Alg Top

Jia Shi

Fall 2022

1 Week 1

1.1 Lecture 1

Definition 1.1: Some conventions:

- $I=[0,1]$
- $I^{n}=I \times I \times \ldots I$ for n times is the closed n-cube
- $D^{n}=\left\{\vec{v} \in \mathbb{R}^{n} \mid\|\vec{v}\| \leq 1\right\}$ is the closed n-dim disc
- $S^{n-1}=\left\{\vec{v} \in \mathbb{R}^{n} \mid\|\vec{v}\|=1\right\}$
- $D^{n} \simeq I^{n}, S^{n-1} \subset D^{n}, D^{n} / S^{n-1} \simeq S^{n}$

Example 1.1 (Cylindrical coordinate):

You can consider transferring from spherical coordinate to cylindrical coordinate.

Definition 1.2:

1. Homotopic maps via a homotopy (the function that gives the homotopic maps).

Example 1.2 (Some homotopy maps):

1. $1_{\mathbb{R}^{n}}, 0_{\mathbb{R}^{n}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ where 1 is the identity and 0 is the zero map, we have the homotopy $f_{t}(x)=t x$.
2. Consider the antipodal map, $A_{n}: S^{n} \rightarrow S^{n}, v \mapsto-v$. Note that $A_{1} \sim 1_{S^{1}}$ via $f_{t}\left((z)=e^{i \pi t} z\right.$. But is $A_{2} \sim 1_{S^{2}}$? The answer is no.

Lemma 1.3:

Homotopy is an equivalence relation.

Definition 1.3: $[x, y]=\operatorname{Map}(x, y) / \sim$, which are homotopy classes of maps $X \rightarrow Y$.

Lemma 1.4:

If $f_{0}, f_{1}: X \rightarrow Y$ are homotopic via f_{t} and
$g_{0}, g_{1}: Y \rightarrow Z$ are homotopic via g_{t} then
$g_{0} \circ f_{0} \sim g_{1} \circ f_{1}$ via $g_{t} \circ f_{t}$.

Example 1.5 ([$\left.X, \mathbb{R}^{n}\right]$ has only 1 element.):

Let $f: X \rightarrow \mathbb{R}^{n}$. Then by the above lemma, and the fact that $1_{\mathbb{R}^{n}} \sim 0_{\mathbb{R}^{n}}$, we have

$$
f=1_{\mathbb{R}^{n}} \circ f \sim 0_{\mathbb{R}^{n}} \circ f=0
$$

This implies that $[X, \mathbb{R}]$ only has one element.

Definition 1.4 (Contractible space): A space X is contractible if the identity map is homotopic to some constant map C_{p}, which is a constant map for some $p \in X$. That is $1_{X} \sim C_{p}$.

Proposition 1.6 (Equivalent condition for contractible space):

A space Y is contractible if and only if $[X, Y]$ has only one element for all space X.

Proof:

- \Longrightarrow : Suppose that Y is contractible. Then $1_{Y} \sim C_{p}$. Then let $f: X \rightarrow Y$ be any maps. Then $1_{Y} \circ f \sim C_{p} \circ f$ so $f \sim C_{p}$.
- $\Longleftarrow:$ Suppose that $[X, Y]$ has one element for all spaces X. Then Then all maps $f: X \rightarrow Y$ are homotopic to one another. Then $[Y, Y]$ only has one element. So $1_{Y} \sim C_{p}$.

Remark that the definition of contractible is quite interesting. It is based on the quantity of the structure $[X, Y]$.

Definition 1.5 (Homotopy equivalent classes): Spaces X, Y are homotopic equivalent if there exists maps f, g, where $f: X \rightarrow Y, g: Y \rightarrow X$ such that $f \circ g \sim 1_{Y}$ and $g \circ f \sim 1_{X}$. Examples of such include $\mathbb{R}^{n},\{0\}$, and $\mathbb{R}^{n} \backslash 0 \sim S^{n-1}$.
$\underline{\text { Basic questions to motivate the study of algebraic topology }}$

- Given the spaces X, Y, is $X \sim Y$?
- What is $[X, Y]$, i.e. the class of maps that goes from X to Y up to the homotopy of maps??

Definition 1.6 (Pairs of spaces): A pair of spaces (X, A) is a space $X, A \subset X$, and a map of pairs is $f(X, A) \rightarrow f(Y, B)$ such that $f: X \rightarrow Y$ is continuous, and $f(A) \subset B$.

Definition 1.7 (Homotopy of maps between maps of pairs): Let $f_{0}, f_{1}:(X, A) \rightarrow(Y, B)$ be two maps of pairs. Then f_{0}, f_{1} are homotopic if

$$
f_{0}, f_{1}: X \rightarrow Y \text { are homotopic via } H:(X \times I, A \times I) \rightarrow(Y, B)
$$

This means $(A \times I)$ never goes outside of B ?

Remark:

If $f(X, A) \rightarrow(Y, B), g:(Y, B) \rightarrow(G, C)$ are maps of pairs, so if $g \circ f$. We write $[(X, A),(Y, B)]$ for equivalence classes of maps of pairs.

Definition 1.8 (Homotopy groups $\pi_{n}(X, p)$): Let X be a space, and let $p \in X$, then the nth homotopy group is

$$
\begin{aligned}
\pi_{n}(X, p) & =\left[\left(I^{n}, \partial I^{n}\right),(X, p)\right] \\
& =\left[\left(I^{n}, \partial I^{n}\right),(X, p)\right] \\
& =\left[\left(D^{n}, S^{n-1}\right),(X, p)\right] \\
& =\left[\left(s^{n}, *\right),(X, p)\right] \ni f
\end{aligned}
$$

Note that $f \circ \alpha, \alpha=\left(D^{n}, S^{n-1}\right) \mapsto\left(D^{n} / S^{n-1}, S^{n-1} / S^{n-1}\right) \simeq\left(S^{n}, *\right)$.

There are multiple properties for the homotopy groups

1. There's a group structure. Note that $\pi_{0}(X, p)$ is the path components of X. Note that $\pi_{1}(X, p)$ is a group.(it is non-abelian and its abelianization is the homology group $\left.H_{1}.\right) \pi_{n}(X, p)$ is an abelian group for $n>1$. It has addition (abelian), identity map, and inverses.
2. Functoriality: if $f:(X, p) \rightarrow(Y, q)$, then it induces

$$
\begin{gathered}
f_{*}: \pi_{n}(X, p) \rightarrow \pi_{n}(Y, q) \\
{[\psi] \mapsto[f \circ \psi]}
\end{gathered}
$$

Check that

$$
(f \circ g)_{*}=f_{*} \circ g_{*}
$$

3. Homotopy invariance:

If $f_{0}, f_{1}:(X, p) \rightarrow(Y, q)$ have $f_{0} \sim f_{1}$ as maps of pairs, then $f_{0 *}=f_{1 *}$ since

$$
f_{0 *}([\psi])=\left(\left[f_{0} \circ \psi\right]\right)=\left[f_{1} \circ \psi\right]=f_{1 *}([\psi])
$$

Note that something interesting: point-based maps are automatically defined by the maps of pairs.
So

$$
\pi_{1}\left(S^{n}, *\right)= \begin{cases}\mathbb{Z} & n=1 \\ 0 & \text { o.w. }\end{cases}
$$

But $\pi_{i}\left(S^{n}, *\right)$ is complicated in general.

n	$\pi_{n}\left(S^{2}\right)$
1	0
2	\mathbb{Z}
3	\mathbb{Z}
4	$\mathbb{Z} / 2$
5	$\mathbb{Z} / 2$
6	$\mathbb{Z} / 12$
\ldots	$\mathbb{Z} / 3, \mathbb{Z} / 15, .$.
..	\cdots

1.2 Lecture 2.

1.3 Singular Homology

1.3.1 Chain complex

Definition 1.9 (n-simplex): The n-simplex is $\triangle^{n}=\left\{\left(t_{0}, \ldots, t_{n}\right) \in \mathbb{R}^{n+1} \mid\right.$ all $\left.t_{i} \geq 0, \sum_{i} t_{i}=1\right\}$

For example $n=1$, get $[0,1]$ and $n=2$, get the triangle. $n=3$, we get a tetrahedron.

Definition 1.10 (Faces): If $I \subset\{0, \ldots, n\}, f_{I}=\left\{\vec{t} \in \triangle^{b} \mid t_{i}=0\right.$ if $\left.i \notin I\right\}$ is the i th face of \triangle^{n}. By notation, we write $I=i_{0} i_{1} \ldots i_{k}$ where it's in an ascenidng order.

Definition 1.11 (Face maps): $F_{I}: \triangle^{|I|-1} \rightarrow f_{I} \subset \triangle^{n}, F_{I}(\vec{t})=\vec{x}$ where $x_{i}=\left\{\begin{array}{ll}0 & i \in I \\ t_{j} & i=1_{j}\end{array}\right.$. This is basically to include the lower dimension simplex in the higher dimension one. All these maps are homeo and that for example,

$$
\begin{gathered}
F_{12}: \Delta^{1} \rightarrow f_{12},\left(t_{0}, t_{1}\right) \mapsto\left(0, t_{0}, t_{1}\right) \\
F_{02}:\left(t_{0}, t_{1}\right) \mapsto t_{0}, 0, t_{1}
\end{gathered}
$$

Definition 1.12 (Chain complexes): Let R be a commutative ring. We can have $R=\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{Z} / n \mathbb{Z}$.
Then a chain complex (C, d) over R is

1. R-modules $C_{i}, i \in \mathbb{Z}, C=\bigoplus_{i \in \mathbb{Z}} C_{i}$
2. R-linear maps $d_{i}: C_{i} \rightarrow C_{i-1}, d=\bigoplus d_{i}$, where $d: C \rightarrow C, d\left(C_{i}\right) \subset C_{i-1}$
3. $d_{i} \circ d_{i+1}: C_{i+1} \rightarrow C_{i-1}$ is 0 for all i, that is, $d \circ d=0$ or $d^{2}=0$.

One tip is try to avoid subscripts if you can.

Definition 1.13 (homology group): If (C, d) is a chain complex over R, then the ith homology group is
$H_{i}(C)=\frac{\operatorname{ker}\left(d_{i}\right)}{\operatorname{im}\left(d_{i+1}\right)}$ an $\underline{R \text {-module. Note that people like to say the homology group, quite a lot, but it is more }}$ than a group. Note that $H_{*}(C)=\bigoplus_{i} H_{i}(C)$.

Some terminologies here:

- d is the differential/boundary map in the chain group
- $x \in \operatorname{ker}(d), x$ is closed / a cycle
- $x \in \operatorname{im}\left(d_{i+1}\right) x$ is exact / a boundary
- If $d x=0$, write $[x]$ to be its image in $H_{*}(C)$.

Definition 1.14 (Chain complex of the n simplex):

The chain complex of the n-simplex is $\left(S_{*}\left(\triangle^{n}\right), d\right)$ where

$$
\left.S_{k}\left(\triangle^{n}\right)=\left\langle f_{I}\right||I|_{I \subset\{0, \ldots, k\}}=k+1\right\rangle
$$

The $k+1$ dimensional faces. The free \mathbb{Z}-module generated by k-dimensional faces of \triangle^{n} for $k \geq 0$. For $k<0, S_{k}\left(\triangle^{n}\right)=0$, where $d\left(f_{I}\right)=\sum_{j}(-1)^{j} f_{I \backslash i_{j}}, I=i_{0}, \ldots, i_{k}$.

Example 1.7:

for $n=2$,

$$
\begin{gathered}
d\left(f_{012}\right)=f_{12}-f_{02}+f_{01} \\
d^{2}\left(f_{012}\right)=\left(f_{2}-f_{1}\right)+\left(f_{2}-f_{0}\right)+\left(f_{1}-f_{0}\right)=0
\end{gathered}
$$

Since that this is a freely generated abelian group, all ouu need to check is that d^{2} maps all the basic elements to 0 . So it is enough to check that $d^{2}=0$ on the generating elements f_{I} as f_{I} is a basis.

Proposition $1.8\left(d^{2}=0\right)$:
Note

$$
d^{2}\left(f_{I}\right)=\sum_{n_{j j^{\prime}}} f_{I \backslash\left\{i_{j}, i_{j}^{\prime}\right\}}, j<j^{\prime}
$$

where $n_{j j^{\prime}}=(-1)^{j}(-1)^{j-1}+(-1)^{j^{\prime}}(-1)^{j}=0$ for the first one, we throw out i_{j} then $i_{j^{\prime}}$ for the second one we throw out $i_{j^{\prime}}$ then i_{j}.

Example 1.9 (Tetrahedron example):

$n=2, \operatorname{ker}\left(d_{2}\right)=0, i m\left(d_{3}\right)=0$.
we have $S_{2}\left(\triangle^{2}\right)=\left\langle f_{012}\right\rangle, S_{1}\left(\triangle^{2}\right)=\left\langle f_{01}, f_{12}, f_{02}\right\rangle$ and $S_{0}\left(\triangle^{2}\right)=\left\langle f_{0}, f_{1}, f_{2}\right\rangle$.
we have

1. $\operatorname{ker} d_{1}=i m d_{2}=\left\langle f_{12}-f_{02}+f_{01}\right\rangle$.
2. $\operatorname{ker} d_{0}=\left\langle f_{0}, f_{1}, f_{2}\right\rangle$
3. $\operatorname{im} d_{1}=\left\{\sum a_{i} f_{i} \mid \sum a_{i}=0\right\}$. it is generated by $\left\langle f_{0}-f_{1}, f_{1}-f_{2}, f_{2}-f_{0}\right\rangle$
4. so $\operatorname{ker} d_{0} / \operatorname{im} d_{1} \cong \mathbb{Z}$ by $\sum a_{i} f_{i} \rightarrow \sum a_{i}$
5. Therefore

$$
H_{i}\left(S_{*}\left(\triangle^{2}\right)\right)= \begin{cases}\mathbb{Z} & i=0 \\ 0 & i \neq 0\end{cases}
$$

6. In fact

$$
H_{i}\left(S_{*}\left(\triangle^{n}\right)\right)= \begin{cases}\mathbb{Z} & i=0 \\ 0 & i \neq 0\end{cases}
$$

Example 1.10 (Reduced chain):

The reduced chain C_{X} of \triangle^{N} is $\left(\tilde{S}_{*}\left(\triangle^{n}\right), d\right)$ where

1. $\tilde{S}_{k}\left(\triangle^{n}\right)=S_{k}\left(\triangle^{n}\right), k \neq-1$
2. $\tilde{S_{-1}}\left(\triangle^{n}\right)=\left\langle f_{\varnothing}\right\rangle$ if $|I|=1, d f_{I}=f_{\varnothing}$
3. $d f_{\varnothing}=0$

It is an exercise to check $H_{i}\left(\tilde{S}_{*}\left(\triangle^{2}\right)\right)=0, \forall i$. This is the most boring homotopy possible.

So the reduced simplicial homology is basically all the same except for the -1 index.

Definition 1.15 (Singular chain complex):

If X is a space, then its singular chain complex is $\left(C_{*}(X), d\right)$ where $C_{k}(X)=\left\{\sigma \mid \sigma: \Delta^{k} \rightarrow X\right.$ is cts $\}$, is the free \mathbb{Z}-module generated by all maps of the form $\sigma: \Delta^{k} \rightarrow X$. This is really really big as it already has an uncountably large basis, which are formed by $\sigma \mathrm{s}$!

The elements of C_{k} are finite sums $\sum a_{i} \sigma_{i}, a_{i} \in \mathbb{Z}, \sigma_{i}: \Delta^{k} \rightarrow X . x \in C_{k}(X)$ is a singular chain. $\sigma: \Delta^{k} \rightarrow X$ is a singular simplex.

Definition 1.16 (The d map): Again since σ is a basis, just need to define $d(\sigma)$ and the rest follows from linearity.
If $\sigma: \Delta^{k} \rightarrow X$, then

$$
d(\sigma)=\sum_{j=0}^{k} \sigma \circ F_{\hat{j}}
$$

where $F_{\hat{j}}: \Delta^{k-1} \rightarrow \Delta^{k}$ is the face map.

Note that this is chosen such that

$$
\begin{gathered}
\phi_{\sigma}: S_{*}\left(\Delta^{k}\right) \rightarrow C_{*}(X) \\
f_{I} \mapsto \sigma \circ F_{I}
\end{gathered}
$$

where $F_{I}: \Delta^{|I|-1} \rightarrow \Delta^{k}$ is a face map.
This satisfies $d \circ \phi_{\sigma}=\phi_{\sigma} \circ d$. In particular, we have $\phi=\sigma_{\phi}\left(f_{0 . . n}\right)$ so that $d^{2} \sigma-0$

Definition 1.17: Define $H_{i}(X)=H_{i}\left(C_{*}(X)\right)$ to be the ith singular homology on X. What is the topology on X being used? it is fromt he continuous map $\Delta^{n} \rightarrow X$. Note that this is quite hard to be computed directly. So we use tools.

Example $1.11(X=\{\cdot\})$:
Consider the set $\{\cdot\}$ each $C_{k}(X)=\left\langle\sigma_{k}\right\rangle . \sigma_{k}: \Delta^{k} \rightarrow\{\cdot\}$ is the only map. so

$$
d\left(\sigma_{K}\right)=\sum_{j=0}^{k}(-1)^{k} \sigma_{k-1}= \begin{cases}\sigma_{k-1} & \mathrm{k} \text { even, }>0 \\ 0 & \mathrm{k} \text { odd }\end{cases}
$$

So $\operatorname{ker}(d)=\left\langle\sigma_{0}, \sigma_{1}, \sigma_{3}, \sigma_{5}, \ldots\right\rangle$ and $\operatorname{im}(d)=\left\langle\sigma_{1}, \sigma_{3}, \sigma_{5}, \ldots\right\rangle$

So $H_{*}\left(C_{*}(X)\right)=\frac{\left\langle\sigma_{0}, \sigma_{o d d}\right\rangle}{\left\langle\sigma_{\text {odd }}\right\rangle}=\mathbb{Z}=\left\langle\left[\sigma_{0}\right]\right\rangle$.
Hence

$$
H_{*}(\{\cdot\})= \begin{cases}\mathbb{Z} & i=0 \\ 0 & \text { o.w }\end{cases}
$$

2 Lecture 3

Recall with reduced homology,

$$
\tilde{C}_{k}\left((x)= \begin{cases}C_{k}(X) & k \neq-1 \\ \left\langle\sigma_{\phi}\right\rangle & k=-1\end{cases}\right.
$$

with $d \sigma=\sigma_{\phi}$ if $\sigma: \Delta^{0} \rightarrow X, d \sigma_{\phi}=0$
For exercise, check homology $\tilde{H}_{i}(\{\bullet\})=0, \forall i$.

Example 2.1:

Some examples are given, but too much to type down.

Proposition 2.2 (Path connected components):
If X is path connected, then $H_{0} \cong \mathbb{Z}=\left\langle\sigma_{p}\right\rangle$ for any $p \in X$.

2.1 Subcomplexes, quotient complexes, and direct sum

Definition 2.1: If (C, d) is a chain complex over R, then a subcomplex of (C, d) is

- $A_{i} \subset C_{i}$ are submodules such that
- $d\left(A_{i}\right) \subset A_{i-1}$ so if $A=\bigoplus A_{i}$ then $d(A) \subset A$.

If (A, d) is a subcomplex of (C, d), then

- (A, d) is a chain complex
- $(C / A, d)$ is a chain complex where $C / A=\bigoplus_{i} C_{i} / A_{i}$

Note that $d_{i}\left(A_{i}\right) \subset A_{i-1}$ so d_{i} extends to $d_{i}: C_{i} / A_{i} \rightarrow C_{i-1} / A_{i-1}$ where $(C / A, d)$ is quotient complex.

Note that if $A \subset X$ then $C_{*}(A)$ is a subcomplex of $C_{*}(X)$.

Definition 2.2 (Chain complex for pair spaces): If (X, A) is a pair of spaces, let $C_{*}(X, A)=$ $C_{*}(X) / C_{*}(A)$ is the singular chain complex of (X, A).

Note: If $\left(C_{\alpha}, d_{\alpha}\right) \alpha \in A$, are chain complexes, so is $\left(\bigoplus_{\alpha \in A} C_{\alpha}, \bigoplus_{\alpha \in A} d_{\alpha}\right)$. For example, $H_{*}\left(\bigoplus C_{\alpha}\right)=$ $\bigoplus_{\alpha \in A} H_{*}\left(C_{\alpha}\right)$

Proposition 2.3:

$H_{*}(X)=\bigoplus_{X_{\alpha}} H_{\alpha}\left(X_{\alpha}\right)$ where the X_{α} are the path components of X.

Proof: Δ^{k} is connected so $\operatorname{Map}\left(\Delta^{k}, X\right)=\coprod_{\alpha} \operatorname{Map}\left(\Delta^{k}, X_{\alpha}\right)$ so $C_{k}\left((X)=\bigoplus_{\alpha} C_{k}\left(X_{\alpha}\right)\right.$. This decomposition respects d so we have a direct sum of chain complexes.

2.2 Functors and induced maps

Definition 2.3 (Category): A category is:

- A collection of objects
- for each pairs of objects A, B, a set of morphisms $f: A \rightarrow B$ equipped with a composition rule: $f: A \rightarrow B, g: B \rightarrow C$ determines $g \circ f: A \rightarrow C$
satisfying
- $h \circ(g \circ f)=(h \circ g) \circ f$
- For each object $A, \exists 1_{A}: A \rightarrow A$ such that $f: A \rightarrow B f \circ 1_{A}=f, 1_{B} \circ f=f$.

Example 2.4:

Write

$$
\left\{\begin{array}{l}
\text { objects } \\
\text { morphisms }
\end{array}\right.
$$

, we have

$$
\left\{\begin{array} { l }
{ \mathrm { R } \text { -modules } } \\
{ \mathrm { R } \text { -linear maps } }
\end{array} \left\{\begin{array} { l }
{ \text { Top spaces } } \\
{ \text { Continuous maps } }
\end{array} \left\{\begin{array}{l}
\text { pairs of spaces }(X, A) \\
\text { maps of pairs }
\end{array}\right.\right.\right.
$$

Definition 2.4 (Functors): If C_{1}, C_{2} are categories, a functor $F: C_{1} \rightarrow C_{2}$ assigns an object $a \in C_{1}$ to object $F(a)$, in C_{2}. For morphisms $f: A \rightarrow B$, it also gives $F(f): F(A) \rightarrow F(B)$ satisfying

- $F\left(1_{A}\right)=1_{F(A)}$
- $F(f \circ g)=F(g) \circ F(g)$

Definition 2.5 (Chain maps): Given chain complexes $(C, d),\left(C^{\prime}, d^{\prime}\right)$, chain complexes over a ring R, then a chain map is a function that respects the linearity and subset, with $d^{\prime} f=f d$, or $d_{i}^{\prime} \circ f_{i}=f_{i-1} \circ d_{i}$.

Lemma 2.5:

Identity map $1_{C}:(C, d) \rightarrow(C, d)$ is a chain map. Also composition of chain maps is chain map. Now we get category

$$
\left\{\begin{array}{l}
\text { Chain complexes over } R \\
\text { chain maps }
\end{array}\right.
$$

Lemma 2.6 (Well defined-ness):

If $f:(C, d) \rightarrow\left(C^{\prime}, d^{\prime}\right)$ is a chain map, then we can write $f_{*}: H_{*}(C) \rightarrow H_{*}\left(C^{\prime}\right)$ where $f_{*}([x])=[f(x)]$. Call f_{*} to be the map induced by f.

Proof: fill in later

Lemma 2.7:

- $\left(i d_{C}\right)_{*}=i d_{H_{*}(C)}$
- $(g \circ f) *=g_{*} \circ f_{*}$.

So homology defines a functor

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ \text { Chain CX over } R } \\
{ \text { Chain maps } }
\end{array} \xrightarrow { H _ { * } } \left\{\begin{array}{l}
\text { R-modules } \\
\text { R-linear maps }
\end{array}\right.\right. \\
& (C, d) \mapsto H_{*}(C) \\
& f: C \rightarrow C^{\prime} \mapsto f_{*}: H_{*}(C) \rightarrow H_{*}\left(C^{\prime}\right)
\end{aligned}
$$

Definition 2.6 (\#): Let $f: X \rightarrow Y$ be continuous maps, then define

$$
\begin{gathered}
f_{\#}: C_{*}(X) \rightarrow C_{*}(Y) \\
\sigma \in \operatorname{Map}\left(\Delta^{k}, X\right) \mapsto f \circ \sigma
\end{gathered}
$$

Lemma 2.8:
 \# is a chain map

Proof: fill it in later. The main idea is that f is left composition and face map is right composition.

There's a functor

$$
\begin{aligned}
\left\{\begin{array}{l}
\text { Spaces } \\
\text { Continuous maps }
\end{array}\right. & \rightarrow\left\{\begin{array}{l}
\text { Chain complexes over } \mathbb{Z} \\
\text { Chain maps }
\end{array}\right. \\
X & \mapsto C_{*}(X) \\
f: X \rightarrow Y & \mapsto f_{\#}: C_{*}(X) \rightarrow C_{*}(Y)
\end{aligned}
$$

Again, composition of functors is again a functor so

$$
\begin{gathered}
\left\{\begin{array} { l }
{ \begin{array} { l }
{ \text { Spaces } } \\
{ \text { Continuous maps } }
\end{array} }
\end{array} \rightarrow \left\{\begin{array}{l}
\mathbb{Z} \text {-modules } \\
\mathbb{Z} \text {-linear maps }
\end{array}\right.\right. \\
X \mapsto H_{*}(X) \\
f: X \rightarrow Y \mapsto f_{*}: H_{*}(X) \rightarrow H_{*}(Y)
\end{gathered}
$$

2.3 Week 2 lecture 1

Recall that $f_{\#}$ goes from $C_{*}(X)$ to $C_{*}(Y)$ and f_{*} is the one that goes from $H_{*}(X)$ to $H_{*}(Y)$.

Definition 2.7 (Maps of pairs): If $f:(X, A) \rightarrow(Y, B)$ then $f_{\#}: C_{*}(X) \rightarrow C_{*}(Y)$. If $\sigma: \Delta^{k} \rightarrow A$ then $f \circ \sigma: \Delta^{k} \rightarrow B$ so it also contains in B So $f_{\#}\left(C_{*}((A))\right) \subset C_{*}(B)$. Hence $f_{\#}$ descends to a map $C_{*}(X, A) \rightarrow C_{*}(Y, B)$.

As maps of pairs, we also get functors.

$$
\begin{gathered}
\left\{\begin{array} { l }
{ \text { Pairs of spaces } } \\
{ \text { Maps of pairs } }
\end{array} \rightarrow \left\{\begin{array} { l }
{ \begin{array} { l }
{ \text { Chain complexes over } \mathbb { Z } } \\
{ \text { Chain maps } }
\end{array} }
\end{array} \rightarrow \left\{\begin{array}{l}
\mathbb{Z} \text {-modules } \\
\mathbb{Z} \text {-linear maps }
\end{array}\right.\right.\right. \\
(X, A) \mapsto C_{*}(X, A)=C_{*}(X) / C_{*}(A) \mapsto H_{*}(X, A) \\
(f:(X, A) \rightarrow(Y, B)) \mapsto\left(f_{\#}: C_{*}(X, A) \rightarrow C_{*}(Y, B)\right) \mapsto\left(H_{*}(X, A) \rightarrow H_{*}(Y, B)\right)
\end{gathered}
$$

Definition 2.8 (Chain homotopic definition): given $g_{0}, g_{1}: C \rightarrow C^{\prime}$ chain maps, then g_{0} is homotopic to g_{1} is there exist $h_{i}: C_{i} \rightarrow C_{i+1}^{\prime}$ such that $d^{\prime} h+h d=g_{1}-g_{0}$.

Lemma 2.9:

Chain homotopy is equiv relation.

Proposition 2.10:

If $g_{0}, g_{1}: C \rightarrow C^{\prime}$ chain maps, $g_{0} \sim g_{1}$ then $g_{1 *}=g_{0 *}: H_{*}(C) \rightarrow H_{*}\left(C^{\prime}\right)$.

Corollary 2.11:

$C \sim C^{\prime}$ implies $H_{*}(C) \cong H_{*}\left(C^{\prime}\right)$.

Remark 1: There's lots of arguments on the idea of the proof, i.e. the chain homotopic arguments. This involves a confusing rectangular diagram, universal chain homotopy, with ψ mapping from $S_{*}\left(\delta^{K}\right) \rightarrow C_{*}(X)$. Also defined things such as convexity so we can dissect Δ^{n} and $\Delta^{n} \times I$ s. Also lots of index drama.

Lemma 2.12 (Naturality):

The square involving $S_{*}\left(\Delta^{k}\right), S_{*}\left(\Delta^{n}\right), C_{*}\left(\Delta^{k} \times I\right), C_{*}\left(\Delta^{n} \times I\right)$, commutes. After some long and complicated arguments, we get

Corollary 2.13:

$f_{0} \sim f_{1}$ implies $f_{0 *} \sim f_{1 *}$.
Also $f: X \rightarrow Y, g: Y \rightarrow X$ induce homotopy equivalence. Also contractible has $H_{*}(X)=\mathbb{Z}$ with $*=0$ and 0 otherwise.

2.4 Subdivision

Definition 2.9: Given sequence of R modules and linear maps, the defs for following:

- exact at A_{i}
- Note sequence is exact $\Longleftrightarrow(A, f)$ is a chain complex with $H_{*}(A)=0$
- $0 \rightarrow A \rightarrow 0$
- $0 \rightarrow A \rightarrow B \rightarrow 0$
- $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$
- SES

Remark 2 (A quite famous example of SES):

$$
0 \rightarrow C_{*}(A) \xrightarrow{i_{*}} C_{*}(X) \xrightarrow{\pi} C_{*}(X) / C_{*}(A) \rightarrow 0
$$

Theorem 2.14 (Snake lemma):
Turn a SES into a LES of the H_{i} s.

Corollary 2.15:

If (X, A) is a pair of spaces then we have the LES

$$
\ldots H_{i+1}(X, A) \rightarrow H_{i}(A) \xrightarrow{i_{*}} H_{i}(C) \xrightarrow{\pi_{*}} H_{i}(X, A) \rightarrow H_{i}(A) \ldots
$$

where it's ∂ for the blank arrows.

Now we could use this to compute the LES of $(X,\{p\})$.
For $i>0, H_{i}(X) \cong H_{i}(X,\{p\})$. but $H_{0}(X)=H_{0}(X,\{p\}) \oplus \mathbb{Z}$.

3 Week 2 lecture 3

Lemma 3.1:
 $\tilde{H}_{i}(X) \sim H_{i}(X, p)$

Proof: The basic idea is to show $H_{i}(X, p)$ is the same in the reduced homology. Then use the inclusion to make an SES. Use snake lemma to extend it to LES.

Remark 3 (Subdivision lemma): You make an open cover U of X, and make $C_{k}^{U}(X)$. These are $\sigma^{K} \rightarrow X$ that are restrained in a particular triangle.

Then, we get a lemma called the subdivision lemma that allows you to do this: for U an open cover of X, you get

$$
i_{*}=H_{*}^{U}(X) \rightarrow H_{*}(X)
$$

is actually an isomorphism.
The proof idea here is to define barycentric subdivision on the set X until each of the triangles lie in a single element of open cover. THen you get some chain homotopic maps.

This gives you the Mayer Vietoris sequence as you get open cover U, V on X.

Proposition 3.2 (Diamond SES):

If the commutative diagram of inclusions is good, i.e. $j_{2} \circ i_{2}, j_{1} \circ i_{1}$, then there's a SES

$$
0 \rightarrow C_{*}\left(U_{1} \cap U_{2}\right) \xrightarrow{i} C_{*}\left(U_{1}\right) \oplus C_{*}\left(U_{2}\right) \xrightarrow{j} C_{*}^{U}(X) \rightarrow 0
$$

where

$$
\begin{gathered}
i=\left[\begin{array}{l}
i_{1 \#} \\
i_{2 \#}
\end{array}\right] \\
j=\left[\begin{array}{ll}
j_{1 \#} & j_{2 \#}
\end{array}\right]
\end{gathered}
$$

Note that you have the C_{*}^{U} at the end because it's induced by an open cover.

Proof:

Idea is to check exactness in the three middle parts. i.e. i injective, j surjective, middle isomorphic.
The idea for the middle one being exact is: since digram commute then $\operatorname{im} i \subseteq \operatorname{ker} j$. For the other direction, say something is in ker j, we construct the preimage of it as a sum. But they are the same after rearranging. So they must come be linear combinations of things coming from $U_{1} \cap U_{2}$. So ker $j \subseteq \operatorname{im} i$.

Corollary 3.3 (Mayer Vietoris LES):
Recall from before.

Proposition 3.4 (Reduced hom of S^{n}):
$\tilde{H}_{i}\left(S^{n}\right)= \begin{cases}\mathbb{Z} & i=n \\ 0 & i \neq n\end{cases}$

3.1 Week 3 lecture 1

Lemma 3.5 (Turning a commuting diagram of SES into LES):

Suppose we have a commuting diagram of chain complexes and chain maps, with rows being SES as below, then we can get a commuting diagram of LES as follows.

$\bullet \longrightarrow H_{i}(B) \longrightarrow H_{i}(C) \xrightarrow{\partial} H_{i}(A) \longrightarrow$ •

$\bullet \longrightarrow H_{i}\left(B^{\prime}\right) \longrightarrow H_{i}\left(C^{\prime}\right) \xrightarrow{\partial} H_{i}\left(A^{\prime}\right) \longrightarrow \bullet$

Proposition 3.6:

Let r_{n} be the antipodal map from $S^{n} \rightarrow S^{n}$. Then

$$
r_{n *}: \tilde{H}_{n}\left(S^{n}\right)=\left\langle\left[S^{n}\right]\right\rangle \rightarrow \tilde{H}_{n}\left(S^{n}\right)=\left\langle\left[S^{n}\right]\right\rangle
$$

is given by $r_{n *}\left[S^{n}\right]=-\left[S^{n}\right]$

Corollary 3.7 (Some theorem about flipping w.r.t. point): not quite understanding the corollary and the proof.

3.2 Excision and collapsing on a pair

Definition 3.1 (Deformation retract): There's a really interesting way of defining deformation retract as maps of pairs.
Suppose $A \subset Z$, then A is deformation retract of Z if there is a map $p:(Z, A) \rightarrow(A, A)$ such that

$$
\begin{aligned}
p \circ i:(A, A) & \rightarrow(A, A)=1_{(A, A)} \\
i \circ p:(Z, A) & \rightarrow(Z, A) \sim 1_{(Z, A)}
\end{aligned}
$$

as a map of pairs. There is a way easier way to define deformati on retract but this one works.

Definition 3.2 (Good pair): A pair (X, A) is afood pair if $\exists U \subset X$ open such that $A \subset U$ and U deformation retracts onto A.

Theorem 3.8 (Excision theorem):

This theorem is good for example sheet
If (X, A) is a good pair, and $\pi:(X, A) \rightarrow(X / A, A / A)$. Then

$$
\pi_{*}: H_{*}(X, A) \rightarrow H_{*}(X / A, A / A) \cong \tilde{H}(X / A)
$$

is an isormorphism.

Remark 4 (Some use of the excision theorem):

In class, we used the theorem to compute the homology group of $Z=S^{2} /\{n, s\}$ via a bunch of sequences. We also used the theorem to compute the homology group of T / B where B is a circle, where $T / B=Z$.

3.3 Week 3 lecture 2

Proposition 3.9 (The five lemma):
The five lemma

If $U_{i \in J}$ forms a open cover of X, then for $A \subset X, U_{i \in J}$ by intersecting each element with A gives you an open cover of A. So $C_{*}^{U_{A}}(A) \subset C_{*}^{U}(X)$. We define $C_{*}^{U}(X, A)=C_{*}^{U}(X) / C_{*}^{U_{A}}(A)$, then we get this map

$$
i: C_{*}^{U}(X) \rightarrow C_{*}(X)
$$

induces

$$
i: C_{*}^{U}(X, A) \rightarrow C_{*}(X, A)
$$

This follows from subdivision lemma.

Lemma 3.10 (Subdivision lemma for pairs):

$$
i_{*}: H_{*}^{U}(X, A) \rightarrow H_{*}(X, A)
$$

is an isomorphism.

Proof:
Use snake and give on a commuting diagram of SES.

Theorem 3.11 (Excision):

Suppose that $B \subset A \subset X$ and $\bar{B} \subset \operatorname{int}(A)$. Let

$$
j:(X-B, A-B) \rightarrow(X, A)
$$

be the inclusion. Then

$$
j_{*}: H_{*}(X-B, A-B) \rightarrow H_{*}(X, A)
$$

is an isomorphism.

Proof:

Split the open cover $\left(C_{*}^{U}\right)$ into a direct sum, use a lemma that C_{*}^{U} isomorphism yields H_{*}^{U} isomorphism. Then use subdivision lemma and a commuting square to show isormopshism of H_{*}^{U} s.

Proposition 3.12 (LES of Triple Inclusion):

Suppose $Z \subset Y \subset X$ then

$$
\mapsto H_{*}(Y, Z) \mapsto H_{*}(X, Z) \mapsto H_{*}(X, Y) \mapsto H_{*-1}(Y, Z) \mapsto
$$

Where first two arrows are inclusions and the last one is the boundary given by snake.

Lemma 3.13:

If A is a d.r. of U and $U \subset X$, and if $j(X, A) \rightarrow(X, U)$ is the inclusion, then

$$
j_{*}: H(X, A) \rightarrow H_{*}(X, U)
$$

is an isomorphism.

Proof: The proof utilizes the L.E.S. of (U, A) and the LES of (X, U, A).

Definition 3.3 (Good pair): (X, A) is a good pair if $\exists U \subset X$ open and that $A \subset U$ a d.r. of U and $\bar{A} \subset U$. Or say A is closed in X.

Theorem 3.14 (Collapsing of a pair):

Let (X, A) be a good pair, $\pi:(X, A) \rightarrow(X / A, A / A)$ be the quotient map. Then $\pi_{*}: H_{*}(X, A) \rightarrow$ $H_{*}(X / A, A / A)$ is an isomorphism.

Proof: Commuting diagram

Definition 3.4 (n-manifold): A space X is an n-manifold if it is metrizable. i.e. Hausdorff and second countable. And every $x \in X$ has open neighbourhood $U_{X} \cong \mathbb{R}^{n}$.

Proposition 3.15:

If X is an n manifold and $x \in X$ then

$$
H_{*}(X, X-x)= \begin{cases}\mathbb{Z} & *=n \\ 0 & \text { otherwise }\end{cases}
$$

Corollary 3.16:

If M^{m}, N^{n} are m, n manifolds and M, N homeomorphic, then $m=n$.

Proof: Fill it in. But question: how did you get from the $X, X-$ to $D^{n}, D^{n}-0$?

4 Week 3 lecture 3

Definition 4.1 (Degree of map): let $f: S^{n} \rightarrow S^{n}$ with $f_{*}\left[S^{n}\right]=k\left[S^{n}\right]$ wher k is the degree of f.

Proposition 4.1 (Properties about degree of maps):

1. $\left(1_{S^{n}}\right)_{*}=1_{H_{*}\left(S^{n}\right)}$ so $\operatorname{deg} i d=1$.
2. homotopic maps have the same degrees
3. composition of maps have their degrees being multiplicative.
4. If $f: S^{n} \rightarrow S^{n}$ is a homeomorphism then $\operatorname{deg} f= \pm 1$. It is orientation preserving if $\operatorname{deg} f=1$, otherwise it is orientation reversing
5. if $r_{*}: S^{n} \rightarrow S^{n}$ is reflecting in V^{\perp}, then $\operatorname{deg} r_{v}=-1$
6. if $A: S^{n} \rightarrow S^{n}$ is antipodal map, then $A=r_{e_{1}} \circ \ldots \circ r_{e_{n+1}}$ implies $\operatorname{deg}(A)=(-1)^{n+1}$. Using properties 3 and 5 .

Corollary 4.2:

$A \nsim 1_{S^{n}}$ if n is even.

4.1 Local degree

https://math.stackexchange.com/questions/2205452/local-degree-of-a-map-between-n-spheres Given $p \in S u c h^{n}$, then $S^{n}-p \cong D^{o N}$ is contractible. So

$$
\pi_{*}: H_{n}\left(S^{n}\right) \rightarrow H_{n}\left(S^{n}, S^{n}-p\right)
$$

is an isomorphism for $n \geq 1$, as LES of a pair.

We now define $\left[S^{n}, S^{n}-p\right]$.

Definition 4.2 (We define a bunch of things to used to study what happens with on S^{n}): $p \in S^{n}$, get a open $U, p \in U$, define $B=S^{n} \backslash U$. Then B is closed. Then define a bunch of maps of pairs with respect to this convention.

We then generate a bunch of commutative diagrams. i.e. with $U^{\prime} \subset U$, get $H_{n}\left(U^{\prime}, U^{\prime}-p\right) \rightarrow H_{n}(U, U-p)$ is a homeomorphism.
Intuition: Now we think about local degree. Consider a loop $S^{1} \rightarrow S^{1}$ that is homotopic to the constant loop but might go back and forth hovering over a point. The global map still have degree one but the preimage of one point could be a few points.

Definition 4.3 (Local degree): Consider $f: S^{n} \rightarrow S^{n}$ with $f^{-1}(p)=\left\{q_{1}, \ldots, q_{r}\right\}$ finite. By Hausdorffness of S^{n}, find $U_{i} \subset S^{n}$ open nbhds of q s pariwise disjoint.
We obtain maps $f_{i}:\left(U_{i}, U_{i}-q_{i}\right) \rightarrow\left(S^{n}, S^{n}-p\right)$.
So $f_{*}\left[U_{i}, U_{i}-q_{i}\right] \rightarrow k\left[S^{n}, S^{n}-p\right]$. (where the [•] is the generator. i.e. where does f_{*} send the generator to the generator of some subgroup of \mathbb{Z}). We then define $\operatorname{deg}_{q_{i}} f=k$ to be the local degree of f at q_{i}.

Lemma 4.3:

Note that this does not depend on the choice of U_{i}. The proof is again some relative homology commutative diagram.

Note that $V=\coprod U_{i} \subset S^{n}$, which is open. We can use excision to show that $\left[U_{i}, U_{i}-q_{i}\right]$ form a basis. So.

Lemma 4.4 (Another way to study map $H_{n}\left(S^{n}\right)$):

The map

$$
H_{n}\left(S^{n}\right) \rightarrow H_{n}\left(S^{n}, S^{n}-f^{-1}(p)\right) \cong \oplus H_{n}\left(U_{i}, U_{i}-q_{i}\right)
$$

is given by

$$
\left[S^{n}\right] \mapsto \sum_{r}\left[U_{i}, U_{i}-q_{i}\right]
$$

Proof: By two complicated commutative diagrams.

Theorem 4.5 (Degree of f computed as local degrees):
Suppose $f: S^{n} \rightarrow S^{n}, f^{-1}(p)=\left\{q_{1}, \ldots, q_{r}\right\}$ as above. Then $\operatorname{deg} f=\sum_{i=1}^{r} \operatorname{deg}_{q_{i}} f$. Note that this is true no matter which point p we pick.

Proof: Again a complicated commutative diagram.

Example 4.6:

Two examples given. One given an example of degree map, and another demonstrates how you can compute $f_{*}\left[U_{0}, U_{0}-1\right]$ by where it sends a rotation of it.

5 Week 4

5.1 Lecture 1

Remark 5 (Harewicz homomorphism):

It is a result that link homotopy to homology.

$$
\begin{gathered}
\Phi: \pi_{n}(X, *) \rightarrow H_{n}(X) \\
f \mapsto f_{*}\left[S^{n}\right]
\end{gathered}
$$

In general, this map is quite far away from an isomorphism.

$$
h_{*}: \pi_{n}(X) \rightarrow H_{n}(X)
$$

He gave me an example of where $H_{2}\left(T^{2}\right)$ is \mathbb{Z}, and that $f_{*}\left(S^{2}\right)$ mapped it to 0 .
A better model is that if M is a closed, compact, connected n manifold. Then we will show $H_{n}(M) \cong \mathbb{Z}=\langle[M]\rangle$.

Remark 6:

So the prof give out two intuitions. First one is Harewicz homomorphism which is not an isomorphism from $\pi(X, *)$ to study H_{n}, so it is bad. Then he introduced the manifolds one, which would actually say that the genus 2 and genus 3 surfaces are the same, which is also not that good. Then he that's why he introduced cellular CX.

Definition 5.1 (attaching/gluing along function): Suppose $B \subset Y, f: B \rightarrow Y$, then $X \cup_{f} Y=$ $(X \amalg Y) / \sim$. where \sim is the smallest equivalence relation containing $b \sim f(b) \forall b \in B$. This is the space obtained by gluing Y to X along f.why the smallest equivalence relation? Why not pointwise gluing? If $(Y, B)=\left(D^{k}, S^{k-1}\right)$ then $X \cup_{f} D^{k}$ is obtained by attaching a k-cell to X.

Definition 5.2 (Finite cell complex, skeletons): A finite cell complex (fcc) is a space equipped with closed sets

$$
\varnothing=X_{-1} \subset X_{0} \subset X_{1} \subset \ldots \subset X_{n}
$$

Such that for each k, X is obtained by attaching finitely many cells to X_{k-1}. such that the following holds:

$$
\begin{aligned}
& X_{k} \simeq X_{k-1} \bigcup_{F} \coprod_{\alpha \in A_{k}} D^{k} \\
& F: \coprod_{a \in A} S^{k-1} \rightarrow X_{k-1} \\
& F=\coprod f_{\alpha}: S^{k-1} \rightarrow X_{k-1}
\end{aligned}
$$

where each small f_{α} is the
We could also drop the finiteness conditions. X_{k} is the k skeleton of X.

Definition 5.3 (Wedge product): For pointed space

$$
\bigvee i \in I\left(X_{i}, x_{i}\right)=\coprod_{i \in I} X_{i} / \coprod_{i \in I} x_{i}
$$

Example 5.1 (Projective spaces):

Consider the n dimensional projective space. In this section, he showed it is compact and hausdorff. Also defined the Hopf map, and the following CW construction for the $\mathbb{C P}^{n}$.

$$
\mathbb{C P}^{n}=\mathbb{C}^{n+1}-0 / \mathbb{C}^{*}
$$

Proposition 5.2 (Construction for $\mathbb{C P}^{n}$):

$$
\begin{aligned}
& \mathbb{C P}^{n} \cong \mathbb{C P}^{n-1} \bigcup_{p_{n-1}} D^{2} n \\
& P_{n-1}: S^{2 n-1} \rightarrow \mathbb{C P}^{n-1}
\end{aligned}
$$

Theorem 5.3 (The homology classes for $\mathbb{C P}^{n}$):
as CW complexes constructions, also induction for the homology group construction.

6 Week 4 lecture 3

Observe that $X_{k} / X_{k-1} \simeq \bigvee_{\alpha \in A_{k}} S^{k}$.
So note that $H_{k}\left(X_{k}, X_{k-1}\right) \simeq H_{k}\left(\bigvee_{\alpha \in A_{k}} S^{k}\right)=\left\langle e_{\alpha} \mid \alpha \in A_{k}\right\rangle$.
We have a map from $\bigvee_{\alpha \in A_{k}} S^{k}$ mapping to S^{k}.
We can use the LES of triple on (X_{k}, X_{k-1}, X_{k-2}).

Lemma 6.1:

$d_{k}=\pi_{(k-1) *} \circ \partial_{k}$ where $\partial_{k}: H_{k}\left(X_{k}, X_{k-1}\right) \rightarrow H_{k-1}\left(X_{k-1}\right)$ is ∂ in the LES of $\left(X_{k}, X_{k-1}\right)$.

Corollary 6.2:

$$
d_{k} \circ d_{k+1}=0
$$

Definition 6.1 (Cellular chain complex): If X is a fcc, $H_{*}^{\text {cell }}(X)=H_{*}\left(C_{*}^{\text {cell }}(X)\right) \simeq H_{*}(X)$.

Theorem 6.3:

$$
H_{*}^{\text {cell }}(X)=H_{*}\left(C_{*}^{\text {cell }}(X)\right) \simeq H_{*}(X)
$$

Remark 7 (The cellular homology of $\mathbb{R P}^{n}$ and $\mathbb{C P}^{n}$):

Lemma 6.4:

Suppose X is a fcc with one 0 -cell, all other cells have $m \leq \operatorname{dim} \leq M$, then $\tilde{H}_{*}(X)=0$ if $*<m, *>M$. The proof is by induction.

7 Week 4 lecture 3

Lemma 7.1:

If X is a fcc then $\left(X, X_{k}\right)$ is a good pair.

Corollary 7.2:

If X is a fcc then $H_{k}\left(X_{k+1}\right) \simeq H_{k}(X)$. This is true for any k.

Theorem 7.3:

If X is a fcc then $H_{*}^{\text {cell }}(X) \simeq H_{*}(X)$.

Definition 7.1 (Tensor products):

Remark 8 (Tensor products and their properties): Three properties plus $\otimes M$ gives a functor. THis gives us that if (C, d) is a chain complex over R then $(C \otimes M, d \otimes 1)$ gives another chain complex.

Definition 7.2 (Singular chain complex with coefficients in a abelian group): If G is a \mathbb{Z} module, then $C_{*}(X ; G)=C_{*}(X) \otimes G$ is the singular chain complex with coefficient in $G . H_{*}(X ; G)$ is its homology.

Remark 9 (Euler characteristic): the definition, and the theorem regarding Euler characteristic.

Theorem 7.4 (Eilenberg Steenrod axioms):

Define an ordinary homology theory with coefficient in G. It is a functor from (Pairs of spaces, maps of pairs), (\mathbb{Z}-modules, \mathbb{Z}-linear maps.) satisfying four different axioms. Then if X is a fcc, and H_{*} is any functor satisfying the axioms, $H_{*}(X) \simeq H_{*}\left(C_{*}^{\text {cell }}(X) \otimes G\right)$. In particular, $H_{*}(X ; G)$ satisfy the axioms.

8 Week 5

8.1 Week5 lecture 1

https://people.math.osu.edu/broaddus.9/6802/files/lecture04.pdf

Definition 8.1 (Free resolution): If R is a module then a free solution of M is a free chain CX A over R , each A_{k} is free over R, such that

- $A_{k}=0, k<0$
- $H_{*}(A)= \begin{cases}M & *=0 \\ 0 & * \neq 0\end{cases}$

It is better viewed this way (question, are this two defns equivalent?)

$$
\ldots F_{2} \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

Each F are free and abelian.
Note that in here, if R is a PID, then many good things happen. However, if R is not a PID things are not as good. So algebraic geometry studies the situation when R is not a PID.

Definition 8.2 (Torsion): If M, N are modules, then $\operatorname{Tor}_{i}(M, N)=H_{i}(A \otimes N)$ where A is a free resolution of M. Torsion is the measure of failure of $H_{*}(A \otimes N)=H_{*}(A) \otimes N$. The above pdf gives a short list of properties of torsion.

Definition 8.3 (Short injective): A chain CX is short injective if

- C_{*} is 0 whenever $* \neq k, k+1$, and C_{k}, C_{k+1} are free over R.
- $d: C_{k+1} \rightarrow C_{k}$ is injective.

Note that it it not necessarily an exact one so it could be not injective.

Theorem 8.1 (A theorem analogues to the structure thm of f.g. module over PID): A free CX over a PID is a direct sum of short injective chain complexes. https://en.wikipedia.org/wiki/Structure_theorem_for_finitely_generated_modules_ over_a_principal_ideal_domain

Corollary 8.2:
If two free chains of complexes over a PID have \simeq homology then they are chain homotopic equivalent.

Corollary 8.3:

If C is a chain complex over a field \mathbb{F} then $C \simeq\left(H_{*}(C), 0\right)$.

Corollary 8.4 (Universal coefficient theorem):

If C is a free CX over a PID, then

$$
H_{k}(C \otimes N)=\operatorname{Tor}_{0}\left(H_{k}(C), N\right) \oplus \operatorname{Tor}_{1}\left(H_{k-1}(C), N\right)
$$

Therefore as a result, $H_{*}(X, G)$ is determined by $H_{*}(X)$.
We need a PID so the 0th and 1th things are the only nonzero quantities. Then we can split them into things to study. That's why PID is important.

9 Cohomology and products

Yay, finally on cohomology

Definition 9.1: If M, N are R-modules, then $\operatorname{Hom}(M, N)$ is an R-module. If $f: M_{1} \rightarrow M_{2}$ are R-linear, then

$$
\begin{gathered}
f^{*}: \operatorname{Hom}\left(M_{2}, N\right) \rightarrow \operatorname{Hom}\left(M_{1}, N\right) \\
\alpha \mapsto \alpha \circ f
\end{gathered}
$$

then f^{*} is an R-linear map.
Note that

$$
(f \circ g)^{*}(\alpha)=g^{*}\left(f^{*}(\alpha)\right)
$$

This gives a contravariant functor. (see notes for more details).

Note that there is a covariant functor is a functor. A contravariant functor is not a functor. If (C, d) is a chain complex over R, then

$$
\left(\operatorname{Hom}(C, N), d^{*}\right)=\bigoplus_{k} \operatorname{Hom}\left(C_{k}, N\right)
$$

where

$$
d_{k}^{*}: \operatorname{Hom}\left(C_{k-1}, N\right) \rightarrow \operatorname{Hom}\left(C_{k}, N\right)
$$

satisfies $\left(d^{*}\right)^{2}=0$. By the contravariant functor property.

Definition 9.2 (The cochain complex): $\operatorname{So}\left(\operatorname{Hom}(C, N), d^{*}\right)$ is a cochain complex. d^{*} raises the homological degree by 1 .

Then there is a covariant functor

$$
\begin{gathered}
\left\{\begin{array} { l }
{ \text { Chain CXs over } R } \\
{ \text { Chain maps } }
\end{array} \rightarrow \left\{\begin{array}{l}
\text { Cochain complexes } \\
\text { cochain maps }
\end{array}\right.\right. \\
(C, d) \mapsto\left(\operatorname{hom}(C, N), d^{*}\right) \\
f: C \rightarrow C^{\prime} \mapsto f^{*}: \operatorname{Hom}\left(C^{\prime}, N\right) \rightarrow \operatorname{Hom}(C, N)
\end{gathered}
$$

Definition 9.3 (Cohomology): Cohomology of $\left(C^{*}, d_{k}^{*}\right)$ is

$$
H^{k}(C)=\operatorname{ker} d_{k}^{*} / \operatorname{im} d_{k-1}^{*}
$$

This also gives a contravariant function for the pairs of spaces.

Definition 9.4: Given a space X, define its singular cochain complex with coefficients in group G. The cochain complex is

$$
\begin{gathered}
\left(\operatorname{Hom}\left(C_{*}(X), G\right), d^{k}\right)=\left(C^{*}(X ; G)\right) \\
H^{k}(X ; G)=H^{k}\left(C^{*}(X ; G)\right)
\end{gathered}
$$

9.1 Week 5 Lec 2

Definition 9.5 (kth singular homology): Cohomology of $\left(C^{*}, d_{k}^{*}\right)$ is

$$
H^{k}(C ; G)=\operatorname{ker} d_{k+1}^{*} / \operatorname{im} d_{k}^{*}
$$

Definition 9.6 (Cochain maps): If $f: X \rightarrow Y$ then $f^{\#}: C^{k}(Y ; G) \rightarrow C^{k}(Y ; G)$ $f^{\#}(\alpha)(\sigma)=\alpha\left(f_{\#}(\sigma)\right)=\alpha(f \circ \sigma)$.
Then f^{*} is a cochain map. i.e. $d^{*} f^{\#}=f^{\#} d^{*}$.

Definition 9.7 (Chain homotopies): If C, C^{\prime} are cochain complexes, $f, g: C \rightarrow C^{\prime}$ are chain maps, then they are cochain homotopic if $f-g=d^{*} h+h d^{*}$.

Lemma 9.1:

If $f \sim g$ then $f^{*}=g^{*}$.
If $f, g: C \rightarrow C^{\prime}$ are chain complexes, $f \sim g$ via h, the

$$
f^{*}, g^{*}: \operatorname{hom}\left(C^{\prime} ; N\right) \rightarrow \operatorname{Hom}(C, N)
$$

are cochain $\sim \operatorname{via} h^{*}$.

Remark 10 (Eilenberg Steenrod): Recall Eilenberg Steenrod about contravariant functors.

- $f_{0}, f_{1}:(X, A) \rightarrow(Y, B)$ and $f_{0} \sim f_{1}$ as map of pairs, then $f_{0}^{*}=f_{1}^{*}: H^{*}(Y, B) \rightarrow H^{*}(X, A)$
- Get a LES of pairs except it goes up and in opposite direction
- You also get excision except it is upper star
- Dimension: $H^{*}(\{\bullet\}, G)=G, *=0,0$ o.w.

Theorem 9.2:

Any functor satisfying the above Eilenberg Steenrod is given by $H^{\text {cell }}(X ; G)$ when X is a finite cell CX.

9.2 Ext and Universal coefficient theorems

Definition 9.8 (Ext): If M, N are R-modules,

$$
\operatorname{Ext}^{i}(M, N)=H^{i}(\operatorname{Hom}(A, N))
$$

where A is a free resolution of M.

Theorem 9.3:

Given a X finite cell cx, you can decompose H^{k} into Ext and Hom.
You can also use $H_{k}(X)$ to split up into the freely generated parts and the finite parts. The rank of the freely generated part is the Betti number.

Lemma 9.4 (Pairing):

If C is a chain CX over R, then there is a bilinear pairing $\langle\rangle:, \operatorname{Hom}\left(C_{k} ; N\right) \times C_{k} \rightarrow N,\langle a, c\rangle=a(c)$ this descends to a pairing

$$
\begin{gathered}
H^{k}(\operatorname{Hom}(C, N)) \times H_{k}(C) \rightarrow N \\
\langle[\alpha],[c]\rangle \rightarrow\langle\alpha, c\rangle \rightarrow \alpha(c)
\end{gathered}
$$

9.3 Week 5 Lecture 3

9.4 Cup product

Definition 9.9 (Cup product):
If $a \in C^{k}(X ; R), b \in C^{l}(X, R)$ then

$$
a \cup b \in C^{k+l}(X ; R)
$$

is given by

$$
a \cup b=a\left(\sigma \circ F_{0 \ldots j}\right) b\left(\sigma \circ F_{k \ldots k+1}\right)
$$

Check that this definition makes sense!

Lemma 9.5 (Cup product makes ring):

\cup makes $C^{*}(X ; R)$ into a commutative ring with $1 \in C^{0}(X ; R)$. Think of $\alpha \cup \beta(\sigma)$ as $\alpha(\sigma) \beta(\sigma)$ where we just need to bump up the degree to $a+b$.

Lemma 9.6 (Leibniz Rule):

If $\alpha \in C^{k}, \beta \in C^{l}$, then

$$
d^{*}(\alpha \cup \beta)=\left(d^{*} \alpha\right) \cup \beta+(-1)^{k} \alpha \cup\left(d^{*} \beta\right)
$$

Corollary 9.7 (Cup product descends to cohomology):
\cup descends to a map

$$
\begin{gathered}
\cup: H^{k}(X ; R) \times H^{l}(X ; R) \rightarrow H^{l+k}(X ; R) \\
{[\alpha] \times[\beta] \mapsto[\alpha \cup \beta]}
\end{gathered}
$$

This makes $H^{*}(X ; R)$ into a ring with $[1]=1$.

Remark: notes that cup products make both cochain complexes and cohomologies into a ring

Proposition 9.8 (A very important prop):

If $f: X \rightarrow Y$ then $f^{*}: H^{*}(Y ; R) \rightarrow H^{*}(X ; R)$ is a ring homomorphism. i.e.

$$
f^{*}(\alpha \cup \beta)=f^{*}(\alpha) \cup f^{*}(\beta)
$$

Proposition 9.9 (A hard one):

$H^{*}(X ; R)$ is graded commutative. This mean

$$
a \cup b=(-1)^{|a||b|} b \cup a
$$

where $|a|=k$ if a is an element of $H^{k}(X ; R)$. Warning: this is only true for cohomology classes but not true for cochains in general

See Dexter page 48

Theorem 9.10:
If $r_{j}: C_{j}(X) \rightarrow C_{j}(X)$ defined based on flipping the corners of the simplices around, then r_{*} : $C_{*}(X) \rightarrow C_{*}(X)$ is a chain map and $r \sim 1_{C_{*}(X)}$.

10 Week 6

10.1 Week 6 lecture 1

Remark 11: Using half a class to prove the theorem about the simplex-flipping function r and used it to show graded commutativity.

Proposition 10.1 (Some properties about pairs):

- if $\alpha \in C^{k}(X, A)$ and $\beta \in C^{l}(X)$ then $\alpha \cup \beta \in C^{*}(X, A)$.
- \cup defines a map

$$
\begin{aligned}
H^{*}(X, A) \times H^{*}(X) & \rightarrow H^{*}(X, A) \\
(\alpha, \beta) & \mapsto \alpha \cup \beta
\end{aligned}
$$

- more generally, \cup defines a map

$$
H^{*}(X, A) \times H^{*}(X, B) \rightarrow H^{*}(X, A \cup B)
$$

this is consequence of subdivision lemma.

$$
H^{*}(X \coprod Y) \cong H^{*}(X) \oplus H^{*}(Y)
$$

11 Week 6 Lecture 2

Definition 11.1 (Exterior products): Setup: (X, A) is a pair of spaces. Y is a space.

$$
\begin{gathered}
\pi_{1}:(X \times Y, A \times Y) \rightarrow(X, A) \\
(x, y) \mapsto x
\end{gathered}
$$

$$
\begin{gathered}
\pi_{2}: X \times Y \mapsto Y \\
(x, y) \mapsto y
\end{gathered}
$$

Then, if $a \in H^{k}(X, A), b \in H^{l}(Y)$ then their exterior product $a \times b=\pi_{1}^{*}(a) \cup \pi_{2}^{*}(b) \in H^{k+l}(X \times Y, A \times Y)$.

Proposition 11.1 (Some observations about exterior product):

1.

$$
\begin{aligned}
H^{*}(X, A) \times H^{*}(Y) & \rightarrow H^{*}(X \times Y, A \times Y) \\
(a, b) & \mapsto a \times b
\end{aligned}
$$

is bilinear so it extends to

$$
\begin{gathered}
H^{*}(X, A) \bigotimes H^{*}(Y) \rightarrow H^{*}(X \times Y, A \times Y) \\
a \otimes b \mapsto a \times b
\end{gathered}
$$

2.

$$
\left(a_{1} \times b_{1}\right) \cup\left(a_{2} \times b_{2}\right)=(-1)^{|a||b|}\left(a_{1} \cup a_{2}\right) \cup\left(b_{1} \cup b_{2}\right)
$$

Theorem 11.2 (A quite big theorem):
If $H^{*}(Y ; R)$ is free over R, then

$$
\Phi: H^{*}(X, A ; R) \otimes H^{*}(Y ; R) \rightarrow H^{*}(X \times Y, A \times Y ; R)
$$

is an isomorphism.
It being free is very important. Note that if R is a field thenit is always free.
There are two consequences

- If the object is free then we can compute $H^{*}(X \times Y ; R)$ from $H^{*}(X ; R), H^{*}(Y ; R)$.
- it tells us the ring structure on $H^{*}(X \times Y ; R)$.

Corollary 11.3 (Help us identify another set of spaces):

Although $S^{2} \times S^{2}$ have the same H_{*} as $S^{2} \vee S^{2} \vee S^{4}$, but they still have different structures as rings. So they are not homeomorphic.

12 Week 6 lecture 3

Theorem 12.1:
If X is an fcc, $\Phi: \underline{h}(x) \cong \bar{h}(x)$ is an iso.

Lemma 12.2:

Φ commutes with induced maps and δ-maps in LES of a pair.

Together these prove the big theorem in six step. This is a quite important proof!

13 Vector bundles

Definition 13.1 (Vector bundle): An n-diml real vector bundle (B, E, π) respectively are bas space, total space, and projection from total to base such that

- $\pi^{-1}(b)$ is a real n-diml vector space for each $b \in B$.
- there is an open cover $U_{\alpha}, \alpha \in A$ of B and maps $f_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{n}$ such that the following commutes.

and $\pi_{2} \circ f_{\alpha}: \pi^{-1}(b) \rightarrow \mathbb{R}^{n}$ is an isomorphism of vector spaces for all $b \in U_{\alpha}$. The f_{α} are localizations.

Similarly there is a complex n-diml vector bundle.
A morphism of vector bundles $f:(E, B, \pi) \rightarrow\left(E^{\prime}, B^{\prime}, \pi^{\prime}\right)$ is a commuting square

such that $\left.f_{E}\right|_{\pi^{-1}(B)}: \pi^{-1}(b) \rightarrow\left(\pi^{\prime}\right)^{-1}(f(b))$ is a linear map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. But note that the fibres can have different dimensions.
E is a submodule of E^{\prime} if there's an injective morphism

i.e. $\pi^{-1}(b)$ is a linear subspace of $\left(\pi^{\prime}\right)^{-1}(b)$.

14 Week 7

14.1 Week 7 lecture 1

Definition 14.1 (A list of definitions):

- sections of a vector bundle E.
- a non-vanishing section
- Trivial bundle
- the mobius bundle
- the tautological bundle

Proposition 14.1 (Trivial vector bundle):

E is trivial \Longleftrightarrow there exists sections $s_{1}, \ldots s_{n}: B \rightarrow E$ such that $\left\{s_{1}(b), \ldots, s_{n}(b)\right\}$ is a basis for $\pi^{-1}(b)$ for all $b \in B$.

Definition 14.2 (Pullbacks of r-vector bundle): If $\pi: E \rightarrow B$ is an n-diml real vector bundle. and $g: B^{\prime} \rightarrow B$ continuous, then

$$
g^{*}(E)=\left\{\left(b^{\prime}, b, v\right) \in B^{\prime} \times B \times E \mid g\left(b^{\prime}\right)=\pi(v)=b\right\}
$$

where

$$
\begin{gathered}
\pi_{g}: g^{*}(E) \rightarrow B^{\prime} \\
\left(b^{\prime}, b, v\right) \rightarrow b^{\prime}
\end{gathered}
$$

and

$$
\pi_{g}^{-1}\left(b^{\prime}\right)=\left\{\left(b^{\prime}, g(b), v\right) \mid \pi(v)=g(b)=\pi^{-1}(g(b))\right\}
$$

is a vector space.
If $f_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{n}$ is a local trivialization for E.
Let $V_{\alpha}=g^{-1} U_{\alpha}$.

$$
\begin{aligned}
& f_{\alpha}^{\prime}: \pi_{g}^{-1}\left(V_{\alpha}\right) \rightarrow V_{\alpha} \times \mathbb{R}^{n} \\
& \left(b^{\prime}, b, v\right) \mapsto\left(b^{\prime}, \pi_{2}\left(f_{\alpha}(v)\right)\right)
\end{aligned}
$$

is a local triv for $g^{*}(E)$.
So $g^{*}(E)$ is the pullback of E by g.

Lemma 14.2:

$$
(g \circ f)^{*}(E)=f^{*}\left(g^{*}(E)\right)
$$

Definition 14.3 (Restriction): If $A \subseteq B, i: A \hookrightarrow B$ is the inclusion, then $\left.E\right|_{A}:=i^{*}(E)$ is the restriction of E to A.
If $s: B \rightarrow E$ is a non-vanishing section then $g^{*} s: B^{\prime} \rightarrow g^{*}(E), b^{\prime} \mapsto\left(b^{\prime}, f(b), s(f(b))\right)$ is a nonvanishing section of $g^{*}(E)$.

Definition 14.4 (Products and sums): If $\pi: E \rightarrow B, \pi^{\prime}: E^{\prime} \rightarrow B^{\prime}$ are r-vector bundles of dimension n, n^{\prime}, then their product $\pi \times \pi^{\prime}: E \times E^{\prime} \rightarrow B \times B^{\prime}$ is a vector space of dimension $n^{\prime} \times n$. The local trivializations are also defined similarly.
If $B=B^{\prime}$, then $E \oplus E^{\prime}=\Delta^{*}\left(E \times E^{\prime}\right) \rightarrow B$ where $\Delta: B \rightarrow B \times B, b \mapsto(b, b)$ is the whitney sum of E and E^{\prime}.

Definition 14.5 (Partition of unity):

- Support of a function $\phi: B \rightarrow \mathbb{R}$
- partition of unity has

1. $\in[0,1]$
2. indices such that $\phi_{i}(b) \neq 0$ is finite for all b
3. support of all ϕ_{i} is in a single cover
4. $\sum_{i} \phi_{i}(b)=1$ for all $b \in B$.

A space B admits a PoU if for every open cover $U=\left\{U_{\alpha} \mid \alpha \in B\right\}$, there is a partition of unity subordinate to U. If B is cpt then B admits a PoU.
Compact Hausdorff spaces, metrisable spaces, manifolds, all admit partitions of unity.
In general, a space B admits partitions of unity if B is paracompact Hausdorff.

Theorem 14.3:
Suppose B admits a PoU and $\pi: E \rightarrow B \times I$ is a real VB. Then

$$
\left.\left.E\right|_{B \times 0} \simeq E\right|_{B \times 1}
$$

14.2 Week 7 Lec 2

Skipped

14.3 Week 7 Lec 3

Lemma 14.4:

If $\left.E\right|_{B \times[0,1 / 2]}$ and $\left.E\right|_{B \times[1 / 2,1]}$ are trivial, then E is trivial.

Lemma 14.5:

For each $b \in B, b$ has an open neighbourhood U_{b} such that $\left.E\right|_{U_{b} \times I}$ is trivial.

These two lemmas help prove the big theorem about the PoU implying homotopic equivalence.

Corollary 14.6:

Suppose that $\pi: E \rightarrow B$ is a vector bundle, $g_{0}, g_{1}: B^{\prime} \rightarrow B, g_{0} \sim g_{1}$ via some $h: B^{\prime} \times I \rightarrow B$ and that B^{\prime} admits a PoU. Then

$$
g_{0}^{*}(E)=\left.\left.h^{*}(E)\right|_{B^{\prime} \times 0} \simeq h^{*}(E)\right|_{B^{\prime} \times 1}=g_{1}^{*}(E)
$$

Corollary 14.7:

If B is contractible and admits a PoU, then every $\mathrm{VB} \pi: E \rightarrow B$ is trivial.

14.4 Riemannian metrics:

Definition 14.6 (Riemannian metric): Suppose $\pi: E \rightarrow B$ is a real VB (resp. complex VB). A Riemannian (resp. Hermitian) metric on E is a continuous map

$$
g: E \oplus E \rightarrow \mathbb{R}
$$

(resp. $\rightarrow \mathbb{C}$) such that

$$
\left.g\right|_{\pi^{-1}(E \oplus E)}
$$

is an inner product (resp. a Hermitian inner prod)

$$
\pi_{E \oplus E}^{-1}(b)=\pi^{-1}(b) \times \pi^{-1}(b)
$$

Definition 14.7 (Unit disk, unit sphere bundles): Suppose E is a VB with Riemannian metric g. The the unit disk, and the unit bundles of E are given by

$$
\begin{aligned}
& S_{g}(E)=\{v \in E \mid\langle v, v\rangle=1\} \\
& \pi: S_{g}(E) \rightarrow B, \pi^{-1}(b) \simeq S^{-1} \\
& D_{g}(E)=\{v \in E \mid\langle v, v\rangle \leq 1\} \\
& \pi: D_{s}(E) \rightarrow B, \pi^{-1}(b) \simeq D^{n}
\end{aligned}
$$

Proposition 14.8:

If B admits $\mathrm{PoU}, \pi: E \rightarrow B$ is a real VB , then E has a R-metric.

Definition 14.8 (The R-Thom class):
Given vector bundle, let $i_{b}: E_{b} \hookrightarrow E$ be the inclusion and $s_{0}: B \rightarrow E$ be the 0 section. Define $E^{\#}=$ $E \backslash \operatorname{Im}\left(S_{0}\right)$ and $E_{b}^{\#}=E_{b} \backslash 0$.
Then $u \in H^{n}\left(E, E^{\#} ; R\right)$ is an R - Thom class for E if $i_{b}^{*}(u)$ generates $H^{*}\left(E_{b}, E_{b}^{\#} ; R\right)$ for all $b \in B$.

14.5 Week 8 Lec 1

Proposition 14.9 (Pullbacks):

If $f: B^{\prime} \rightarrow B$, then there is a morphism of vector bundles.

Lemma 14.10 (Thom class behaves naturally under pullback):

If U is a R - Thom Class for E, then $F^{*}(U)$ is an R - Thom class for $f^{*}(E)$.

Lemma 14.11:

Suppose $B=B_{1} \cup B_{2}, U \in H^{n}\left(E, E^{\#}\right) . i_{k}: B_{k} \rightarrow B$ is the inclusion. Then if $i_{1}^{*}(U)$ are thom class of $\left.E\right|_{B_{1}}$ and $i_{2}^{*}(U)$ are Thom class of $\left.E\right|_{B_{2}}$. Then U is a Thom class for E.

Theorem 14.12 (Quite important: the Thom Isomorphism):

If $\pi: E \rightarrow B$ is an n-dimensional r-vector bundle, then

- E has a unique $\mathbb{Z} / 2$ Thom Class.
- If E has an R-Thom class U, the map

$$
\Phi: H^{*}(B ; R) \rightarrow H^{*+n}\left(E, E^{\#} ; R\right)
$$

is an isomorphism

$$
a \mapsto \pi^{*}(a) \cup U
$$

14.6 The Gysin sequence

Definition 14.9 (The Euler class): If $\pi: E \rightarrow B$ is an R-oriented n-diml real vector bundle with Thom class U, then its Euler class is

$$
e(E)=s_{0}^{*} j^{*}(U) \in H^{n}(B)
$$

You can see this clearly on a commutative diagram (LES ladder of $\left(E, E^{\#}\right)$)

Theorem 14.13 (Gysin Sequence):
There is an LES:

$$
\longrightarrow H^{*-n}(B) \xrightarrow{\alpha} H^{*}(B) \xrightarrow{\pi^{*}} H^{*}(\mathbb{S}(E)) \longrightarrow H^{*-n+1}(B) \longrightarrow
$$

where $\alpha(a)=\alpha \cup e(E)$

14.7 Week 8 Lec 2

Proposition 14.14 (Properties of e):
Suppose that E is as above. Then

- $f: B^{\prime} \rightarrow B$, then $f^{*}(E)$ is oriented and $e\left(f^{*}(E)\right)=f^{*}(e(E))$
- If E is trivial and $n>0$, then $e(E)=0$.
- $e\left(E_{1} \oplus E_{2}\right)=e\left(E_{1}\right) \oplus e\left(E_{2}\right)$
- If E has a non-vanishing section then $e(E)=0$.

Theorem 14.15:

$$
H^{*}\left(\mathbb{R} \mathbb{P}^{n} ; \mathbb{Z} / 2\right) \simeq \mathbb{Z} / 2[x] /\left(x^{n+1}\right)
$$

where $x=e\left(T_{\mathbb{R P}^{n}}\right) \in H^{1}\left(\mathbb{R P}^{n} ; \mathbb{Z} / 2\right)$

```
Corollary 14.16:
\pi
```

Remark 12: Four remarks on orientability and the coefficients.

15 Manifolds

Definition 15.1 (n-manifold): An n-manifold is a 2 nd countable Hausdorff space M with an open cover $\left\{U_{\alpha} \mid \alpha \in A\right\}$ and homeomorphisms $\phi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{n}$.
The transition functions $\psi_{\alpha \beta}: \phi_{\alpha} \circ \phi_{\beta}: \phi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \phi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)$ are homeomorphisms. M is smooth if $\phi_{\alpha} \mathrm{S}$ can be chosen so $\psi_{\alpha \beta}$ are diffeomorphisms.

Definition 15.2 (Fundamental class): We write $(M \mid A)=(M, M-A)$. Then if $B \subset A$ then $i:(M \mid$ $A) \rightarrow(M \mid B)$ is inclusion of pairs. if $w \in H_{*}(M \mid A),\left.w\right|_{B}=i_{*}(w)$.

Definition 15.3 (R-fundamental class): An R-fundamental class for $(M \mid A)$ is $w \in H_{n}(M \mid A ; R)$ such that $\left.w\right|_{X}$ generate $H_{n}\left(\left.M\right|_{X}\right)$ for all $x \in A$. It's an analogue of Thom Class.

Theorem 15.1:

If $A \subset M$ is compact, $(M \mid A)$ has unique $\mathbb{Z} / 2$ fundamental class. We are most intersted in the case when M is compact/closed. A fundamental class for $(M \mid M)=(M, \varnothing)$ will be written as $[M] \in H_{n}(M)$.

Proposition 15.2:

M is orientable if it has a \mathbb{Z}-fundamental class. M is orientable iff $T M$ is orientable.

15.1 Week 8 Lec 3

Definition 15.4: $N \subset M$ is a k-dimensional smooth submanifold of an n-manifold M if for every $x \in N$, there is a smooth chat

$$
\phi_{x}: U_{x} \rightarrow \mathbb{R}^{n}
$$

such that

$$
\phi_{x}\left(U_{x} \cap N\right) \rightarrow \mathbb{R}^{k} \times 0 \subset \mathbb{R}^{n}
$$

If $N \subset M$ is a smooth submanifold then $T N \subset T_{M \mid N}$ is a subbundle.
Also $N \subset M$ is a smooth submani.

Definition 15.5: $V_{M \mid N}=\left.T N^{\perp} \subset T M\right|_{N}$ us the normal bundle of N in M. So $\left.T M\right|_{N}=V_{M \mid N} \oplus T N$.

Theorem 15.3 (Tabular neighbourhood theorem):
If $N \subset M$ is a closed smooth submanifold. There is an open $V \subset M, N \subset V$ with $(V, N) \simeq$ $\left(V_{M \mid N}, s_{0} V_{M \mid N}\right)$

Lemma 15.4:

Suppose $E=E_{1} \oplus E_{2}$ is orientable, then E_{1} is orientable $\Longleftrightarrow E_{2}$ is orientable.

Proposition 15.5:

M is orientable $\Longleftrightarrow T M$ is orientable.

Corollary 15.6:

If M is orientable, $N \hookrightarrow M$ is a closed smooth submani. Then M is orientable $\Longleftrightarrow V_{M \mid N}$ is orientable.

16 Poincaré duality

Now we work in coefficients in \mathbb{F}.
Note that $H^{k}(X) \simeq \operatorname{Hom}\left(H_{k}(x), \mathbb{F}\right)$. write $\langle a, \phi(\alpha)\rangle=\alpha(a)$. If $a \in H^{k}(X), a \cup \cdot: H^{l}(x) \rightarrow H^{k+l}(x)$.

Definition 16.1 (Cap product): $\cdot \cap a: H_{l+k}(x) \rightarrow H_{l}(x)$ is the dual of the above. $\langle b, x \cap a\rangle=\langle a \cup b, x\rangle$

Definition 16.2 (Intersection paring): Suppose M is an F-oriented n-manifold with fund $[M] \in H_{n}(M)$. The intersection pairing $(\cdot, \cdot): H^{k}(M) \times H^{n-k}(M) \rightarrow \mathbb{F}$ is the bilinear pairing given by

$$
(a, b)=\langle a \cup b,[M]\rangle
$$

satisfying graded commutativity.
If $a \in H^{k}(M),(a, \cdot) \in \operatorname{Hom}\left(H^{n-k}, \mathbb{F}\right)$

Definition 16.3 (Algebraic Poincare dual): THe algebraic Poincare dual of a is

$$
P D(a)=\phi((a, \cdot))=[M] \cap a
$$

so

$$
\langle b, P D(a)\rangle=(a, b)=\langle a \cup b,[M]\rangle
$$

Now we think about the Geometric poincare duality.

Theorem 16.1:
If M is a connected n-manifold. The map $H_{n}(M) \rightarrow H_{n}(M \mid x)=H_{n}(M, M-x) \simeq \mathbb{F}$ is injective.

Definition 16.4: $U_{M \mid N}=k^{-1} U$ is the orientation on $V_{M \mid N}$ induced by $[N],[M]$ it satisfies

$$
\left\langle U_{M \mid N} \cup \pi^{*}[N]^{*}, i_{*}^{-1} j_{*}[M]\right\rangle=1
$$

Definition 16.5:

$$
p d(N)=j^{*}\left(\left(i^{*}\right)^{-1}\left(U_{M \mid N}\right)\right) \in H^{n-k}(M)
$$

is the geometry poincare dual of N.

Proposition 16.2:

if $a \in H^{k}(M) P D(p d(N))=i_{*}(N)$

Note that the algebraic poincare dual is PD and the grometric is pd.

Lemma 16.3:

$i: V \rightarrow M, i^{*}(a)=\left\langle a, i_{*}[N]\right\rangle \pi^{*}[N]^{*}$

16.1 Week 8 lec 4

Recall that $P D: H^{k}(M) \rightarrow H_{n-k}(M)$. This is given by

$$
\langle b, P D(a)\rangle=(a, b)=\langle a \cup b,[M]\rangle
$$

We have the identity:

$$
\langle a \times b, \alpha \times \beta\rangle=\langle a, \alpha\rangle\langle b, \beta\rangle
$$

Theorem 16.4 (Poincare duality):
PD is an iso.

Proof: Needs 3 lemmas and 3 props. It gives two corollaries.

16.2 Intersection pairing on homology

Definition 16.6: Transverse submanifolds yields 4 different properties. Also $\left[N_{1}\right]\left[N_{2}\right]$ product of two transverse submanifolds.

Proposition 16.5:

Two propositions about the geometric PD of $N_{i} \mathrm{~s}$.

Corollary 16.6:
$\langle e(T M),[M]\rangle=\chi(M)$

