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1 Week 1

1.1 Lecture 1

Definition 1.1: Some conventions:

• I = [0, 1]

• In = I × I × . . . I for n times is the closed n−cube

• Dn = {v⃗ ∈ Rn | ∥v⃗∥ ≤ 1} is the closed n−dim disc

• Sn−1 = {v⃗ ∈ Rn | ∥v⃗∥ = 1}

• Dn ⋍ In, Sn−1 ⊂ Dn, Dn/Sn−1 ⋍ Sn

Example 1.1 (Cylindrical coordinate):
You can consider transferring from spherical coordinate to cylindrical coordinate.

Definition 1.2:

1. Homotopic maps via a homotopy (the function that gives the homotopic maps).

Example 1.2 (Some homotopy maps):

1. 1Rn , 0Rn : Rn → Rn where 1 is the identity and 0 is the zero map, we have the homotopy
ft(x) = tx.

2. Consider the antipodal map, An : Sn → Sn, v 7→ −v. Note that A1 ∼ 1S1 via ft((z) = eiπtz.
But is A2 ∼ 1S2? The answer is no.

Lemma 1.3:
Homotopy is an equivalence relation.

Definition 1.3: [x, y] =Map(x, y)/ ∼, which are homotopy classes of maps X → Y .
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Lemma 1.4:
If f0, f1 : X → Y are homotopic via ft and
g0, g1 : Y → Z are homotopic via gt then
g0 ◦ f0 ∼ g1 ◦ f1 via gt ◦ ft.

Example 1.5 ([X,Rn] has only 1 element.):
Let f : X → Rn. Then by the above lemma, and the fact that 1Rn ∼ 0Rn , we have

f = 1Rn ◦ f ∼ 0Rn ◦ f = 0

This implies that [X,R] only has one element.

Definition 1.4 (Contractible space): A space X is contractible if the identity map is homotopic to some
constant map Cp, which is a constant map for some p ∈ X. That is 1X ∼ Cp.

Proposition 1.6 (Equivalent condition for contractible space):
A space Y is contractible if and only if [X,Y ] has only one element for all space X.

Proof:

• =⇒ : Suppose that Y is contractible. Then 1Y ∼ Cp. Then let f : X → Y be any maps. Then
1Y ◦ f ∼ Cp ◦ f so f ∼ Cp.

• ⇐= : Suppose that [X,Y ] has one element for all spaces X. Then Then all maps f : X → Y are
homotopic to one another. Then [Y, Y ] only has one element. So 1Y ∼ Cp.

□

Remark that the definition of contractible is quite interesting. It is based on the quantity of the structure
[X,Y ].

Definition 1.5 (Homotopy equivalent classes): Spaces X,Y are homotopic equivalent if there exists
maps f, g, where f : X → Y , g : Y → X such that f ◦ g ∼ 1Y and g ◦ f ∼ 1X .
Examples of such include Rn, {0}, and Rn \ 0 ∼ Sn−1.

Basic questions to motivate the study of algebraic topology

• Given the spaces X,Y , is X ∼ Y ?

• What is [X,Y ], i.e. the class of maps that goes from X to Y up to the homotopy of maps??
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Definition 1.6 (Pairs of spaces): A pair of spaces (X,A) is a space X,A ⊂ X, and a map of pairs is
f(X,A) → f(Y,B) such that f : X → Y is continuous, and f(A) ⊂ B.

Definition 1.7 (Homotopy of maps between maps of pairs): Let f0, f1 : (X,A) → (Y,B) be two
maps of pairs. Then f0, f1 are homotopic if

f0, f1 : X → Y are homotopic via H : (X × I, A× I) → (Y,B)

This means (A× I) never goes outside of B?

Remark:
If f(X,A) → (Y,B), g : (Y,B) → (G,C) are maps of pairs, so if g ◦ f . We write [(X,A), (Y,B)] for
equivalence classes of maps of pairs.

Definition 1.8 (Homotopy groups πn(X, p)): Let X be a space, and let p ∈ X, then the nth homotopy
group is

πn(X, p) = [(In, ∂In), (X, p)]

= [(In, ∂In), (X, p)]

= [(Dn, Sn−1), (X, p)]

= [(sn, ∗), (X, p)] ∋ f

Note that f ◦ α, α = (Dn, Sn−1) 7→ (Dn/Sn−1, Sn−1/Sn−1) ≃ (Sn, ∗).

There are multiple properties for the homotopy groups

1. There’s a group structure. Note that π0(X, p) is the path components of X. Note that π1(X, p) is a
group.(it is non-abelian and its abelianization is the homology group H1.) πn(X, p) is an abelian group
for n > 1. It has addition (abelian), identity map, and inverses.

2. Functoriality: if f : (X, p) → (Y, q), then it induces

f∗ : πn(X, p) → πn(Y, q)

[ψ] 7→ [f ◦ ψ]
Check that

(f ◦ g)∗ = f∗ ◦ g∗

3. Homotopy invariance:

If f0, f1 : (X, p) → (Y, q) have f0 ∼ f1 as maps of pairs, then f0∗ = f1∗ since

f0∗([ψ]) = ([f0 ◦ ψ]) = [f1 ◦ ψ] = f1∗([ψ])

Note that something interesting: point-based maps are automatically defined by the maps of pairs.

So

π1(S
n, ∗) =

{
Z n = 1

0 o.w.
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But πi(S
n, ∗) is complicated in general.

n πn(S
2)

1 0
2 Z
3 Z
4 Z/2
5 Z/2
6 Z/12
... Z/3, Z/15,..
.. ...

1.2 Lecture 2.

1.3 Singular Homology

1.3.1 Chain complex

Definition 1.9 (n-simplex): The n−simplex is △n = {(t0, . . . , tn) ∈ Rn+1 | all ti ≥ 0,
∑

i ti = 1}

For example n = 1, get [0, 1] and n = 2, get the triangle. n = 3, we get a tetrahedron.

Definition 1.10 (Faces): If I ⊂ {0, . . . , n}, fI = {t⃗ ∈ △b | ti = 0 if i /∈ I} is the ith face of △n. By
notation, we write I = i0i1 . . . ik where it’s in an ascenidng order.

Definition 1.11 (Face maps): FI : △|I|−1 → fI ⊂ △n, FI (⃗t) = x⃗ where xi =

{
0 i ∈ I

tj i = 1j
. This is

basically to include the lower dimension simplex in the higher dimension one. All these maps are homeo and
that for example,

F12 : △1 → f12, (t0, t1) 7→ (0, t0, t1)

F02 : (t0, t1) 7→ t0, 0, t1

Definition 1.12 (Chain complexes): Let R be a commutative ring. We can have R = Z,Q,R,Z/nZ.
Then a chain complex (C, d) over R is

1. R−modules Ci, i ∈ Z, C =
⊕

i∈Z Ci

2. R−linear maps di : Ci → Ci−1, d =
⊕
di,where d : C → C, d(Ci) ⊂ Ci−1

3. di ◦ di+1 : Ci+1 → Ci−1 is 0 for all i, that is, d ◦ d = 0 or d2 = 0.

One tip is try to avoid subscripts if you can.

Definition 1.13 (homology group): If (C, d) is a chain complex over R, then the ith homology group is
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Hi(C) =
ker(di)
im(di+1)

an R-module. Note that people like to say the homology group, quite a lot, but it is more

than a group. Note that H∗(C) =
⊕

iHi(C).

Some terminologies here:

• d is the differential/boundary map in the chain group

• x ∈ ker(d), x is closed / a cycle

• x ∈ im(di+1) x is exact / a boundary

• If dx = 0, write [x] to be its image in H∗(C).

Definition 1.14 (Chain complex of the n simplex):
The chain complex of the n−simplex is (S∗(△n), d) where

Sk(△n) = ⟨fI | |I|I⊂{0,...,k} = k + 1⟩

The k + 1 dimensional faces. The free Z-module generated by k−dimensional faces of △n for k ≥ 0.
For k < 0, Sk(△n) = 0, where d(fI) =

∑
j(−1)jfI\ij , I = i0, . . . , ik.

Example 1.7:
for n = 2,

d(f012) = f12 − f02 + f01

d2(f012) = (f2 − f1) + (f2 − f0) + (f1 − f0) = 0

Since that this is a freely generated abelian group, all ouu need to check is that d2 maps all the basic elements
to 0. So it is enough to check that d2 = 0 on the generating elements fI as fI is a basis.

Proposition 1.8 (d2=0):
Note

d2(fI) =
∑
njj′

fI\{ij ,i′j}, j < j′

where njj′ = (−1)j(−1)j−1+(−1)j
′
(−1)j = 0 for the first one, we throw out ij then ij′ for the second

one we throw out ij′ then ij .

5



Example 1.9 (Tetrahedron example):
n = 2, ker(d2) = 0, im(d3) = 0.
we have S2(△2) = ⟨f012⟩, S1(△2) = ⟨f01, f12, f02⟩ and S0(△2) = ⟨f0, f1, f2⟩.
we have

1. ker d1 = imd2 = ⟨f12 − f02 + f01⟩.
2. ker d0 = ⟨f0, f1, f2⟩
3. im d1 = {

∑
aifi |

∑
ai = 0}. it is generated by ⟨f0 − f1, f1 − f2, f2 − f0⟩

4. so ker d0/ im d1 ∼= Z by
∑
aifi →

∑
ai

5. Therefore

Hi(S∗(△2)) =

{
Z i = 0

0 i ̸= 0

6. In fact

Hi(S∗(△n)) =

{
Z i = 0

0 i ̸= 0

Example 1.10 (Reduced chain):
The reduced chain CX of △N is (S̃∗(△n), d) where

1. S̃k(△n) = Sk(△n), k ̸= −1

2. ˜S−1(△n) = ⟨f∅⟩ if |I| = 1, dfI = f∅

3. df∅ = 0

It is an exercise to check Hi(S̃∗(△2)) = 0,∀i. This is the most boring homotopy possible.

So the reduced simplicial homology is basically all the same except for the −1 index.

Definition 1.15 (Singular chain complex):
If X is a space, then its singular chain complex is (C∗(X), d) where Ck(X) = {σ | σ : ∆k → X is cts}, is the
free Z−module generated by all maps of the form σ : ∆k → X. This is really really big as it already has an
uncountably large basis, which are formed by σs!

The elements of Ck are finite sums
∑
aiσi, ai ∈ Z, σi : ∆k → X. x ∈ Ck(X) is a singular chain. σ : ∆k → X

is a singular simplex.

Definition 1.16 (The d map): Again since σ is a basis, just need to define d(σ) and the rest follows from
linearity.
If σ : ∆k → X, then

d(σ) =

k∑
j=0

σ ◦ Fĵ

where Fĵ : ∆
k−1 → ∆k is the face map.
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Note that this is chosen such that
ϕσ : S∗(∆

k) → C∗(X)

fI 7→ σ ◦ FI

where FI : ∆|I|−1 → ∆k is a face map.
This satisfies d ◦ ϕσ = ϕσ ◦ d. In particular, we have ϕ = σϕ(f0..n) so that d2σ − 0

Definition 1.17: Define Hi(X) = Hi(C∗(X)) to be the ith singular homology on X. What is the topology
on X being used? it is fromt he continuous map ∆n → X. Note that this is quite hard to be computed
directly. So we use tools.

Example 1.11 (X = {·}):
Consider the set {·} each Ck(X) = ⟨σk⟩. σk : ∆k → {·} is the only map. so

d(σK) =

k∑
j=0

(−1)kσk−1 =

{
σk−1 k even, > 0

0 k odd

So ker(d) = ⟨σ0, σ1, σ3, σ5, . . .⟩ and im(d) = ⟨σ1, σ3, σ5, . . .⟩

So H∗(C∗(X)) = ⟨σ0,σodd⟩
⟨σodd⟩ = Z = ⟨[σ0]⟩.

Hence

H∗({·}) =

{
Z i = 0

0 o.w.

2 Lecture 3

Recall with reduced homology,

C̃k((x) =

{
Ck(X) k ̸= −1

⟨σϕ⟩ k = −1

with dσ = σϕ if σ : ∆0 → X, dσϕ = 0

For exercise, check homology H̃i({•}) = 0,∀i.

Example 2.1:
Some examples are given, but too much to type down.

Proposition 2.2 (Path connected components):
If X is path connected, then H0

∼= Z = ⟨σp⟩ for any p ∈ X.
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2.1 Subcomplexes, quotient complexes, and direct sum

Definition 2.1: If (C, d) is a chain complex over R, then a subcomplex of (C, d) is

• Ai ⊂ Ci are submodules such that

• d(Ai) ⊂ Ai−1 so if A =
⊕
Ai then d(A) ⊂ A.

If (A, d) is a subcomplex of (C, d), then

• (A, d) is a chain complex

• (C/A, d) is a chain complex where C/A =
⊕

i Ci/Ai

Note that di(Ai) ⊂ Ai−1 so di extends to di : Ci/Ai → Ci−1/Ai−1 where (C/A, d) is quotient complex.

Note that if A ⊂ X then C∗(A) is a subcomplex of C∗(X).

Definition 2.2 (Chain complex for pair spaces): If (X,A) is a pair of spaces, let C∗(X,A) =
C∗(X)/C∗(A) is the singular chain complex of (X,A).

Note: If (Cα, dα) α ∈ A, are chain complexes, so is (
⊕

α∈A Cα,
⊕

α∈A dα). For example, H∗(
⊕
Cα) =⊕

α∈AH∗(Cα)

Proposition 2.3:
H∗(X) =

⊕
Xα

Hα(Xα) where the Xα are the path components of X.

Proof: ∆k is connected so Map(∆k, X) =
∐

αMap(∆k, Xα) so Ck((X) =
⊕

α Ck(Xα). This decomposition
respects d so we have a direct sum of chain complexes.

□

2.2 Functors and induced maps

Definition 2.3 (Category): A category is:

• A collection of objects

• for each pairs of objects A,B, a set of morphisms f : A → B equipped with a composition rule:
f : A→ B, g : B → C determines g ◦ f : A→ C

satisfying

• h ◦ (g ◦ f) = (h ◦ g) ◦ f

• For each object A, ∃1A : A→ A such that f : A→ B f ◦ 1A = f, 1B ◦ f = f.
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Example 2.4:
Write {

objects

morphisms

, we have {
R-modules

R-linear maps

{
Top spaces

Continuous maps

{
pairs of spaces (X,A)

maps of pairs

Definition 2.4 (Functors): If C1, C2 are categories, a functor F : C1 → C2 assigns an object a ∈ C1 to
object F (a), in C2. For morphisms f : A→ B, it also gives F (f) : F (A) → F (B) satisfying

• F (1A) = 1F (A)

• F (f ◦ g) = F (g) ◦ F (g)

Definition 2.5 (Chain maps): Given chain complexes (C, d), (C ′, d′), chain complexes over a ring R, then
a chain map is a function that respects the linearity and subset, with d′f = fd, or d′i ◦ fi = fi−1 ◦ di.

Lemma 2.5:
Identity map 1C : (C, d) → (C, d) is a chain map. Also composition of chain maps is chain map. Now
we get category

{
Chain complexes over R

chain maps

Lemma 2.6 (Well defined-ness):
If f : (C, d) → (C ′, d′) is a chain map, then we can write f∗ : H∗(C) → H∗(C

′) where f∗([x]) = [f(x)].
Call f∗ to be the map induced by f.

Proof: fill in later □

Lemma 2.7:

• (idC)∗ = idH∗(C)

• (g ◦ f)∗ = g∗ ◦ f∗.

So homology defines a functor
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{
Chain CX over R

Chain maps

H∗−−→

{
R-modules

R-linear maps

(C, d) 7→ H∗(C)

f : C → C ′ 7→ f∗ : H∗(C) → H∗(C
′)

Definition 2.6 (#): Let f : X → Y be continuous maps, then define

f# : C∗(X) → C∗(Y )

σ ∈Map(∆k, X) 7→ f ◦ σ

Lemma 2.8:
# is a chain map

Proof: fill it in later. The main idea is that f is left composition and face map is right composition. □

There’s a functor {
Spaces

Continuous maps
−→

{
Chain complexes over Z
Chain maps

X 7→ C∗(X)

f : X → Y 7→ f# : C∗(X) → C∗(Y )

Again, composition of functors is again a functor so{
Spaces

Continuous maps
−→

{
Z-modules

Z-linear maps

X 7→ H∗(X)

f : X → Y 7→ f∗ : H∗(X) → H∗(Y )

2.3 Week 2 lecture 1

Recall that f# goes from C∗(X) to C∗(Y ) and f∗ is the one that goes from H∗(X) to H∗(Y ).

Definition 2.7 (Maps of pairs): If f : (X,A) → (Y,B) then f# : C∗(X) → C∗(Y ).
If σ : ∆k → A then f ◦ σ : ∆k → B so it also contains in B So f#(C∗((A))) ⊂ C∗(B).
Hence f# descends to a map C∗(X,A) → C∗(Y,B).

As maps of pairs, we also get functors.
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{
Pairs of spaces

Maps of pairs
−→

{
Chain complexes over Z
Chain maps

−→

{
Z-modules

Z-linear maps

(X,A) 7→ C∗(X,A) = C∗(X)/C∗(A) 7→ H∗(X,A)

(f : (X,A) → (Y,B)) 7→ (f# : C∗(X,A) → C∗(Y,B)) 7→ (H∗(X,A) → H∗(Y,B))

Definition 2.8 (Chain homotopic definition): given g0, g1 : C → C ′ chain maps, then g0 is homotopic
to g1 is there exist hi : Ci → C ′

i+1 such that d′h+ hd = g1 − g0.

Lemma 2.9:
Chain homotopy is equiv relation.

Proposition 2.10:
If g0, g1 : C → C ′ chain maps, g0 ∼ g1 then g1∗ = g0∗ : H∗(C) → H∗(C

′).

Corollary 2.11:
C ∼ C ′ implies H∗(C) ∼= H∗(C

′).

Remark 1: There’s lots of arguments on the idea of the proof, i.e. the chain homotopic arguments.
This involves a confusing rectangular diagram, universal chain homotopy, with ψ mapping from
S∗(δ

K) → C∗(X). Also defined things such as convexity so we can dissect ∆n and ∆n × Is. Also lots
of index drama.

Lemma 2.12 (Naturality):
The square involving S∗(∆

k), S∗(∆
n), C∗(∆

k × I), C∗(∆
n × I), commutes. After some long and

complicated arguments, we get

Corollary 2.13:
f0 ∼ f1 implies f0∗ ∼ f1∗.
Also f : X → Y, g : Y → X induce homotopy equivalence. Also contractible has H∗(X) = Z with
∗ = 0 and 0 otherwise.

11



2.4 Subdivision

Definition 2.9: Given sequence of R modules and linear maps, the defs for following:

• exact at Ai

• Note sequence is exact ⇐⇒ (A, f) is a chain complex with H∗(A) = 0

• 0 → A→ 0

• 0 → A→ B → 0

• 0 → A→ B → C → 0

• SES

Remark 2 (A quite famous example of SES):

0 → C∗(A)
i∗−→ C∗(X)

π−→ C∗(X)/C∗(A) −→ 0

Theorem 2.14 (Snake lemma):
Turn a SES into a LES of the His.

Corollary 2.15:
If (X,A) is a pair of spaces then we have the LES

...Hi+1(X,A) → Hi(A)
i∗−→ Hi(C)

π∗−→ Hi(X,A) → Hi(A)....

where it’s ∂ for the blank arrows.

Now we could use this to compute the LES of (X, {p}).
For i > 0, Hi(X) ∼= Hi(X, {p}). but H0(X) = H0(X, {p})⊕ Z.

3 Week 2 lecture 3

Lemma 3.1:
H̃i(X) ∼ Hi(X, p)

Proof: The basic idea is to show Hi(X, p) is the same in the reduced homology. Then use the inclusion to
make an SES. Use snake lemma to extend it to LES. □
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Remark 3 (Subdivision lemma): You make an open cover U of X, and make CU
k (X). These are

σK → X that are restrained in a particular triangle.

Then, we get a lemma called the subdivision lemma that allows you to do this: for U an open cover
of X, you get

i∗ = HU
∗ (X) → H∗(X)

is actually an isomorphism.

The proof idea here is to define barycentric subdivision on the set X until each of the triangles lie in
a single element of open cover. THen you get some chain homotopic maps.

This gives you the Mayer Vietoris sequence as you get open cover U, V on X.

Proposition 3.2 (Diamond SES):
If the commutative diagram of inclusions is good, i.e. j2 ◦ i2, j1 ◦ i1, then there’s a SES

0 −→ C∗(U1 ∩ U2)
i−→ C∗(U1)⊕ C∗(U2)

j−→ CU
∗ (X) −→ 0

where

i =

[
i1#
i2#

]

j =
[
j1# j2#

]
Note that you have the CU

∗ at the end because it’s induced by an open cover.

Proof:
Idea is to check exactness in the three middle parts. i.e. i injective, j surjective, middle isomorphic.
The idea for the middle one being exact is: since digram commute then im i ⊆ ker j. For the other direction,
say something is in ker j, we construct the preimage of it as a sum. But they are the same after rearranging.
So they must come be linear combinations of things coming from U1 ∩ U2. So ker j ⊆ im i. □

Corollary 3.3 (Mayer Vietoris LES):
Recall from before.

Proposition 3.4 (Reduced hom of Sn):

H̃i(S
n) =

{
Z i = n

0 i ̸= n

13



3.1 Week 3 lecture 1

Lemma 3.5 (Turning a commuting diagram of SES into LES):
Suppose we have a commuting diagram of chain complexes and chain maps, with rows being SES as
below, then we can get a commuting diagram of LES as follows.

Proposition 3.6:
Let rn be the antipodal map from Sn → Sn. Then

rn∗ : H̃n(S
n) = ⟨[Sn]⟩ → H̃n(S

n) = ⟨[Sn]⟩

is given by rn∗[S
n] = −[Sn]

Corollary 3.7 (Some theorem about flipping w.r.t. point):
not quite understanding the corollary and the proof.

3.2 Excision and collapsing on a pair

Definition 3.1 (Deformation retract): There’s a really interesting way of defining deformation retract
as maps of pairs.
Suppose A ⊂ Z, then A is deformation retract of Z if there is a map p : (Z,A) → (A,A) such that

p ◦ i : (A,A) → (A,A) = 1(A,A)

i ◦ p : (Z,A) → (Z,A) ∼ 1(Z,A)

as a map of pairs. There is a way easier way to define deformati on retract but this one works.
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Definition 3.2 (Good pair): A pair (X,A) is afood pair if ∃U ⊂ X open such that A ⊂ U and U
deformation retracts onto A.

Theorem 3.8 (Excision theorem):
This theorem is good for example sheet
If (X,A) is a good pair, and π : (X,A) → (X/A,A/A). Then

π∗ : H∗(X,A) → H∗(X/A,A/A) ∼= H̃(X/A)

is an isormorphism.

Remark 4 (Some use of the excision theorem):
In class, we used the theorem to compute the homology group of Z = S2/{n, s} via a bunch of
sequences. We also used the theorem to compute the homology group of T/B where B is a circle,
where T/B = Z.

3.3 Week 3 lecture 2

Proposition 3.9 (The five lemma):
The five lemma

If Ui∈J forms a open cover of X, then for A ⊂ X, Ui∈J by intersecting each element with A gives you an
open cover of A. So CUA

∗ (A) ⊂ CU
∗ (X). We define CU

∗ (X,A) = CU
∗ (X)/CUA

∗ (A), then we get this map

i : CU
∗ (X) → C∗(X)

induces
i : CU

∗ (X,A) → C∗(X,A)

This follows from subdivision lemma.

Lemma 3.10 (Subdivision lemma for pairs):

i∗ : HU
∗ (X,A) → H∗(X,A)

is an isomorphism.

Proof:
Use snake and give on a commuting diagram of SES. □
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Theorem 3.11 (Excision):
Suppose that B ⊂ A ⊂ Xand B ⊂ int(A). Let

j : (X −B,A−B) → (X,A)

be the inclusion. Then
j∗ : H∗(X −B,A−B) → H∗(X,A)

is an isomorphism.

Proof:
Split the open cover (CU

∗ ) into a direct sum, use a lemma that CU
∗ isomorphism yields HU

∗ isomorphism.
Then use subdivision lemma and a commuting square to show isormopshism of HU

∗ s.

□

Proposition 3.12 (LES of Triple Inclusion):
Suppose Z ⊂ Y ⊂ X then

7→ H∗(Y,Z) 7→ H∗(X,Z) 7→ H∗(X,Y ) 7→ H∗−1(Y, Z) 7→

Where first two arrows are inclusions and the last one is the boundary given by snake.

Lemma 3.13:
If A is a d.r. of U and U ⊂ X, and if j(X,A) → (X,U) is the inclusion, then

j∗ : H(X,A) → H∗(X,U)

is an isomorphism.

Proof: The proof utilizes the L.E.S. of (U,A) and the LES of (X,U,A). □

Definition 3.3 (Good pair): (X,A) is a good pair if ∃U ⊂ X open and that A ⊂ U a d.r. of U and
A ⊂ U . Or say A is closed in X.

Theorem 3.14 (Collapsing of a pair):
Let (X,A) be a good pair, π : (X,A) → (X/A,A/A) be the quotient map. Then π∗ : H∗(X,A) →
H∗(X/A,A/A) is an isomorphism.

Proof: Commuting diagram □

16



Definition 3.4 (n−manifold): A space X is an n-manifold if it is metrizable. i.e. Hausdorff and second
countable. And every x ∈ X has open neighbourhood UX

∼= Rn.

Proposition 3.15:
If X is an n manifold and x ∈ X then

H∗(X,X − x) =

{
Z ∗ = n

0 otherwise

Corollary 3.16:
If Mm, Nn are m,n manifolds and M,N homeomorphic, then m = n.

Proof: Fill it in. But question: how did you get from the X,X− to Dn, Dn − 0? □

4 Week 3 lecture 3

Definition 4.1 (Degree of map): let f : Sn → Sn with f∗[S
n] = k[Sn] wher k is the degree of f .

Proposition 4.1 (Properties about degree of maps):

1. (1Sn)∗ = 1H∗(Sn) so deg id = 1.

2. homotopic maps have the same degrees

3. composition of maps have their degrees being multiplicative.

4. If f : Sn → Sn is a homeomorphism then deg f = ±1. It is orientation preserving if deg f = 1,
otherwise it is orientation reversing

5. if r∗ : Sn → Sn is reflecting in V ⊥, then deg rv = −1

6. if A : Sn → Sn is antipodal map, then A = re1 ◦ . . . ◦ ren+1
implies deg(A) = (−1)n+1. Using

properties 3 and 5.

Corollary 4.2:
A ≁ 1Sn if n is even.

4.1 Local degree

https://math.stackexchange.com/questions/2205452/local-degree-of-a-map-between-n-spheres

Given p ∈ Suchn, then Sn − p ∼= DoN is contractible. So

π∗ : Hn(S
n) → Hn(S

n, Sn − p)

is an isomorphism for n ≥ 1, as LES of a pair.

17
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We now define [Sn, Sn − p].

Definition 4.2 (We define a bunch of things to used to study what happens with on Sn):
p ∈ Sn, get a open U, p ∈ U , define B = Sn \ U . Then B is closed. Then define a bunch of maps of pairs
with respect to this convention.

We then generate a bunch of commutative diagrams. i.e. with U ′ ⊂ U , get Hn(U
′, U ′ − p) → Hn(U,U − p)

is a homeomorphism.
Intuition: Now we think about local degree. Consider a loop S1 → S1 that is homotopic to the constant loop
but might go back and forth hovering over a point. The global map still have degree one but the preimage
of one point could be a few points.

Definition 4.3 (Local degree): Consider f : Sn → Sn with f−1(p) = {q1, . . . , qr} finite. By Hausdorffness
of Sn, find Ui ⊂ Sn open nbhds of qs pariwise disjoint.
We obtain maps fi : (Ui, Ui − qi) → (Sn, Sn − p).
So f∗[Ui, Ui − qi] → k[Sn, Sn − p]. (where the [·] is the generator. i.e. where does f∗ send the generator to
the generator of some subgroup of Z). We then define degqi f = k to be the local degree of f at qi.

Lemma 4.3:
Note that this does not depend on the choice of Ui. The proof is again some relative homology
commutative diagram.

Note that V =
∐
Ui ⊂ Sn, which is open. We can use excision to show that [Ui, Ui − qi] form a basis. So.

Lemma 4.4 (Another way to study map Hn(S
n)):

The map
Hn(S

n) → Hn(S
n, Sn − f−1(p)) ∼= ⊕Hn(Ui, Ui − qi)

is given by

[Sn] 7→
∑
r

[Ui, Ui − qi]

Proof: By two complicated commutative diagrams. □

Theorem 4.5 (Degree of f computed as local degrees):
Suppose f : Sn → Sn, f−1(p) = {q1, . . . , qr} as above. Then deg f =

∑r
i=1 degqi f. Note that this is

true no matter which point p we pick.

Proof: Again a complicated commutative diagram. □
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Example 4.6:
Two examples given. One given an example of degree map, and another demonstrates how you can
compute f∗[U0, U0 − 1] by where it sends a rotation of it.

5 Week 4

5.1 Lecture 1

Remark 5 (Harewicz homomorphism):
It is a result that link homotopy to homology.

Φ : πn(X, ∗) → Hn(X)

f 7→ f∗[S
n]

In general, this map is quite far away from an isomorphism.

h∗ : πn(X) → Hn(X)

He gave me an example of where H2(T
2) is Z, and that f∗(S

2) mapped it to 0.
A better model is that if M is a closed, compact, connected n manifold. Then we will show
Hn(M) ∼= Z = ⟨[M ]⟩.

Remark 6:
So the prof give out two intuitions. First one is Harewicz homomorphism which is not an isomorphism
from π(X, ∗) to study Hn, so it is bad. Then he introduced the manifolds one, which would actually
say that the genus 2 and genus 3 surfaces are the same, which is also not that good. Then he that’s
why he introduced cellular CX.

Definition 5.1 (attaching/gluing along function): Suppose B ⊂ Y , f : B → Y , then X ∪f Y =
(X

∐
Y )/ ∼ . where ∼ is the smallest equivalence relation containing b ∼ f(b) ∀b ∈ B. This is the space

obtained by gluing Y to X along f .why the smallest equivalence relation?Why not pointwise gluing?
If (Y,B) = (Dk, Sk−1) then X ∪f D

k is obtained by attaching a k−cell to X.

Definition 5.2 (Finite cell complex, skeletons): A finite cell complex (fcc) is a space equipped with
closed sets

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ . . . ⊂ Xn

Such that for each k, X is obtained by attaching finitely many cells to Xk−1. such that the following holds:

Xk ≃ Xk−1

⋃
F

∐
α∈Ak

Dk

F :
∐
a∈A

Sk−1 → Xk−1

F =
∐

fα : Sk−1 → Xk−1

19



where each small fα is the
We could also drop the finiteness conditions. Xk is the k skeleton of X.

Definition 5.3 (Wedge product): For pointed space∨
i ∈ I(Xi, xi) =

∐
i∈I

Xi/
∐
i∈I

xi

Example 5.1 (Projective spaces):
Consider the n dimensional projective space. In this section, he showed it is compact and hausdorff.
Also defined the Hopf map, and the following CW construction for the CPn.

CPn = Cn+1 − 0/C∗

Proposition 5.2 (Construction for CPn):

CPn ∼= CPn−1
⋃
pn−1

D2n

Pn−1 : S2n−1 → CPn−1

Theorem 5.3 (The homology classes for CPn):
as CW complexes constructions, also induction for the homology group construction.
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6 Week 4 lecture 3

Observe that Xk/Xk−1 ≃
∨

α∈Ak
Sk.

So note that Hk(Xk, Xk−1) ≃ Hk(
∨

α∈Ak
Sk) = ⟨eα | α ∈ Ak⟩.

We have a map from
∨

α∈Ak
Sk mapping to Sk.

We can use the LES of triple on (Xk, Xk−1, Xk−2).

Lemma 6.1:
dk = π(k−1)∗ ◦ ∂k where ∂k : Hk(Xk, Xk−1) → Hk−1(Xk−1) is ∂ in the LES of (Xk, Xk−1).

Corollary 6.2:

dk ◦ dk+1 = 0

Definition 6.1 (Cellular chain complex): If X is a fcc, Hcell
∗ (X) = H∗(C

cell
∗ (X)) ≃ H∗(X).

Theorem 6.3:

Hcell
∗ (X) = H∗(C

cell
∗ (X)) ≃ H∗(X)

Remark 7 (The cellular homology of RPn and CPn):

Lemma 6.4:
Suppose X is a fcc with one 0−cell, all other cells have m ≤ dim ≤M ,
then H̃∗(X) = 0 if ∗ < m, ∗ > M. The proof is by induction.

7 Week 4 lecture 3

Lemma 7.1:
If X is a fcc then (X,Xk) is a good pair.

Corollary 7.2:
If X is a fcc then Hk(Xk+1) ≃ Hk(X). This is true for any k.

Theorem 7.3:
If X is a fcc then Hcell

∗ (X) ≃ H∗(X).
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Definition 7.1 (Tensor products):

Remark 8 (Tensor products and their properties): Three properties plus ⊗M gives a functor.
THis gives us that if (C, d) is a chain complex over R then (C⊗M,d⊗1) gives another chain complex.

Definition 7.2 (Singular chain complex with coefficients in a abelian group): If G is a Zmodule,
then C∗(X;G) = C∗(X)⊗G is the singular chain complex with coefficient in G. H∗(X;G) is its homology.

Remark 9 (Euler characteristic): the definition, and the theorem regarding Euler characteristic.

Theorem 7.4 (Eilenberg Steenrod axioms):
Define an ordinary homology theory with coefficient in G. It is a functor from (Pairs of spaces, maps
of pairs), (Z-modules, Z-linear maps.) satisfying four different axioms. Then if X is a fcc, and H∗
is any functor satisfying the axioms, H∗(X) ≃ H∗(C

cell
∗ (X)⊗G). In particular, H∗(X;G) satisfy the

axioms.

8 Week 5

8.1 Week5 lecture 1

https://people.math.osu.edu/broaddus.9/6802/files/lecture04.pdf

Definition 8.1 (Free resolution): If R is a module then a free solution of M is a free chain CX A over R
, each Ak is free over R, such that

• Ak = 0, k < 0

• H∗(A) =

{
M ∗ = 0

0 ∗ ≠ 0

It is better viewed this way (question, are this two defns equivalent?)

. . . F2 → F1 → F0 →M → 0

Each F are free and abelian.
Note that in here, if R is a PID, then many good things happen. However, if R is not a PID things are not
as good. So algebraic geometry studies the situation when R is not a PID.

Definition 8.2 (Torsion): IfM,N are modules, then Tori(M,N) = Hi(A⊗N) where A is a free resolution
of M . Torsion is the measure of failure of H∗(A⊗N) = H∗(A)⊗N.
The above pdf gives a short list of properties of torsion.
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Definition 8.3 (Short injective): A chain CX is short injective if

• C∗ is 0 whenever ∗ ≠ k, k + 1, and Ck, Ck+1 are free over R.

• d : Ck+1 → Ck is injective.

Note that it it not necessarily an exact one so it could be not injective.

Theorem 8.1 (A theorem analogues to the structure thm of f.g. module over PID):
A free CX over a PID is a direct sum of short injective chain complexes.
https://en.wikipedia.org/wiki/Structure_theorem_for_finitely_generated_modules_

over_a_principal_ideal_domain

Corollary 8.2:
If two free chains of complexes over a PID have ≃ homology then they are chain homotopic equivalent.

Corollary 8.3:
If C is a chain complex over a field F then C ≃ (H∗(C), 0).

Corollary 8.4 (Universal coefficient theorem):
If C is a free CX over a PID, then

Hk(C ⊗N) = Tor0(Hk(C), N)⊕ Tor1(Hk−1(C), N).

Therefore as a result, H∗(X,G) is determined by H∗(X).
We need a PID so the 0th and 1th things are the only nonzero quantities. Then we can split them into
things to study. That’s why PID is important.

9 Cohomology and products

Yay, finally on cohomology

Definition 9.1: If M,N are R−modules, then Hom(M,N) is an R-module.
If f :M1 →M2 are R−linear, then

f∗ : Hom(M2, N) → Hom(M1, N)

α 7→ α ◦ f

then f∗ is an R−linear map.
Note that

(f ◦ g)∗(α) = g∗(f∗(α))

This gives a contravariant functor. (see notes for more details).
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Note that there is a covariant functor is a functor. A contravariant functor is not a functor.
If (C, d) is a chain complex over R, then

(Hom(C,N), d∗) =
⊕
k

Hom(Ck, N)

where
d∗k : Hom(Ck−1, N) → Hom(Ck, N)

satisfies (d∗)2 = 0. By the contravariant functor property.

Definition 9.2 (The cochain complex): So (Hom(C,N), d∗) is a cochain complex. d∗ raises the homo-
logical degree by 1.

Then there is a covariant functor{
Chain CXs over R

Chain maps
−→

{
Cochain complexes

cochain maps

(C, d) 7→ (hom(C,N), d∗)

f : C → C ′ 7→ f∗ : Hom(C ′, N) → Hom(C,N)

Definition 9.3 (Cohomology): Cohomology of (C∗, d∗k) is

Hk(C) = ker d∗k/ im d∗k−1

This also gives a contravariant function for the pairs of spaces.

Definition 9.4: Given a space X, define its singular cochain complex with coefficients in group G. The
cochain complex is

(Hom(C∗(X), G), dk) = (C∗(X;G))

Hk(X;G) = Hk(C∗(X;G))

9.1 Week 5 Lec 2

Definition 9.5 (kth singular homology): Cohomology of (C∗, d∗k) is

Hk(C;G) = ker d∗k+1/ im d∗k

Definition 9.6 (Cochain maps): If f : X → Y then f# : Ck(Y ;G) → Ck(Y ;G)
f#(α)(σ) = α(f#(σ)) = α(f ◦ σ).
Then f∗ is a cochain map. i.e. d∗f# = f#d∗.
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Definition 9.7 (Chain homotopies): If C,C ′ are cochain complexes, f, g : C → C ′ are chain maps, then
they are cochain homotopic if f − g = d∗h+ hd∗.

Lemma 9.1:
If f ∼ g then f∗ = g∗.
If f, g : C → C ′ are chain complexes, f ∼ g via h, the

f∗, g∗ : hom(C ′;N) → Hom(C,N)

are cochain ∼ via h∗.

Remark 10 (Eilenberg Steenrod): Recall Eilenberg Steenrod about contravariant functors.

• f0, f1 : (X,A) → (Y,B) and f0 ∼ f1 as map of pairs, then f∗0 = f∗1 : H∗(Y,B) → H∗(X,A)

• Get a LES of pairs except it goes up and in opposite direction

• You also get excision except it is upper star

• Dimension: H∗({•}, G) = G, ∗ = 0, 0 o.w.

Theorem 9.2:
Any functor satisfying the above Eilenberg Steenrod is given by Hcell(X;G) when X is a finite cell
CX.

9.2 Ext and Universal coefficient theorems

Definition 9.8 (Ext): If M,N are R−modules,

Exti(M,N) = Hi(Hom(A,N))

where A is a free resolution of M .

Theorem 9.3:
Given a X finite cell cx, you can decompose Hk into Ext and Hom .
You can also use Hk(X) to split up into the freely generated parts and the finite parts. The rank of
the freely generated part is the Betti number.
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Lemma 9.4 (Pairing):
If C is a chain CX over R, then there is a bilinear pairing ⟨, ⟩ : Hom(Ck;N)× Ck → N, ⟨a, c⟩ = a(c)
this descends to a pairing

Hk(Hom(C,N))×Hk(C) → N

⟨[α], [c]⟩ → ⟨α, c⟩ → α(c)

9.3 Week 5 Lecture 3

9.4 Cup product

Definition 9.9 (Cup product):
If a ∈ Ck(X;R), b ∈ Cl(X,R) then

a ∪ b ∈ Ck+l(X;R)

is given by
a ∪ b = a(σ ◦ F0...j)b(σ ◦ Fk...k+1)

Check that this definition makes sense!

Lemma 9.5 (Cup product makes ring):
∪ makes C∗(X;R) into a commutative ring with 1 ∈ C0(X;R). Think of α∪β(σ) as α(σ)β(σ) where
we just need to bump up the degree to a+ b.

Lemma 9.6 (Leibniz Rule):
If α ∈ Ck, β ∈ Cl, then

d∗(α ∪ β) = (d∗α) ∪ β + (−1)kα ∪ (d∗β)

Corollary 9.7 (Cup product descends to cohomology):
∪ descends to a map

∪ : Hk(X;R)×H l(X;R) → H l+k(X;R)

[α]× [β] 7→ [α ∪ β]

This makes H∗(X;R) into a ring with [1] = 1.

Remark: notes that cup products make both cochain complexes and cohomologies into a ring

Proposition 9.8 (A very important prop):
If f : X → Y then f∗ : H∗(Y ;R) → H∗(X;R) is a ring homomorphism.
i.e.

f∗(α ∪ β) = f∗(α) ∪ f∗(β)
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Proposition 9.9 (A hard one):
H∗(X;R) is graded commutative. This mean

a ∪ b = (−1)|a||b|b ∪ a

where |a| = k if a is an element of Hk(X;R). Warning: this is only true for cohomology classes but
not true for cochains in general

See Dexter page 48

Theorem 9.10:
If rj : Cj(X) → Cj(X) defined based on flipping the corners of the simplices around, then r∗ :
C∗(X) → C∗(X) is a chain map and r ∼ 1C∗(X).

10 Week 6

10.1 Week 6 lecture 1

Remark 11: Using half a class to prove the theorem about the simplex-flipping function r and used
it to show graded commutativity.

Proposition 10.1 (Some properties about pairs):

• if α ∈ Ck(X,A) and β ∈ Cl(X) then α ∪ β ∈ C∗(X,A).

• ∪ defines a map
H∗(X,A)×H∗(X) → H∗(X,A)

(α, β) 7→ α ∪ β

• more generally, ∪ defines a map

H∗(X,A)×H∗(X,B) → H∗(X,A ∪B)

this is consequence of subdivision lemma.

•

H∗(X
∐

Y ) ∼= H∗(X)⊕H∗(Y )

11 Week 6 Lecture 2

Definition 11.1 (Exterior products): Setup: (X,A) is a pair of spaces. Y is a space.

π1 : (X × Y,A× Y ) → (X,A)

(x, y) 7→ x

27



π2 : X × Y 7→ Y

(x, y) 7→ y

Then, if a ∈ Hk(X,A), b ∈ H l(Y ) then their exterior product a× b = π∗
1(a) ∪ π∗

2(b) ∈ Hk+l(X × Y,A× Y ).

Proposition 11.1 (Some observations about exterior product):

1.

H∗(X,A)×H∗(Y ) → H∗(X × Y,A× Y )

(a, b) 7→ a× b

is bilinear so it extends to

H∗(X,A)
⊗

H∗(Y ) → H∗(X × Y,A× Y )

a⊗ b 7→ a× b

2.

(a1 × b1) ∪ (a2 × b2) = (−1)|a||b|(a1 ∪ a2) ∪ (b1 ∪ b2)

Theorem 11.2 (A quite big theorem):
If H∗(Y ;R) is free over R, then

Φ : H∗(X,A;R)⊗H∗(Y ;R) → H∗(X × Y,A× Y ;R)

is an isomorphism.
It being free is very important. Note that if R is a field thenit is always free.
There are two consequences

• If the object is free then we can compute H∗(X × Y ;R) from H∗(X;R), H∗(Y ;R).

• it tells us the ring structure on H∗(X × Y ;R).

Corollary 11.3 (Help us identify another set of spaces):
Although S2 ×S2 have the same H∗ as S2 ∨S2 ∨S4, but they still have different structures as rings.
So they are not homeomorphic.

12 Week 6 lecture 3

Theorem 12.1:
If X is an fcc, Φ : h(x) ∼= h(x) is an iso.
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Lemma 12.2:
Φ commutes with induced maps and δ-maps in LES of a pair.

Together these prove the big theorem in six step. This is a quite important proof!

13 Vector bundles

Definition 13.1 (Vector bundle): An n−diml real vector bundle (B,E, π) respectively are bas space,
total space, and projection from total to base such that

• π−1(b) is a real n−diml vector space for each b ∈ B.

• there is an open cover Uα, α ∈ A of B and maps fα : π−1(Uα) → Uα × Rn such that the following
commutes.

π−1(Uα) Uα × Rn

Uα Uα
idUα

fα

π π1

and π2 ◦ fα : π−1(b) → Rn is an isomorphism of vector spaces for all b ∈ Uα. The fα are localizations.

Similarly there is a complex n−diml vector bundle.
A morphism of vector bundles f : (E,B, π) → (E′, B′, π′) is a commuting square

E E′

B B′

fE

π π′

fB

such that fE |π−1(B): π
−1(b) → (π′)−1(f(b)) is a linear map Rn → Rn. But note that the fibres can have

different dimensions.
E is a submodule of E′ if there’s an injective morphism

E E′

B B′

fE

π π′

1B

i.e. π−1(b) is a linear subspace of (π′)−1(b).
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14 Week 7

14.1 Week 7 lecture 1

Definition 14.1 (A list of definitions):

• sections of a vector bundle E.

• a non-vanishing section

• Trivial bundle

• the mobius bundle

• the tautological bundle

Proposition 14.1 (Trivial vector bundle):
E is trivial ⇐⇒ there exists sections s1, . . . sn : B → E such that {s1(b), . . . , sn(b)} is a basis for
π−1(b) for all b ∈ B.

Definition 14.2 (Pullbacks of r-vector bundle): If π : E → B is an n−diml real vector bundle. and
g : B′ → B continuous, then

g∗(E) = {(b′, b, v) ∈ B′ ×B × E | g(b′) = π(v) = b}

where
πg : g∗(E) → B′

(b′, b, v) → b′

and
π−1
g (b′) = {(b′, g(b), v) | π(v) = g(b) = π−1(g(b))}

is a vector space.
If fα : π−1(Uα) → Uα × Rn is a local trivialization for E.
Let Vα = g−1Uα.

f ′α : π−1
g (Vα) → Vα × Rn

(b′, b, v) 7→ (b′, π2(fα(v)))

is a local triv for g∗(E).
So g∗(E) is the pullback of E by g.

Lemma 14.2:

(g ◦ f)∗(E) = f∗(g∗(E))
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Definition 14.3 (Restriction): If A ⊆ B, i : A ↪→ B is the inclusion, then E |A:= i∗(E) is the restriction
of E to A.
If s : B → E is a non-vanishing section then g∗s : B′ → g∗(E), b′ 7→ (b′, f(b), s(f(b))) is a nonvanishing
section of g∗(E).

Definition 14.4 (Products and sums): If π : E → B, π′ : E′ → B′ are r-vector bundles of dimension
n, n′, then their product π × π′ : E × E′ → B × B′ is a vector space of dimension n′ × n. The local
trivializations are also defined similarly.
If B = B′, then E ⊕ E′ = ∆∗(E × E′) → B where ∆ : B → B × B, b 7→ (b, b) is the whitney sum of E and
E′.

Definition 14.5 (Partition of unity):

• Support of a function ϕ : B → R

• partition of unity has

1. ∈ [0, 1]

2. indices such that ϕi(b) ̸= 0 is finite for all b

3. support of all ϕi is in a single cover

4.
∑

i ϕi(b) = 1 for all b ∈ B.

A space B admits a PoU if for every open cover U = {Uα | α ∈ B}, there is a partition of unity subordinate
to U . If B is cpt then B admits a PoU.
Compact Hausdorff spaces, metrisable spaces, manifolds, all admit partitions of unity.
In general, a space B admits partitions of unity if B is paracompact Hausdorff.

Theorem 14.3:
Suppose B admits a PoU and π : E → B × I is a real VB. Then

E |B×0≃ E |B×1

14.2 Week 7 Lec 2

Skipped

14.3 Week 7 Lec 3

Lemma 14.4:
If E |B×[0,1/2] and E |B×[1/2,1] are trivial, then E is trivial.

Lemma 14.5:
For each b ∈ B, b has an open neighbourhood Ub such that E |Ub×I is trivial.
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These two lemmas help prove the big theorem about the PoU implying homotopic equivalence.

Corollary 14.6:
Suppose that π : E → B is a vector bundle, g0, g1 : B′ → B, g0 ∼ g1 via some h : B′ × I → B and
that B′ admits a PoU. Then

g∗0(E) = h∗(E) |B′×0≃ h∗(E) |B′×1= g∗1(E)

Corollary 14.7:
If B is contractible and admits a PoU, then every VB π : E → B is trivial.

14.4 Riemannian metrics:

Definition 14.6 (Riemannian metric): Suppose π : E → B is a real VB (resp. complex VB). A Rieman-
nian (resp. Hermitian) metric on E is a continuous map

g : E ⊕ E → R

(resp. → C) such that
g |π−1(E⊕E)

is an inner product (resp. a Hermitian inner prod)

π−1
E⊕E(b) = π−1(b)× π−1(b)

Definition 14.7 (Unit disk, unit sphere bundles): Suppose E is a VB with Riemannian metric g. The
the unit disk, and the unit bundles of E are given by

Sg(E) = {v ∈ E | ⟨v, v⟩ = 1}

π : Sg(E) → B, π−1(b) ≃ S−1

Dg(E) = {v ∈ E | ⟨v, v⟩ ≤ 1}

π : Ds(E) → B, π−1(b) ≃ Dn

Proposition 14.8:
If B admits PoU, π : E → B is a real VB, then E has a R-metric.

Definition 14.8 (The R-Thom class):
Given vector bundle, let ib : Eb ↪→ E be the inclusion and s0 : B → E be the 0 section. Define E# =
E \ Im(S0) and E

#
b = Eb \ 0.

Then u ∈ Hn(E,E#;R) is an R- Thom class for E if i∗b(u) generates H
∗(Eb, E

#
b ;R) for all b ∈ B.

32



14.5 Week 8 Lec 1

Proposition 14.9 (Pullbacks):
If f : B′ → B, then there is a morphism of vector bundles.

f∗(E) E

B′ B

ππ′

F

f

Lemma 14.10 (Thom class behaves naturally under pullback):
If U is a R− Thom Class for E, then F ∗(U) is an R− Thom class for f∗(E).

Lemma 14.11:
Suppose B = B1 ∪ B2, U ∈ Hn(E,E#). ik : Bk → B is the inclusion. Then if i∗1(U) are thom class
of E |B1 and i∗2(U) are Thom class of E |B2 . Then U is a Thom class for E.

Theorem 14.12 (Quite important: the Thom Isomorphism):
If π : E → B is an n-dimensional r−vector bundle, then

• E has a unique Z/2 Thom Class.

• If E has an R−Thom class U , the map

Φ : H∗(B;R) → H∗+n(E,E#;R)

is an isomorphism
a 7→ π∗(a) ∪ U

14.6 The Gysin sequence

Definition 14.9 (The Euler class): If π : E → B is an R−oriented n−diml real vector bundle with Thom
class U , then its Euler class is

e(E) = s∗0j
∗(U) ∈ Hn(B)

You can see this clearly on a commutative diagram (LES ladder of (E,E#))

Theorem 14.13 (Gysin Sequence):
There is an LES:

H∗−n(B) H∗(B) H∗(S(E)) H∗−n+1(B)α π∗

where α(a) = α ∪ e(E)
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14.7 Week 8 Lec 2

Proposition 14.14 (Properties of e):
Suppose that E is as above. Then

• f : B′ → B, then f∗(E) is oriented and e(f∗(E)) = f∗(e(E))

• If E is trivial and n > 0, then e(E) = 0.

• e(E1 ⊕ E2) = e(E1)⊕ e(E2)

• If E has a non-vanishing section then e(E) = 0.

Theorem 14.15:

H∗(RPn;Z/2) ≃ Z/2[x]/(xn+1)

where x = e(TRPn) ∈ H1(RPn;Z/2)

Corollary 14.16:
π3(S

2) ̸= 0

Remark 12: Four remarks on orientability and the coefficients.

15 Manifolds

Definition 15.1 (n-manifold): An n−manifold is a 2nd countable Hausdorff space M with an open cover
{Uα | α ∈ A} and homeomorphisms ϕα : Uα → Rn.
The transition functions ψαβ : ϕα ◦ ϕβ : ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ) are homeomorphisms. M is smooth if
ϕαs can be chosen so ψαβ are diffeomorphisms.

Definition 15.2 (Fundamental class): We write (M | A) = (M,M − A). Then if B ⊂ A then i : (M |
A) → (M | B) is inclusion of pairs. if w ∈ H∗(M | A), w |B= i∗(w).

Definition 15.3 (R-fundamental class): An R−fundamental class for (M | A) is w ∈ Hn(M | A;R) such
that w |X generate Hn(M |X) for all x ∈ A. It’s an analogue of Thom Class.

Theorem 15.1:
If A ⊂ M is compact, (M | A) has unique Z/2 fundamental class. We are most intersted in the
case when M is compact/closed. A fundamental class for (M | M) = (M,∅) will be written as
[M ] ∈ Hn(M).
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Proposition 15.2:
M is orientable if it has a Z-fundamental class. M is orientable iff TM is orientable.

15.1 Week 8 Lec 3

Definition 15.4: N ⊂ M is a k−dimensional smooth submanifold of an n-manifold M if for every x ∈ N ,
there is a smooth chat

ϕx : Ux → Rn

such that
ϕx(Ux ∩N) → Rk × 0 ⊂ Rn

If N ⊂M is a smooth submanifold then TN ⊂ TM |N is a subbundle.
Also N ⊂M is a smooth submani.

Definition 15.5: VM |N = TN⊥ ⊂ TM |N us the normal bundle of N in M . So TM |N= VM |N ⊕ TN.

Theorem 15.3 (Tabular neighbourhood theorem):
If N ⊂ M is a closed smooth submanifold. There is an open V ⊂ M,N ⊂ V with (V,N) ≃
(VM |N , s0VM |N )

Lemma 15.4:
Suppose E = E1 ⊕ E2 is orientable, then E1 is orientable ⇐⇒ E2 is orientable.

Proposition 15.5:
M is orientable ⇐⇒ TM is orientable.

Corollary 15.6:
If M is orientable, N ↪→ M is a closed smooth submani. Then M is orientable ⇐⇒ VM |N is
orientable.

16 Poincaré duality

Now we work in coefficients in F.
Note that Hk(X) ≃ Hom(Hk(x),F). write ⟨a, ϕ(α)⟩ = α(a). If a ∈ Hk(X), a ∪ · : H l(x) → Hk+l(x).

Definition 16.1 (Cap product): · ∩ a : Hl+k(x) → Hl(x) is the dual of the above. ⟨b, x ∩ a⟩ = ⟨a ∪ b, x⟩
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Definition 16.2 (Intersection paring): SupposeM is an F -oriented n-manifold with fund[M ] ∈ Hn(M).
The intersection pairing (·, ·) : Hk(M)×Hn−k(M) → F is the bilinear pairing given by

(a, b) = ⟨a ∪ b, [M ]⟩

satisfying graded commutativity.
If a ∈ Hk(M), (a, ·) ∈ Hom(Hn−k,F)

Definition 16.3 (Algebraic Poincare dual): THe algebraic Poincare dual of a is

PD(a) = ϕ((a, ·)) = [M ] ∩ a

so
⟨b, PD(a)⟩ = (a, b) = ⟨a ∪ b, [M ]⟩

Now we think about the Geometric poincare duality.

Theorem 16.1:
If M is a connected n-manifold. The map Hn(M) → Hn(M | x) = Hn(M,M − x) ≃ F is injective.

Definition 16.4: UM |N = k−1U is the orientation on VM |N induced by [N ], [M ] it satisfies

⟨UM |N ∪ π∗[N ]∗, i−1
∗ j∗[M ]⟩ = 1

Definition 16.5:
pd(N) = j∗((i∗)−1(UM |N )) ∈ Hn−k(M)

is the geometry poincare dual of N .

Proposition 16.2:
if a ∈ Hk(M) PD(pd(N)) = i∗(N)

Note that the algebraic poincare dual is PD and the grometric is pd.

Lemma 16.3:
i : V →M , i∗(a) = ⟨a, i∗[N ]⟩π∗[N ]∗

16.1 Week 8 lec 4

Recall that PD : Hk(M) → Hn−k(M). This is given by

⟨b, PD(a)⟩ = (a, b) = ⟨a ∪ b, [M ]⟩
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We have the identity:
⟨a× b, α× β⟩ = ⟨a, α⟩⟨b, β⟩

Theorem 16.4 (Poincare duality):
PD is an iso.

Proof: Needs 3 lemmas and 3 props. It gives two corollaries. □

16.2 Intersection pairing on homology

Definition 16.6: Transverse submanifolds yields 4 different properties. Also [N1][N2] product of two trans-
verse submanifolds.

Proposition 16.5:
Two propositions about the geometric PD of Nis.

Corollary 16.6:
⟨e(TM), [M ]⟩ = χ(M)
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