{([z], v) \in \mathbb{R}^{n} \times \mathbb{R}^{n+1} \quad \mid v \in\langle z\rangle\right\}$
has a natural Rienarnian metric given by $g\left(\left[[z], v_{1}\right),\left([z], v_{2}\right)\right)=\left\langle v_{1}, v_{2}\right\rangle \mathbb{R}^{n+1}$
similory Tain has a natural Hermitian metric.
def unit disk, unit sphere bundle
Suppose E is a v.b with Riemannian metric g.
The unit disk, the unit sphere bundle are given by

$$
\begin{array}{lll}
\operatorname{Sg}(E)=\{v \in E \mid\langle v, v\rangle=1\} & \pi: \operatorname{Sg}(E) \rightarrow B & \pi^{-1}(b) \unlhd s^{n-1} \\
\operatorname{Dg}(E)=\{v \in E \mid\langle v, v\rangle \leq 1\} & \pi: D_{g}(E) \rightarrow B & \pi^{-1}(b) \simeq D^{n}
\end{array}
$$

they are top spaces but not r UBs.

$$
\begin{array}{ccc}
\text { Prop. If } g_{1} g^{\prime} \text { are } 2 & \text { R-metrics on } E \text {, then } \\
S_{g}(E) \simeq S_{g^{\prime}}(E) & \text { similar } & \operatorname{Dg}(E) \simeq \operatorname{Dg}^{\prime}(E) \\
B^{\pi} & \pi
\end{array}
$$

So we can drop g_{f} from our notation. Write $S(E), D(E)$
die. do not depend on the liner prod.
Pref. Excercise.

Example

$$
\begin{array}{cc}
S\left(T_{\mathbb{R} \mathbb{P}^{n}}\right)=\{([z], v) & \left.\mid\|v\|_{\mathbb{R}^{n+1}}=1, v \in\langle z\rangle\right\} \\
1 S \\
S^{n} \\
\pi \in S^{n}
\end{array}
$$

Ex. If $\pi: E \rightarrow B$ is trivial, then E has an R-metric gives by $g\left(v_{1}, v_{2}\right)=\left\langle\pi_{2}\left(f\left(v_{1}\right)\right), \pi_{2}\left(f\left(v_{2}\right)\right)\right\rangle$
$\downarrow f$ $B \times \mathbb{R}^{n}$
$\Rightarrow S\left(B \times \mathbb{R}^{n}\right)=B \times S^{n-1}$ (if it were friual.)

$$
\mathbb{\mathbb { P } ^ { n }} \times s^{\prime} \not \notin s^{2 n-1}
$$

Prop. Base has poll then it has R-metic
If B admits a Po $U, \pi: E \rightarrow B$ is a $r V B$, then E has an R-metric.
Proof:
B has an open cover $\left\{U_{a} \mid \alpha \in A\right\}$ sf. Eluas is trivial, so there's an R-metric gar on Elva. Choose Poll subordinate to U_{a}. take $g=\sum_{i} \varphi_{i} g_{\alpha i}$ where supp $\varphi_{i} \subset U_{\alpha_{i}}$.

The Than Isomorphism
$\pi: E \rightarrow B$ is $n-\operatorname{dim} l \quad V B$.
If $b \notin B$, let ${\underset{K}{b}}^{E_{S}}=\pi^{-1}(b)$ be the fibre of E over b.
\mathbb{R}^{n}
$i_{b}: E_{b} \longrightarrow E$ inclusion
So: $\quad \longrightarrow E \quad 0$ - section

Define $E^{\#}=E \backslash \lim$ so

$$
E_{b}^{\#}=E_{b} \backslash 0
$$

Then, $H^{*}\left(E_{b}, E_{b}^{\#}\right) \simeq H^{*}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-0\right)=\left\{\begin{array}{ll}\mathbb{Z} & *=u \\ 0 & 0 . w .\end{array}\right.$ is free.
By VCT, $H^{*}\left(E_{b}, E_{b}^{\#} ; R\right)=\left\{\begin{array}{l}R \quad x=n \\ 0 \text { ow. }\end{array}\right.$

$$
\begin{aligned}
& i_{b}:\left(E_{b}, E_{b}^{\#}\right) \rightarrow\left(E, E^{\#}\right) \\
& i_{b}^{*}: H^{*}\left(E, E^{\#}, R\right) \rightarrow H^{*}\left(E_{b}, E_{b}^{H} ; R\right) .
\end{aligned}
$$

deft. R. Then class
$U \in H^{n}\left(E, E^{\#} ; R\right)$ is an R-Them class for E if $\tau_{b}^{*}(U)$ generates $H^{*}\left(E_{b}, E_{b}^{\#} ; R\right)$ for all $b \in B$.

$$
\left(H^{n}\left(E_{b}, E_{b}^{\#} ; R\right)=H^{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-0 ; R\right) \simeq R \quad \forall b \in B\right)
$$

Week 8 lecture 1 (lec21) assume \mathbb{R}. coeff.

Ex. E is trivial, $E=B \times \mathbb{R}^{n}$ geneated by 1 thing. Here rest is iso.

$$
H^{*}\left(E, E^{A}\right)=H^{*}\left(B \times \mathbb{R}^{n} ; B \times\left(\mathbb{R}^{n} \backslash\{04)\right) \cong H^{*}(B) \otimes H^{*}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-0\right)\right.
$$

using feet it's free over \mathbb{R}.
lie $H^{k-n}(B) \xrightarrow{\cong} H^{k}\left(E, E^{4}\right)$

$$
a \longmapsto a \times \underset{\sim}{a} \longmapsto=\pi_{c}^{*}(a) \cup \pi_{2}^{*}(u), \quad H^{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-0\right) \simeq R .
$$

Also note that $H^{\circ}(B)=\Pi_{B i \in} \in \pi_{0}(B) H^{\circ}\left(B_{i}\right)$ so we can specify $\vec{r} \in H^{\circ}(B)$ by
a tuple $r=\left(r_{1}, \cdots, r_{k}\right)$ for $r i \in H^{\circ}\left(B_{i}\right)$.
$i^{+ \text {m }}$ path component.
in particular,

$$
H^{0}(B) \simeq H^{n}\left(E, E^{\#}\right)
$$

$\stackrel{\rightharpoonup}{r} \mapsto r \times U$ expand x then induce τ_{b}^{*} note $\tau_{b}^{*}(u)=H^{*}\left(\mathbb{R}^{\eta}, \mathbb{R}^{n}-0\right)$
If $b \in B_{i}, \quad \tau_{b}^{*}(\vec{r} \times u) \stackrel{+}{=} r_{i} \cup H^{*}\left(\mathbb{R}^{n}, \mathbb{R}^{n} \backslash\{04) \quad \rightarrow\right.$ want this tope $H^{*}(B)$
so $\vec{r} \times u$ is a Tho class $\Leftrightarrow r_{i}$ generates $H^{\circ}\left(B_{i}\right)$ for all i.
If $R=\mathbb{L} / 2$, there is a unique Tho class
If $R=\mathbb{U}$ thee are $2^{\left|\pi_{0}(B)\right|}$ Then classes (choose $r_{i}= \pm 1$).

Pullbacks
If $f: B \rightarrow B$ there's a morphism of vector bundles

$$
\begin{array}{r}
\left(b^{\prime}, b, v\right) \longmapsto V \\
f^{*}(E) \xrightarrow{F} E \\
\downarrow^{\prime} \\
B^{\prime} \xrightarrow{ } \xrightarrow{ } \downarrow^{\circ}
\end{array}
$$

note: $\quad F\left(1 m s_{0}^{\prime}\right)=1 m s_{0}$ so F is a map of pairs $\left(f^{*} E, f^{*} E^{\#}\right) \longrightarrow\left(E_{1} E^{\#}\right)$
lemmal If u is a R-TC for E then $F^{*} U$ is an R-TC for $f^{*} E$.
Proof there's a commuting square

$$
f^{x}(E) \xrightarrow{F} E
$$

so $\quad \tau_{b^{\prime}}^{*}\left(F^{*}(u)\right)=j^{*}\left(\tau_{f\left(b^{\prime}\right)}^{*}(u)\right), j^{*}$ is an \underline{y} and $P_{i b}={ }_{i} i_{i_{f(b)}}$

$$
\left(f^{x} E\right)_{b^{\prime}} \frac{F \mid f^{\prime \prime}(E) b^{\prime}}{\leftrightharpoons} E_{f\left(b^{\prime}\right)}
$$

$\tau_{f\left(b^{\prime}\right)}^{*}(u)$ generates $H^{k}\left(E_{f\left(b^{\prime}\right)}, E_{f\left(b^{\prime}\right)}^{\#}\right)$ so $\tau_{b^{\prime}}^{*}\left(F^{\star}(u)\right)$ generates
$\Rightarrow F^{x}(\mu)$ is a TC.
$\mathbb{R}^{n} \longmapsto \mathbb{R}^{n}$
le. TC behaves natural under pullbacks,

Lemma 2
Suppose that $B=B_{1} \cup B_{2}, \quad u \in H^{n}\left(E, E^{\#}\right)$
$i_{k}: B_{k} \rightarrow B$ be incursion. If $\tau_{i}(u)$ are $T C$ for $\left.E\right|_{B}$,
$\tau_{2}^{*}(u) \quad . \quad$. $E l_{B_{2}}$
then u is a $T C$ for E.
Prof Exercise

The (important) Whom \simeq
If $\pi=E \longrightarrow B$ is an n-dime $r-V B$ then

1) E has a unique $\mathbb{Z} / 2$ Tho class
2) If E has an R-Than class u, the map
$\Phi: H^{*}(B ; R) \longrightarrow H^{*+n}\left(E, E^{\#} ; R\right)$ is an \cong $a \mapsto \pi^{*}(a) \cup U$
Hoof: (skipped. Cone back later).

Gysin Sequace:
Suppose $\pi: E \rightarrow B$ has an R Whom Class U.
Note: $E^{\#}=E \lim s_{0} \sim S(E)$

$$
v \mapsto v / \sqrt{g(v, v)}
$$

LES of $\left(E, E^{\#}\right)$ is $\quad j:(E, \phi) \rightarrow\left(E, E^{\#}\right)$

$$
\begin{aligned}
& H^{*}\left(E, E^{\#}\right) \xrightarrow{j^{*}} H^{*}(E) \longrightarrow H^{*}\left(E^{\#}\right) \longrightarrow H^{*+1}\left(E, E^{\#}\right)
\end{aligned}
$$

$$
\begin{aligned}
& H^{*-n}(B) \longrightarrow H^{*}(B) \longrightarrow H^{*}(S(E)) \longrightarrow H^{*-n+1}(B)
\end{aligned}
$$

$\pi: E \rightarrow B$ and $S_{0}: B \longrightarrow E$ give homotopy equivalare. They're nomotopy inverses.
then, $\quad \alpha(a)=S_{0}^{*} j^{*}(\Phi(a))$

$$
\begin{aligned}
& =S_{0}^{*} j^{*}\left(\pi^{*} a \cup u\right) \\
& =S_{0}^{*}\left(\pi^{*} a \cup j^{*} u\right) \quad \text { Why } j \text { only show up } 2^{\text {nd }} \text { part app pood? } \\
& =\left(S_{0}^{*} \pi^{*} a\right) \cup S_{0}^{*} j^{*}(u)=a \cup S_{0}^{*} j^{*}(u)
\end{aligned}
$$

Def Euler class
If $\pi: E \rightarrow B$ is an R-oriented n-dial rVB with $T C u$. then its Euler class is $e(E)=S_{0}^{*} j^{*}(U) \in H^{n}(B)$

Thu. (Gysin Sequare)
There's an LES

$$
\longrightarrow H^{*-n}(B) \xrightarrow{\alpha} H^{*}(B) \xrightarrow{\pi^{*}} H^{*}(S(E)) \longrightarrow H^{*-n+1}(B)
$$

Where $\alpha(a)=a \cup e(E)$
Proof: Basically comes from the LES of $E_{1} E^{\#}$) with than iso.

Week 8 dec 2 (les 22) Unerring ring for coho is R
Recall: $\pi: E \rightarrow B$ is an R-oriented n-dime $r \cdot v B$, with $T C u \in H^{+}\left(E, E^{\#}\right)$ then its Euler cl is esE) $=S_{0}^{*} j^{*}(u)$ where $\quad\left\{\begin{array}{l}s_{0}: B \rightarrow E \text { is } 0 \text { section } \\ \dot{j}:(E, \phi) \rightarrow\left(E, E^{*}\right) \text { inclusion of pairs }\end{array}\right.$
$e(E)$ goes from $H^{*}\left(E, E^{\#}\right)$ to $H^{+}(B)$.
Than iso I "Sumps up" coho of B to coho of $\left(E, E^{\#}\right)$ $e(E)$ is the thor class going the other way.

Prop: (Properties of e)
Suppose E as above, then

1) $f: B^{\prime} \rightarrow B$ then $f^{*}(E)$ is oriented and $e\left(f^{*}(E)\right)=f^{*}(e(E))$
2) If E is friual and $n>0$, then $e(E)=0$
3) $e\left(E_{1} \oplus E_{2}\right)=e\left(E_{1}\right) \oplus e\left(E_{2}\right)$
4) If E has a norvanishing section, then $e(E)=0$.

Proof:

1) There is a commuting diagram

$$
\begin{aligned}
& (B, \phi) \xrightarrow{\text { So }}(E, \phi) \xrightarrow{y}\left(E, E^{\#}\right) \\
& \text { if } \overbrace{f_{E}}=F \quad \uparrow_{f_{E}}=f \\
& \left(B^{\prime}, \phi\right) \xrightarrow{S_{0}^{\prime}}\left(f^{*} E, \phi\right) \xrightarrow{\dot{y}^{\prime}}\left(f^{\prime} E,\left(f^{*} E\right)^{\#}\right)
\end{aligned}
$$

$=R$-Them class
By lemma $l_{1} f_{E}^{*}(u)$ is an orientation on $f^{*}(E)$, so

$$
e\left(f^{*}(E)\right)=s_{0}^{3} j^{*} f_{E}^{*}(u)=j^{*} s_{0}^{*} f^{*}(u)=f^{*}(e(u))
$$

2) True if $B=9.4$ since $H^{n}(f 04)=0$ ($\ell \cdot e \cdot U \in H^{n}\left(E_{1} E^{\#}\right)$ final so its $\delta_{0}^{*} j^{*}(u)$ must be). in general, E is trial $\Leftrightarrow E=f^{*}\left(E_{0}\right)$ when $f: B \rightarrow j 04, E_{0}=\mathbb{R}^{n}, \pi: E_{0} \rightarrow 0$

$$
\swarrow_{B \xrightarrow{f} b \pi}^{E_{0}=\mathbb{R}^{n}} \quad \text { note: } f(f^{(E)} \quad \underbrace{\left.E_{0}\right)=\{b, 0, e\}}
$$

codomain is $H^{*}(B)=$ trial.

$$
e(E)=e\left(f^{x}\left(E_{0}\right)\right)=f^{*}\left(e\left(E_{0}\right)\right)=f^{x}(0)=0
$$

3) Ex Sheet 4
4) If S is an nonranishing section, $E=\langle s\rangle \oplus\langle s\rangle^{\text {trial }^{\perp}}$ bundle. (subspace generated by s)

$$
\Rightarrow e(E)=e\left(\langle s\rangle \oplus\langle s\rangle^{\perp}\right)=e(\langle s\rangle) \cup e\left(\langle s\rangle^{1}\right)=0 V e\left(\langle s\rangle^{\perp}\right)=0
$$

(1) of coho from diff gracing
thus have to use cur

Recall Gysin sequere:

$$
H^{*-n}(B) \xrightarrow{\alpha} H^{*}(B) \xrightarrow{\pi_{S(E)}^{*}} H^{*}(S(E)) \longrightarrow H^{*-n+1}(B) \quad \text { where } \stackrel{\Delta}{S(E)} \xrightarrow{\pi_{S E}} B
$$

Where $a(a)=a \cup e(E)$
(note: WCT help US to figure out $H^{*}(\mathbb{R P} ; \mathbb{U} / 2)$ as group. free over $\mathbb{T} / 2$
Thm: Soling cohonology $H^{*}\left(R P^{n} ; \mathbb{Z} / \alpha\right)$ now need Gysin sequace to figure out ring structure).

$$
H^{*}\left(\mathbb{R} \mathbb{P}^{n} ; \mathbb{Z} / \alpha\right) \simeq \mathbb{Z} / \alpha[x] / x^{n+1} \quad \text { where } \quad x=e\left(T_{\mathbb{R}}\right) \in H^{\prime}\left(R \mathbb{P}^{n} ; \mathbb{Z} / \alpha\right)
$$

(every VB in \mathbb{Z} / d is vientable/admits
a thom class)

Proof We assume that weir using $\mathbb{1 1 2}$ coefficients evcyuherc.

$$
S\left(T_{\mathbb{P R}^{n}}\right)=S^{n} \text { sphere bundle. (did we prove this?) } \quad \text { Recall }\left(H_{*}+U C T\right) \text { : }
$$

Gysin Sequence: go up in grading every 3 rings

$$
H^{k-1}\left(\mathbb{R} \mathbb{P}^{n}\right) \xrightarrow{\alpha} H^{k}\left(\mathbb{R} \mathbb{R}^{n}\right) \longrightarrow H^{k}\left(S^{n}\right) \longrightarrow H^{k}\left(\mathbb{R} \mathbb{P}^{n}\right) \longrightarrow
$$

any norton of appropriate grading

$$
H^{*}\left(\mathbb{R} \mathbb{R}^{n} ; \mathbb{Z} / 2\right)=\left\{\begin{array}{cc}
\mathbb{Z} / 2 & \text { if } 0 \leq * \leq n . \\
0 & \text { ow. }
\end{array}\right.
$$

claim: $\alpha=\cdot u x$ is an \bumpeq for $1 \leq k \leq n$. (*)
$k=1$: (wite it logger so mounds $k=0$ as well)
here α is on \simeq.

By induction, $(*) \longrightarrow\left\langle x^{k}\right\rangle$ generates $H^{k}\left(\mathbb{R} \mathbb{P}^{n} ; \mathbb{Z} / \alpha\right) \simeq \mathbb{Z} / 2$ for $0 \leq k \leq n$

$$
x^{n+1} \in H^{n+1}\left(\mathbb{R} \mathbb{P}^{n}\right)=0
$$

Scheme: $\quad \alpha: H^{k-1}\left(\mathbb{R} \mathbb{P}^{n}\right) \rightarrow H^{k}\left(\mathbb{R} \mathbb{P}^{n}\right)$ is \cong via Gysin. $1 \leq k \leq n$.

$$
\begin{aligned}
& 1<K<n: \quad H^{k-1}\left(S^{n}\right) \longrightarrow H^{k-1}\left(\mathbb{R}^{n}\right) \xrightarrow[\sim]{\alpha} H^{k}\left(\mathbb{R} \mathbb{P}^{n}\right) \longrightarrow H_{=0}^{k}\left(S^{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \longrightarrow H^{-1}\left(\mathbb{R} \mathbb{P}^{n}\right)^{\alpha} H^{0}\left(\mathbb{R} \mathbb{R}^{n}\right) \xrightarrow{n \text { ste in }} H^{n}\left(S^{n}\right) \xrightarrow{0} H^{0}\left(\mathbb{R} \mathbb{P}^{n}\right) \xrightarrow{\alpha} H^{\prime}\left(\mathbb{R} \mathbb{R}^{n}\right) \longrightarrow H^{\prime}\left(S^{n}\right) \\
& =0 \quad=\longleftarrow / 2=\longleftarrow / 2=0
\end{aligned}
$$

similany, $T_{\mathbb{C} \mathbb{P}^{n}}$ is a $V B \Rightarrow$ undrying $r-V B$ is \mathbb{Z} - orientable. So $S\left(T_{\mathbb{P}} \mathbb{P}^{n}\right)=S^{2 n-1}$
same argunat shows
hm: $H^{*}\left(\mathbb{C} \mathbb{P}^{n} ; \mathbb{Z}\right) \cong \mathbb{Z}[x] / x^{n+1}, \quad x=e\left(T \mathbb{C}^{n}\right) \in H^{2}\left(\mathbb{C} \mathbb{P}^{n} ; \mathbb{Z}\right)$.

Cor $\quad \pi_{3}\left(s^{2}\right) \neq 0 \quad f: s^{3} \rightarrow$ space.
Proof if $\pi_{3}\left(s^{2}\right)=0$ then $\mathbb{C} \mathbb{P}^{2} \sim s^{2} V s^{4}$
(since $\quad \mathbb{P} \mathbb{P}^{2}=s^{2} U_{h} D^{4} \quad h: s^{3} \rightarrow s^{2}$ Hopf map. The attaching map is null- homotopic (e.e if $\pi_{3}\left(s^{2}\right)=0$) so $\mathbb{C} \mathbb{P}^{2}=s^{2} U_{n} D^{4} \sim s^{2} v s^{4}$)
But if $\quad x \in H^{2}\left(S^{2} \vee s^{4}\right), x \cup x=0$
(via coho of redye product) (as betore)
comments on Orientability

1) Every E is $\mathbb{Z} / 2$ orientable.
2) for $p \neq 2, E$ is \mathbb{Z} / p onentable $\Leftrightarrow \mathbb{Z}$ is orientable.

If so, just say E is orientable)
3) $\quad T_{\text {RAP }}=M$ is not orientable.

Since $H^{*}\left(M, M^{A}\right) \simeq H^{*}(D(M), S(M)) \cong H^{*}(\bar{M}, d \bar{M}) \quad M=$ closed mobius band.
$\frac{H^{2}(\bar{M}, \partial \bar{M})=\mathbb{Z} / 2}{q} \not f^{\prime}\left(S^{\prime}\right)$ so Tho \simeq with \mathbb{Z}-coefficient is false.
bound y of M include into M trice?
4) There's a homomorphism $\underset{\text { (E SS) }}{ } \varphi: \pi_{1}(B) \longrightarrow \mathbb{Z} / 2 \quad \bar{\gamma}: S^{\prime} \rightarrow B$

$$
\varphi([\gamma])=0 \Leftrightarrow \bar{\gamma}^{*}(E) \text { is orientable. }
$$

If $\pi_{1}(B)=\{14$, any $\pi: E \rightarrow B$ is orientable.

I Manifolds
5.1) Definitions + Fundamental class

Def n-manifold
An n-manifold is a $2^{\text {nd }}$ countable Hausdorff space M with an open corer $\{u \alpha \mid \alpha \in A\}$ and homeomorphisms $\varphi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{n}$.

The transition functions $\psi_{\alpha \beta}=\varphi_{\alpha^{\prime}} \varphi_{\beta}^{-1}: \varphi_{\beta}\left[U_{\alpha} \cap U_{\beta}\right) \rightarrow \varphi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)$ are homeomorphisms:
M is smooth If φ_{α} 's can be chosen st. $\psi_{\alpha \beta} s$ are diffeomorphisms.
note: Any smooth manifold has a tangent bundle $\pi \cdot T M \rightarrow M$, an n-dime vector bundle.

Fundamental class

If $A C M$ can pact write $(M \mid A)=(M, M-A)$
If $B C A, \quad \tau:(M \mid A) \longrightarrow(M \mid B)$ is inclusion of pairs.

$$
(M, N-A) \longrightarrow(M, M-B)
$$

If $\quad w \in H_{*}(M \mid A), w / B=\tau_{*}(w)$

Prop. Compute $H_{*}(M \mid x ; R)$
If $x \in M, x \in U_{a} \cong \mathbb{R}^{n}$ for some $\alpha \in A$.
then, by excision, $H_{*}(M \mid x) \simeq H_{*}\left(U_{\alpha} \mid x\right) \stackrel{\varphi_{x}}{=} H_{*}\left(\mathbb{R}^{n} \mid \varphi(x)\right)=H_{*}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-\varphi(x)\right)=\left\{\begin{array}{cc}\mathbb{Z} & *=n \\ 0 & \text { ow. }\end{array}\right.$

$$
\Rightarrow \quad H_{*}(M \mid x ; R) \cong \begin{cases}R & *=n \\ 0 & \text { ow. }\end{cases}
$$

def R-fundamental class
An R. fundamental class for $(M \mid A)$ is $\omega \in H_{n}(M \mid A ; R)$ sit. W|x generate $H_{n}(M \mid x)$ for all $x \in A$.
(it's an analogue of than class).

Thu unique $\mathbb{Z} / 2$ fundamental class
If $A \subset M$ is compact, ($M \mid A$) has a unique \mathbb{Z} fundermntal class.
(note: Most interested in case when M is compact (M is closed))
A fundermetal class for $(M M M)=(M, \phi)$ will be with as $[M] \in H n(M)$.

Proof: Similar to Tho \simeq, see moodle.
def: Orientable
M is orientable if it has an \mathbb{K}-fundamental class.
week 8 lec $3 \quad\left(\begin{array}{ll}\text { lec } 23\end{array}\right)$
detn. submanifold

NCM is a k-diml smooth submani of an n-mani M if for erong $x \in N$, there is a smooth chart $y_{x}: u_{x} \rightarrow \mathbb{R}^{n}$ s.t

$$
\varphi_{x}\left(u_{x} \cap N\right) \rightarrow \mathbb{R}^{k} \times 0 \quad c \mathbb{R}^{n}
$$

If NCM is a smooth submani, TNCTMI ${ }_{N}$ (subbundle)
def Normal bundle
NCM is a smooth submani. Then $V_{M C N}=T N^{\perp} C T M N_{N}$ is the normal bundle of N in M.

$$
\Rightarrow \quad T M I_{N}=V_{M / N} \oplus T N
$$

Thm. Tabular nohd thm
If NCM is a closed smooth submani, then there's an open VCM, NCV with $\left(V_{N}\right) \simeq\left(V_{M / N}, \quad S_{0} V_{M / N}\right)$
lemma. Suppose that $E=E_{1} \oplus E_{2}$ is orientable. Then E_{1} is orientable $\Leftrightarrow E_{2}$ is orientable.
Praf Example Sheet.
$\exists \mathbb{\text { -fund. }} \mathrm{Cl} \quad \exists \mathbb{Z}$ - Thom Cl .
Prop. M is orientable $\Leftrightarrow T M$ is orientable
Proof (sketch)
If $\gamma: s^{\prime} \hookrightarrow M$, let $V(\gamma)$ be a Tubular nbhd.
M orientable $\Leftrightarrow V(\gamma)$ is orientable for all γ

$$
\begin{aligned}
& \Leftrightarrow \text { VM/r " } \\
& \Leftrightarrow \text { TMIr " } \\
& \Leftrightarrow \quad \text { " } \\
& \Leftrightarrow \quad \text { " } \\
& \text { Normal bundle orienta ble }
\end{aligned}
$$

If M is orientable, $N \longrightarrow M$ is a closed smooth submani.
M oriatable $\Leftrightarrow V_{M / N}$ oriantable.
5.2. Poincare Duality

Remark: change coefficients and taking dials
From now, coefficients are in a field \mathbb{F}. le. $H^{k}(x)=H^{k}(x ; \mathbb{F})$
$\Rightarrow H^{k}(x) \simeq \operatorname{Hom}\left(H_{k}(x), \mathbb{F}\right)$ By UCT, as \mathbb{F} is a field.
$\operatorname{Hon}\left(H^{k}(X), \mathbb{F}\right) \stackrel{\leftrightharpoons}{\varphi} H_{k}(X)$ (double dual)
where $\langle a, \varphi(\alpha)\}=\alpha(a)$. $\alpha \in \operatorname{Hom}\left(H^{k}(x), \mathbb{F}\right), \varphi(\alpha) \in H_{k}(x), a \in H^{k}(x), \alpha(a) \in \mathbb{F}$.
If $a \in H^{k}(x)$, ave : $H^{l}(x) \rightarrow H^{l+k}(x)$
same as $a(\alpha)$?
def: cap product

- $\cap a: H_{l+k}(x) \longrightarrow H_{l}(x)$ is the dual of ave. note: $a \in H^{*}(x)$.

$$
\begin{aligned}
\langle b, x \cap a\rangle=\langle a \cup b, x\rangle & a \in H^{k}(x), \quad b \in H^{l}(x), \quad x=H_{l+k}(x), \quad x \cap a=H_{e}(x) \\
& \zeta a \cup b \in H^{k+l}(x) \quad \varphi^{-1}(x)=\operatorname{Hom}\left(H^{\ell+k}(x), \mathbb{F}\right) \quad \text { RUs } \in \mathbb{F} . \\
& G \quad \varphi^{-1}(x \cap a)=\operatorname{Hom}\left(H^{\prime}(x) ; \mathbb{F}\right) \quad \text { so } L H S \in \mathbb{F} .
\end{aligned}
$$

sec. intersection Paining
suppose that M is an \mathbb{F}. oriented n-manifold with fund $[M] \in H_{n}(M)$.
def. Intersection pairing
the intersection pairing $(\cdot, \cdot): H^{k}(M) \times H^{n-K}(M) \rightarrow \mathbb{F}$ is the bilinear pairing given by

$$
(a, b)=\langle a \cup b,[M]\rangle
$$

satisfying $\quad(b, a)=(-1)^{|a||b|}(a, b)$

$$
=(-1)^{k(n-k)}(a, b)
$$

If $a \in H^{k}(M), \quad(a, \cdot) \in \operatorname{Hom}\left(H^{n-k}(M), \mathbb{F}\right)$.
def. algebraic poincare dual (Big PD)
the algebraic ponicare deal of a is $\quad P D(a)=\varphi((a, \cdot))=[M] \cap a$
So $\quad\langle b, P D(a)\rangle=(a, b)=\langle a \cup b,[M]\rangle$

$$
\varphi: \operatorname{Hom}\left(H^{n-k}(M), \mathbb{F}\right) \rightarrow H_{n-k}(M)
$$

a is originally upper k

Geometric Poincare dual (little pd)

Thu. Property about map $H_{n}(M) \rightarrow H_{n}(M \mid x)$
If M is a connected n-manifold, the map
$H_{n}(M) \longrightarrow H_{n}(M \mid x)=H_{n}(M, M-x) \simeq \mathbb{F}$ is infective.
(admits fundamental class)
\& so, $[M]$ oriented $\Rightarrow H_{n}(M) \simeq \mathbb{F} \underset{U C T}{\Rightarrow} \underset{\sim}{4} H^{n}(M) \simeq \mathbb{F}=\left\langle\left[M^{*}\right]\right\rangle$ where M^{*} is defined st. $\underbrace{\left.\langle M]^{*},[M]\right\rangle}=1 \in \mathbb{F}$.

Proof: See moodle

Remark. Some properties about rubnonifolds.
Assume $i: N \hookrightarrow M$ is a smooth, closed, connected, \mathbb{F}-oriented submanifold,
let V be a Tubular nod of N. Then

By this thu
N connected $\Rightarrow H^{k}(N) \simeq \mathbb{F}=\left\langle[N]^{*}\right\rangle$
$\Rightarrow H^{n}\left(v, v^{\#}\right) \simeq \mathbb{F}=\left\langle u \cup \pi^{*}\left[N J^{*}\right\rangle \quad u\right.$ is an orientation for V_{M} / \mathbb{N}, (Thom iso).

$$
\Rightarrow H_{n}\left(v, v^{H}\right) \simeq \mathbb{F}
$$

Now, $i_{*}: H_{n}\left(V, V^{\#}\right) \stackrel{\simeq}{\curvearrowleft} H_{n}(M / N) \simeq \mathbb{F}$ (Excision)

$$
\begin{aligned}
& j_{*}: H_{n}(M) \xrightarrow{\curvearrowleft} H_{n}(M|M| x) \text { (M-x)} \text { y } \mathbb{F} \Rightarrow j_{*}: H_{n}(M) \xrightarrow{\hookrightarrow} H_{n}(M \mid N) \\
& \Rightarrow \quad \tau_{*}^{-1} J *[M] \text { generates } H_{n}\left(V, V^{\#}\right) \simeq \mathbb{F} \text {. } \\
& \Rightarrow\langle\underbrace{u \cup \pi^{*}[n]^{*}}_{H^{n}\left(v, v^{*}\right)}, \underbrace{\left.i^{-1} j *[M]\right\rangle}_{H n\left(v, v^{*}\right)}=k \in \mathbb{F}^{*} \text {. }
\end{aligned}
$$

def. Orientation on VM/N
$U_{M I N}=K^{-1} \mu$ is the orientation on $V M / N$ induced by $[N]$ and $[M]$.
it satisfies $\left\langle U_{M I N} \cup \pi^{*}[N]^{*}, \quad \tau_{*}^{-1} j *[M]\right\rangle=1$
def Geometric Poincare dual (lithe Pd)

$$
p d(N)=j^{*}\left(\left(i^{*}\right)^{-1}\left(u_{\text {MIN }}\right)\right) \in H^{n-k}(M)
$$

$$
\begin{aligned}
& i^{*-1}: H^{n-k}\left(V, V^{\#}\right) \rightarrow H^{n-k}(M I N) \\
& j^{*}: H^{n-k}(M I N) \rightarrow H^{n-k}(M)
\end{aligned}
$$

Prop. Combining PD with Pd . $H^{n-k}(M)$ $H_{n}(M) \quad H^{k}(M) \quad H_{k}(M)$

$$
\text { If } a \in H^{*}(M), \quad\langle\operatorname{lpd}(N) \cup a,[M]\rangle=\left\langle a, \eta_{x}[N]\right\rangle \quad \text { is } \quad \text { i* }[N] \in M k(M)
$$

Tubular nod of N. le. $P D(p d(N))=Z_{x}[N]$ as $\left.\langle a, P D(p d d N)\rangle\right\rangle=\langle p d(N) v a$, ni s \rangle
Lemma: let $\tau: \stackrel{\downarrow}{V} \rightarrow M$, then $i^{*}(a)=\left\{a, \tau_{*}[N]\right\rangle \pi^{*}[N]^{*}$
Proof: $\pi: V \rightarrow N$ is an \sim equivalace. $H^{*}(v)$ is generated by $\pi^{*}[N]^{*}$.
so it's enough to cheek that

$$
\left\langle r^{*}(a),[N]\right\rangle=\left\langle\langle a, \tau *[N]\rangle \pi^{*}[N]^{*},[N]\right\rangle \quad \text { Why? }
$$

this is an exercise.
proof of prop:
If $b \in H^{l}(M I N), J^{*}(b \cup a)=j^{*}(b) \cup a \quad j^{*}(a)=a$ as $a \in H^{*}(M)$
So $\left.\langle p d(N) \cup a,[M]\rangle=\left\langle j^{*}\left(\left(\tau^{*}\right)^{-1} \mid U_{M I N}\right)\right) \cup a,[M]\right\rangle$

$$
=\left\langle\left(\tau^{*}\right)^{-1}\left(U_{M N}\right) \cup a, J *[M]\right\rangle
$$

$$
=\left\langle\left(\tau^{*}\right)^{-1}\left((U M N) \cup i^{*} a\right), J \times[M]\right\rangle
$$

$=\left\langle U_{\text {MIN }} \cup_{i}^{*}(a), \tau_{*}^{-1}\left(j_{*}[M]\right)\right\rangle$ more $U_{\text {MIN }}$ to \cap night lemma $=\left\langle U_{\text {Min }} \cup\left\langle a, \tau_{*}[N]\right\rangle \pi^{*}[N]^{*}, \tau_{*}^{-1} j_{*}[M]\right\rangle$ mod UMIN back to left.
$\frac{\text { Week } 8 \text { les } 4}{5.2 \text { Finish. have conf in } \mathbb{F} \text {. }}$
Recall: M closed connected, \mathbb{F}. oriented n manifold.

$$
\begin{aligned}
& P D: H^{k}(M) \longrightarrow H n-k(M) \\
& \langle b, P D(a)\rangle=(a, b)=\langle a v b,[M]\rangle \\
& N C M \longrightarrow P d(N) \in H^{n-k}(M) \\
& \langle P d(N) \cup a,[M]\rangle=\left\langle a, \tau_{*}[M]\right\rangle=\operatorname{PD}(\operatorname{Pd}(N))=[N]
\end{aligned}
$$

Consider $\Delta: M \rightarrow M \times M$ shaw $P D$ is \simeq by considering $p d(\Delta) \in H^{n}(M \times M)$ $x \mapsto \times \times x$ die. Δ is a submanifold of dey n. M×M is of $2 n$. $\operatorname{pd}(\Delta) \in H^{n}(M \times M)$ and $P D=H^{n}(M \times M) \rightarrow H_{n}(M \times M)$

Homology of products (F) coefficients)
$\operatorname{Hom}(A \otimes B, \mathbb{F}) \cong \operatorname{Hom}(A, \mathbb{F}) \otimes \operatorname{Hom}(B, \mathbb{F})$
So,
$H_{*}(X \times Y) \simeq \operatorname{Hom}\left(H^{*}(X \times Y), \mathbb{F}\right)$
By exterior product. $\quad \underset{H}{ } \operatorname{Hom}\left(H^{*}(x) \otimes H^{*}(y), \mathbb{F}\right) \simeq \operatorname{Hom}\left(H^{*}(x), \mathbb{F}\right) \otimes \operatorname{Hom}\left(H^{*}(Y), \mathbb{F}\right)$
$=H_{*}(x) \otimes H_{x}(Y)$
$\alpha \times \beta$ dense $\alpha \times \beta$ the elemat corresponding to $\alpha \otimes \beta$ under this iso.
So, equivalently, the following con be chorcuterized
$\langle a \times b, d \times \beta\rangle$
4
this is extrior pood of $H^{*}(x), H^{*}(y)$.
Recall $\langle b, z \cap a\rangle=\langle a \cup b, z\rangle$

Lemmal. $\quad\left(z_{1} \times z_{2}\right) \cap\left(a_{1} \times a_{2}\right)=(-1)^{\left|a_{2}\right|\left(\left|z_{1}\right|-\left|a_{1}\right|\right)}\left(z_{1} \cap a_{1}\right) \times\left(z_{2} \cap a_{2}\right)$
Proof: cheek $\left\langle b_{1} \times b_{2}\right.$, LH $\rangle=\left\langle b_{1} \times b_{2}\right.$, RUS \rangle.
$\left\langle b_{1} \times b_{2},\left(z_{1} \times z_{2}\right) \cap\left(a_{1} \times a_{2}\right)\right\rangle\left\langle b_{1} \times b_{2}, R H S\right\rangle$
$=\left\langle a_{1} \times a_{2} \cup b_{1} \times b_{2}, z_{1} \times z_{2}\right\rangle \quad=\left\langle b_{1}, z_{1} \cap a_{1}\right\rangle\left\langle b_{2}, z_{2} \cap a_{2}\right\rangle$
$=\left\langle(-1)^{\left[a_{2}| | b_{1} \mid\right.}\left(a_{1}, b_{1}\right) \times\left(a_{2} v b_{2}\right), z_{1} \times z_{2}\right\rangle=\left\langle a_{1} \cup b_{1}, z_{1}\right\rangle\left\langle a_{2} \cup b_{2}, z_{2}\right\rangle$

Lemma 2 If X is path connected, $p \in X_{1}$ so $H^{0}(x) \in[p]$ and $a \in H^{*}(x), \alpha \in H_{k}(x)$
then $\quad \alpha \cap a=\langle a, \alpha\rangle[p]$
Proof: $\langle 1, \alpha \cap a\rangle=\langle a v 1, \alpha\rangle=\langle a, \alpha\rangle$ and $\langle 1,[p]\rangle=1$
〈1, $\langle a, \alpha\rangle[p]\rangle=\langle\alpha, \alpha\rangle$
Both equal to $\langle a, \alpha\rangle$ so an $a=\langle a, \alpha\rangle[p]$.

Lemma $3 \quad \Delta^{*}(a \times b)=a \cup b$

$$
\begin{array}{ll}
\Delta: X \rightarrow X \times X \quad & a, b \in H^{*}(X) \quad \text { note } \pi_{1} 0 \Delta=\pi_{2} \cdot \Delta=1 d x \\
\Delta^{*}(a \times b)=\Delta^{*}\left(\pi_{1}^{*}(a) \cup \pi_{2}^{*}(b)\right)=\Delta^{*} \pi_{1}^{*}(a) \cup \Delta^{*} \pi_{2}^{*}(b)=a \cup b
\end{array}
$$

orient $M \times M$ by $\underbrace{[M \times M]}=[M] \times[M]$
fund class of MKM.
let $\tilde{u}=p d(\Delta) \in H^{n}(M \times M)$ since Δ is an n-dine summon of $M \times M$.

Prop 1. $\langle\tilde{u},[M] \times[p]\rangle=(-1)^{n}$
Proof:

$$
\begin{aligned}
& \left\langle\tilde{u} \cup\left(1 \times[M]^{*}\right),[M] \times[M]\right\rangle \\
= & (-1)^{n}\left\langle\left(1 \times[M]^{*} \cup \tilde{u},[M] \times[M]\right\rangle\right. \\
= & (-1)^{n}\left\langle\quad \tilde{u},[M] \times[M] \cap\left(1 \times[M]^{*}\right)\right\rangle \\
= & (-1)^{n}\left\langle\quad \tilde{u},([M] \cap 1) \times\left([M] \cap(M]^{*}\right)\right\rangle \\
= & (-1)^{n}\langle\quad \text { this implication? }
\end{aligned}
$$

on the otter hand, $\tilde{u}=\operatorname{po}(\Delta)$

$$
\begin{aligned}
& \left\langle\tilde{u} \cup\left(1 \times[M]^{*}\right),[M J \times[M J\rangle\rangle\right. \\
& =\left\langle p d(\Delta) \cup\left(1 \times[M]^{*}\right),[M] \times[M]\right\rangle \\
& =\left\langle\quad \mid x[M]^{*}, i_{*}([M] \times[M])\right\rangle \text { using identity }\langle p d(N) \cup a,[M]\rangle=\left\langle a, \tau_{*}[M]\right\rangle \\
& =\left\langle\left(x[M]^{4}\right) \quad[\Delta]\right\rangle \\
& =\left\langle\pi_{1}^{*}(1) \cup \pi_{2}^{*}\left([M]^{*}\right), \Delta *[M]\right\rangle \\
& =\left\langle\pi_{2}^{*}\left([M]^{*}\right), \Delta *[M]\right\rangle \\
& \langle a, f *(x)\rangle=\left\langle f^{*}(a), x\right\rangle \\
& =\left\langle[M]^{*}, \pi_{2 *}(\Delta *[M])\right\rangle=\left\langle[M]^{*},[M]\right\rangle=1
\end{aligned}
$$

Prop 2 (important \& interesting)
\tilde{u} called the symmetrimizer

$$
\tilde{u} v(a \times b)=(-1)^{|b||a|} \tilde{u} v(b \times a)
$$

Proof: $V=$ Tubular nbd of Δ in $M \times M$.
$\pi: V \rightarrow \Delta$ is proj in nomal bundle
$\pi_{1} j_{\Delta}$ are nonotory invoses.

$$
\begin{aligned}
& \tilde{u} v\left(\tau^{\prime}\right)^{*}(a \times b) \\
= & \tilde{u} \cup \underbrace{\left(\pi^{*} J_{s}^{*}\right.} \tau^{*}(a \times b) \\
= & \tilde{u} \cup \pi^{*} \Delta^{*}(a \times b) \\
= & \tilde{u} \cup \pi^{*}(a \cup b) \quad(l e m m a 3) \\
= & (-1)^{\text {|a| }|b|} \tilde{u} v \pi^{*}(b v a) \quad\left(\tau^{\prime}\right)^{*}(b \times a) \\
= & (-1)^{\text {|a|lb| }} \tilde{u} v\left(\tau^{\prime}\right)^{*}(b \times a) \quad \forall=\left(\tau^{\prime}\right)^{*}\left(\pi_{1}^{*}(b) \cup \pi_{2}^{*}(a)\right)
\end{aligned}
$$

Apply $\jmath^{*}\left(\tau^{*}\right)^{-1}$ to both sides give the result.
$\operatorname{Prop} 3 \quad\langle\tilde{u}, P D(a) \times y\rangle=(-1)^{n(n-|a|)}\langle a, y\rangle \quad a \in H^{k}(M), y \in H_{k}(M)$
Pronf $\langle\tilde{u}, P D(a) \times y\rangle$
$P D(a)=[M] \cap a$ by detn.
$=\langle\tilde{u},([M] \cap a) \times(y \cap 1)\rangle$ is eapping id
$=(-1)^{0}\langle\tilde{u},([M] \times y) \cap(a \times 1)\rangle \quad$ By cap distributiuly?
$=\langle(a \times D) \cup \tilde{u},[M] x y\rangle$
$=\langle(1 x a) \cup \tilde{u},[M] x y\rangle \quad$ prop 2 as is grading is 0
$=\langle\tilde{u},[M] \times y \cap(1 \times a)\rangle$
$=(-1)^{\text {n|a| }}\langle\tilde{u},([M] \cap \mid) \times(y \cap a)\rangle \quad$ ermmal $\quad \mid[M J|-|y|=n$?
$=(-1)^{n|a|}\langle\tilde{u},([m] \cap \mid) \times\langle a, y\rangle[p]\rangle \quad$ idetity $\quad \alpha \cap a=\langle a, \alpha\rangle[p]$
$=(-1)^{\text {n|a| }}\langle\tilde{u},[M] \times[p]\rangle\langle a, y\rangle$

$$
=(-1)^{\text {nial }} \cdot(-1)^{n}\langle a, y\rangle
$$

$$
=(-1)^{n(|a|+1)}\langle a, y\rangle
$$

prop 1

Thm. $P D$ is \simeq (Reaul $P D: H^{K} \rightarrow H_{n-k}$)
For $0 \neq a \in H^{k}(M)$, choose $y \in H_{k}(M)$ s.t. $\langle a, y\rangle \neq 0$. Then, prop $3 \Rightarrow P D(a) \times y \neq 0$.
therefore $P D(a) \neq 0 . \Rightarrow P D$ is injective. $\Rightarrow \operatorname{dim}\left(H_{*}(M)\right)=\operatorname{dim}\left(H^{*}(M)\right)$ so PD is an \simeq. PD: $\bigoplus_{i} H_{H^{i}}(M) \longrightarrow \bigoplus_{i} \longrightarrow H_{i}(M)$ y same dim so must be \simeq
intersection pairing $(a, b)=\langle a \cup b,[M]\rangle$

Cor (.,.) is nondegenerate
If $0 \neq a \in H^{*}(M), \exists b \in H^{n-k}(M)$ with $(a, b) \neq 0$.
Proof Do it yourself

Remark: an example of PD.
If $\left\{a_{i} 4\right.$ is a basis for $H^{〔}(M)$, let $\left\{b_{i} 4\right.$ be the dual basis w.r.f. (\cdot, \cdot). le. $\left(a_{i}, b_{j}\right)=\delta_{i, j}$.
then, $\left\langle b_{j}, P D\left(a_{i}\right)\right\rangle=\left(a_{i}, b_{j}\right)=\delta_{i j} \Rightarrow P D\left(a_{i}\right)=b_{i}^{*} \quad$ (dual basis w.r.f. $\langle;, \cdot\rangle$.)

$$
\left\langle a_{i}, P D\left(b_{j}\right)\right\rangle=\left(b_{j}, a_{i}\right)=(-1)^{\left|a_{i}\right| b_{j} \mid} \delta_{i j} \quad P D\left(b_{j}\right)=(-1)^{\left|a_{j j}\right|\left|b_{j}\right|} a_{j}^{*}
$$

$$
=\left\langle b j \cup a_{i},[M\}\right\rangle
$$

rote: b_{j}^{*}, a_{j}^{*} are is H_{*}
${ }^{\operatorname{pd}(\Delta)}=$
Cor.
$\tilde{u}=\sum_{i}(-1)^{\left|a_{i}\right|} a_{i} \times b_{i}^{2}$
Proof: $\left\langle\tilde{u}, a_{i}^{*} \times b_{j}^{*}\right\rangle=(-1)^{\left|a_{i}\right|\left|n-a_{i}\right|}\left\langle\tilde{u}, \operatorname{PD}\left(b_{i}\right) \times \operatorname{PD}\left(a_{j}\right)\right\rangle$
let $s=\left|a_{i}\right|\left(n-\left|a_{i}\right|\right)+n\left|a_{i}\right|$

$$
\begin{array}{ll}
=(-1)^{s}\left\langle b i, P D\left(a_{j}\right)\right\rangle & \text { denting }\langle\tilde{u}, P D(a) \times y\rangle=(-1)^{n(n-|a|)}\langle a, y\rangle \\
=(-1)^{s}\left\langle\left(a_{i}, b_{j}\right)=(-1)^{s} \delta_{i j}\right. & \equiv\left|a_{i}\right|^{2} \equiv\left|a_{i}\right| \bmod (2)
\end{array}
$$

Intersection Pairing on homology
def. $\quad N_{1} \pitchfork N_{2}$
If $N_{1}, N_{2} \longleftrightarrow M_{1}$ are smooth submanis, N_{1} is transverse to $N_{2}\left(N_{1} \pitchfork N_{2}\right)$
If $\left.\quad T N_{1}\right|_{x}+T N_{2} l_{x}=T M l_{x} \quad \forall x \in N_{1} \cap N_{2}$.
tangent bundle of N_{1} at x.

Example

doesnt span.

Prop. Properties if $\mathrm{N}_{1} \pitchfork \mathrm{~N}_{2}$:

1) $N_{1} \cap N_{2}$ is a smooth Jubmani of $\operatorname{dim} \operatorname{dim} N_{1}+\operatorname{dim} N_{2}-\operatorname{dim} M$
2) $\left.T\left(N_{1} \cap N_{2}\right)\right|_{x}=\left.\left.T N_{1}\right|_{x \cap T N_{2}}\right|_{x}$
3) $V_{M / N_{1} \cap N_{2}}=V_{M / N 1} \oplus V_{M / N 2}$ note $V M / N=\left.T N^{\perp} C T M\right|_{N}$ is the normal bundle and $T M I_{N}=V_{M} M_{N} \oplus T N$
4) $p d\left(N\left(\cap N_{2}\right)=p d\left(N_{1}\right) \cup p d\left(N_{2}\right)\right.$
def. $\left[N_{1}\right] \cdot\left[N_{2}\right]$ intersection paing for smooth submani

$$
\begin{aligned}
{\left[N_{1}\right] \cdot\left[N_{2}\right] } & =\left(p d\left(N_{1}\right), p d\left(N_{2}\right)\right) \\
& =\left\langle p d\left(N_{1}\right) \cup p d\left(N_{2}\right),[M]\right\rangle
\end{aligned}
$$

When N_{1} 中 $N_{z_{1}}$ we have

$$
\left[N_{1}\right] \cdot\left[N_{2}\right]=\left\langle\operatorname{pd}\left(N_{1} \cap N_{2}\right),[M]\right\rangle
$$

= \# of points in $N_{1} \cap N_{2}$ counted with intersection sign, if $\operatorname{dim}\left(N_{1} \cap N_{2}\right)=0$ and 0 ow.
$\operatorname{def} n:$
$j: N_{1} \hookrightarrow M$ be inclusion

$$
i=j \mid N_{1} \cap N_{2}=N_{1} \cap N_{2} \longleftrightarrow N_{2}
$$

$$
\operatorname{pd}\left(N_{2}\right) \in H^{*}(M), \dot{J}^{*}: H^{*}(M) \longrightarrow H^{*}\left(N_{1}\right)
$$

Prop: $J^{*}\left(p d\left(N_{2}\right)\right)=\operatorname{pd} N_{1}\left(N_{1} \cap N_{2}\right)$
Proof: $V_{N 1 /\left(N_{1} \cap N_{2}\right)} \simeq \tau^{*} V_{M I N_{2}}$, so $\quad V_{N_{1} / N_{1 \cap N}}=J^{*} V_{M / N_{2}} \quad V$ or U ???
By fransrese.
also why is $p d N_{1}\left(N_{1} \cap N_{2}\right)$ related $V_{N_{1}} / N_{1} \cap N_{2}$?

Prop. $e(E)$
Spose $\pi: E \rightarrow M$ is an oriented $V B$.
$S: M \rightarrow E$ is a section, shoo.
then $e(E)=\operatorname{pdM}\left(S \cap S_{0}\right)=\operatorname{pdM}\left(S^{-1}(0)\right)$
Proof: $\quad Z^{-1}\left(U_{E}\right)=P d_{E}\left(S_{0}\right)=\operatorname{Pd}_{E}(s) \quad$ since $s \sim s_{0}$.
Recall $p d(N)=j^{*}\left(\left(i^{*}\right)^{-1}\left(U_{\text {MIN }}\right)\right)$ and U_{E} is $T C$ for E.
so $e(E)=S_{0}^{*}\left(\tau_{*}^{-1}\left(U_{E}\right)\right)=S_{0}^{*}(\operatorname{pdE}(S))=\operatorname{pdM}\left(S_{0} \cap S\right)$
cor: $\langle e(T M),[M]\rangle=X(M) \quad$ (Euler charactenstic)
Proof: in $M \times M, \Delta^{*} \underline{V_{M \times M / \Delta}} \simeq \underline{T} M$
So $\langle e(T M),[M]\rangle=[\Delta] \cdot[\Delta]=(\tilde{u}, \tilde{u}) \simeq X(M)$

$$
\overline{\tilde{u}}=\sum(-1)^{|a i|} a_{i} \times b_{i}=\sum(-1)^{|b i|} b_{i} \times a_{i}
$$

